Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2019, Vol. 45 ›› Issue (10): 1595-1603.doi: 10.3724/SP.J.1006.2019.94024

• RESEARCH NOTES • Previous Articles     Next Articles

DNA methylation involved in regulating drought stress response of potato

LI Peng-Cheng1,2,BI Zhen-Zhen1,2,LIANG Wen-Jun1,2,SUN Chao1,2,ZHANG Jun-Lian1,BAI Jiang-Ping1,2,*()   

  1. 1Gansu Provincial Key Lab of Aridland Crop Science / Gansu Key Lab of Crop Improvement & Germplasm Enhancement, Lanzhou 730070, Gansu, China
    2College of Agronomy, Gansu Agricultural University, Lanzhou 730070, Gansu, China
  • Received:2019-02-16 Accepted:2019-05-12 Online:2019-10-12 Published:2019-09-10
  • Contact: Jiang-Ping BAI E-mail:baijp@gsau.edu.cn
  • Supported by:
    This study was supported by the National Natural Science Foundation of China(31660432);This study was supported by the National Natural Science Foundation of China(31460369);the China Agriculture Research System(CARS-09-P14);the Gansu Potato Industry System (GARS-03-P1)(GARS-03-P1);the “Light of the West” Talent Training Program of the Chinese Academy of Sciences(2014-01);the Lanzhou Science and Technology Development Plan(2015-3-62);the Gansu Science and Technology Fund(18JR3RA170);the Gansu Provincial Department of Education University Research Project(2018A-040)

Abstract:

Although epigenetics is essential for regulating gene expression in plant under abiotic stress, there are few reports regarding the epigenetics of potato under drought stress. In this study, five potato cultivars including Atlantic, Favorita, C119, C16, and Qingshu 9, were used to verify that DNA methylation is involved in potato drought stress response. The plantlets were cultured for 24 days on MS medium, MS medium supplemented with 60 μmol L -1 methylation inhibitor (5-azadC), 200 mmol L -1 mannitol, and 60 μmol L -1 methylation inhibitor combined with 200 mmol L -1 mannitol, respectively. Phenotypes, and physiological and biochemical traits were recorded and comprehensively analyzed. The response of five potato cultivars to mannitol and 5-azadC was similar. With treatments of mannitol or 5-azadC, the dry/fresh weight, shoot height, leaf number and chlorophyll content decreased significantly (P < 0.05), while the activities of SOD, POD, CAT, and contents of proline and MDA increased significantly (P < 0.05). No significant changes were observed in branch number, root length and average root diameter, indicating that potato traits might have different regulatory pathways in response to drought stress and DNA demethylation. Compared with the individual treatment, combined-treatment further inhibited the growth of plantlets, and increased activities of SOD, POD, CAT, and contents of MDA and Pro under drought stress and 5-azadC treatment, indicating that the formation of some phenotypes (not all) in response to drought was regulated through the DNA methylation. The results provide preliminary data for further study on epigenetics regulatory pathway of potato under drought stress.

Key words: potato, drought stress, DNA methylation, morphological physiology, comprehensive analysis

Fig. 1

Image of potato plantlets in vitro under different treatments A-E are the phenotype of Atl, FAV, C119, C16, and QS9 after 24 days of treatment. T0: CK; T1: 5-azadC; T2: mannitol; T3: 5-azadC+mannitol. Three plantlets of each treatment were selected for photography. Bar = 2 cm."

Table 1

Response of potato varieties to mannitol and 5-azadC"

指标
Index
大西洋
Atlantic
费乌瑞它Favorita C119 C16 青薯9号
Qingshu 9
平均值
Mean
抗旱系数 Coefficients of resistance to drought
鲜重 FW 0.3685 0.3872 0.2977 0.2954 0.7387 0.4175
干重 DW 0.4218 0.6099 0.3273 0.3579 0.7604 0.4955
株高 SH 0.3537 0.4247 0.5353 0.5650 0.2972 0.4352
分枝数 NB 0.2500 0.5455 0.2545 0.4167 0.8889 0.4711
叶片数 NL 0.3421 0.3953 0.3978 0.4359 0.9615 0.5065
总根长 RL 0.7010 0.8807 0.5532 0.7902 0.7817 0.7414
平均根粗 ARD 0.9785 1.0468 0.9003 0.8730 0.9584 0.9514
超氧化物歧化酶 SOD 1.2969 1.2707 1.2415 1.4528 1.8126 1.4149
过氧化物酶 POD 1.2224 1.2177 1.4230 1.4113 2.2462 1.5041
过氧化氢酶 CAT 1.6252 1.7085 1.8966 1.7844 3.5571 2.1144
游离脯氨酸 Pro 1.2920 1.3428 1.6898 1.9928 2.3975 1.7430
丙二醛 MDA 2.9195 2.3183 2.8036 2.1572 1.7162 2.3830
叶绿素 Chl 0.5980 0.8280 0.5491 1.0459 0.9492 0.7940
综合响应系数CRC 0.9515 0.9982 0.9900 1.0445 1.3897 1.0748
指标
Index
大西洋
Atlantic
费乌瑞它Favorita C119 C16 青薯9号
Qingshu 9
平均值
Mean
5-azadC响应系数 Coefficients of response to 5-azadC
鲜重 FW 0.7594 0.7300 0.4364 0.6180 0.3968 0.5881
干重 DW 0.5741 0.7590 0.4719 0.6882 0.4547 0.5896
株高 SH 0.5488 0.5679 0.5620 0.6179 0.6226 0.5839
分枝数 NB 0.5000 0.9091 0.5455 0.8333 0.4444 0.6465
叶片数 NL 0.8333 0.6357 0.6935 0.8462 0.8077 0.7633
总根长 RL 0.8466 0.6714 0.6726 0.8118 0.8412 0.7687
平均根粗 ARD 0.9325 1.1128 0.9718 0.9821 0.9572 0.9913
超氧化物歧化酶 SOD 1.1333 1.1594 1.1133 1.1076 1.5522 1.2131
过氧化物酶 POD 1.0898 1.0486 1.3302 1.1552 1.7649 1.2777
过氧化氢酶 CAT 1.5630 1.5851 1.5766 1.3145 2.1498 1.6378
游离脯氨酸 Pro 1.0258 1.0236 1.2417 1.7473 2.1548 1.4386
丙二醛 MDA 1.1743 1.0931 1.0387 1.1621 0.9300 1.0797
叶绿素 Chl 1.2042 1.7738 0.7249 1.3946 1.3714 1.2938
综合响应系数CRC 0.9373 1.0053 0.8753 1.0214 1.1114 0.9902

Fig. 2

Changes in phenotypes and physiological and biochemical indices of potato plantlets in vitro under different treatments Multiple comparisons were performed with Duncan’s method (P < 0.05)."

Table 2

Eigenvalue and contribution rate of each comprehensive index"

主成分
Principal component
抗旱性 Drought resistance 5-azadC响应性 Response to 5-azadC
PC1 PC2 PC3 PC1 PC2 PC3
特征值 Eigenvalue 8.595 2.460 1.719 6.750 2.757 2.456
贡献率 Contribution rate (%) 66.12 18.92 13.22 51.92 21.20 18.89
累计贡献率 Cumulative contribution rate (%) 66.12 85.04 98.26 51.92 73.12 92.01

Table 3

Matrix of phenotypic factor loading"

主成分
Principal component
抗旱性 Drought resistance 5-azadC响应性 Response to 5-azadC
PC1 PC2 PC3 PC1 PC2 PC3
鲜重 FW 0.322 -0.105 0.214 -0.316 -0.114 0.207
干重 DW 0.294 -0.313 0.026 -0.322 0.185 0.288
株高 SH -0.205 0.377 -0.341 0.217 0.201 0.400
分枝数 NB 0.331 -0.092 -0.093 -0.294 0.279 0.210
叶片数 NL 0.332 0.086 0.145 0.159 -0.383 0.415
总根长 RL 0.148 -0.343 -0.546 0.187 -0.291 0.434
平均根粗 ARD 0.039 -0.627 0.022 -0.233 0.479 -0.023
超氧化物歧化酶 SOD 0.327 0.137 0.018 0.327 0.237 0.112
过氧化物酶 POD 0.315 0.179 0.200 0.374 0.138 -0.039
过氧化氢酶 CAT 0.322 0.095 0.221 0.312 0.221 -0.069
游离脯氨酸 Pro 0.273 0.382 -0.027 0.311 0.123 0.290
丙二醛 MDA -0.309 -0.068 0.304 -0.304 -0.319 0.198
叶绿素 Chl 0.214 0.111 -0.571 -0.123 0.364 0.409

Table 4

Comprehensive index (CI), index weight, μ(X), and comprehensive evaluation value (D) of varieties"

品种
Variety
CI(1) CI(2) CI(3) μ(X1) μ(X2) μ(X3) 综合评价值
Comprehensive
assessment value (D)
综合排名
Order
抗旱性Drought resistance
大西洋 Atlantic -1.9419 -1.0192 0.9505 0.0421 0.2893 0.9236 0.2083 4
费乌瑞它 Favorita -0.4128 -2.0934 -1.0274 0.2524 0.0000 0.2496 0.2035 5
C119 -2.2478 1.3289 1.1746 0.0000 0.9216 1.0000 0.3120 3
C16 -0.4186 1.6201 -1.7600 0.2516 1.0000 0.0000 0.3619 2
青薯9号 Qingshu 9 5.0211 0.1637 0.6623 1.0000 0.6078 0.8254 0.9010 1
权重 Weight 0.6729 0.1926 0.1345
5-azadC响应性Response to 5-azadC
大西洋 Atlantic -0.8022 -2.2132 0.1744 0.2937 0.0000 0.6020 0.2893 5
费乌瑞它 Favorita -2.8667 2.1615 -0.1491 0.0000 1.0000 0.5272 0.3387 4
C119 0.3390 -0.4624 -2.4315 0.4560 0.4002 0.0000 0.3495 3
C16 -0.8330 -0.4878 1.8975 0.2893 0.3944 1.0000 0.4594 2
青薯9号 Qingshu 9 4.1629 1.0020 0.5086 1.0000 0.7350 0.6792 0.8731 1
权重 Weight 0.5643 0.2304 0.2053

Table 5

Comparative analysis of phenotypes of plantlets in vitro under the treatments of Mannitol and 5-azadC (alone and in combination)"

指标
Index
平均值 Mean 变幅 Range
T1/T0 T2/T0 T3/T0 T2/T0 vs. T1/T0 (%) T3/T0 vs. T1/T0 (%) T3/T0 vs. T2/T0 (%)
鲜重 FW 0.417 b 0.589 a 0.316 c -46.40 -29.19 -24.30
干重 DW 0.498 b 0.589 a 0.381 c -35.25 -15.46 -23.41
株高 SH 0.435 b 0.585 a 0.346 c -40.83 -25.54 -20.54
分枝数 NB 0.510 ab 0.697 a 0.339 b -51.37 -26.85 -33.52
叶片数 NL 0.508 b 0.764 a 0.364 c -52.41 -33.55 -28.39
总根长 RL 0.741 a 0.773 a 0.653 b -15.43 -4.05 -11.86
平均根粗 ARD 0.958 a 0.996 a 0.921 a -7.56 -3.84 -3.87
超氧化物歧化酶 SOD 1.426 b 1.221 c 1.656 a 35.63 16.79 16.13
过氧化物酶 POD 1.521 b 1.284 c 1.675 a 30.45 18.46 10.12
过氧化氢酶 CAT 2.190 a 1.691 b 2.570 a 51.98 29.51 17.35
游离脯氨酸 Pro 1.752 a 1.463 b 1.825 a 24.74 19.75 4.17
丙二醛 MDA 2.409 a 1.090 b 2.614 a 139.82 121.01 8.51
叶绿素 Chl 0.795 c 1.262 a 1.165 b -7.69 -37.00 46.54
[1] 陈利洪, 舒帮荣, 李鑫 . 中国干旱半干旱地区农牧业废弃物资源量评价. 干旱区资源与环境, 2018,32(11):9-14.
Chen L H, Shu B R, Li X . Evaluation of agricultural and animal husbandry waste resources in arid and semi-arid areas of China. J Arid Land Resour Environ, 2018,32(11):9-14 (in Chinese with English abstract).
[2] 张绪成, 马一凡, 于显枫, 侯慧芝, 王红丽, 方彦杰 . 西北半干旱区深旋松耕作对马铃薯水分利用和产量的影响. 应用生态学报, 2018,29:3293-3301.
Zhang X C, Ma Y F, Yu X F, Hou H Z, Wang H L, Fang Y J . Effects of vertically rotary sub-soiling tillage on water utilization and yield of potato in semi-arid area of northwest China. Chin J Appl Ecol, 2018,29:3293-3301 (in Chinese with English abstract).
[3] Ramírez D A, Yactayo W, Rens L R, Rolando J L, Palacios S, De Mendiburu F, Mares V, Barreda C, Loayza H, Monneveux P, Zotarelli L . Defining biological thresholds associated to plant water status for monitoring water restriction effects: stomatal conductance and photosynthesis recovery as key indicators in potato. Agric Water Manage, 2016,177:369-378.
[4] 杜康兮, 沈文辉, 董爱武 . 表观遗传调控植物响应非生物胁迫的研究进展. 植物学报, 2018,53:581-593.
Du K X, Shen W H, Dong A W . Advances in epigenetic regulation of abiotic stress response in plants. Chin Bull Bot, 2018,53:581-593 (in Chinese with English abstract).
[5] Ma C, Liang B, Chang B, Liu L, Yan J, Yang Y, Zhao Z . Transcriptome profiling reveals transcriptional regulation by DNA methyltransferase inhibitor 5-Aza-2’-deoxycytidine enhancing red pigmentation in bagged “Granny Smith” apples ( Malus domestica). Int J Mol Sci, 2018,19:3133.
[6] 黄韫宇, 张海军, 邢燕霞, 齐艳, 孙倩倩, 周春蕾, 赵冰, 郭仰东 . NaCl胁迫对黄瓜种子萌发的影响及DNA甲基化的MSAP分析. 中国农业科学, 2013,46:1646-1656.
Huang W Y, Zhang H J, Xing Y X, Qi Y, Sun Q Q, Zhou C L, Zhao B, Guo Y D . Effects of NaCl stress on seed germination and DNA methylation status detected by MSAP analysis in cucumber. Sci Agric Sin, 2013,46:1646-1656 (in Chinese with English abstract).
[7] Kawakatsu T, Huang S S, Jupe F, Sasaki E, Schmitz R J, Urich M A, Castanon R, Nery J R, Barragan C, He Y, Chen H . Epigenomic diversity in a global collection of Arabidopsis thaliana accessions. Cell, 2016,166:492-505.
[8] Rathore M S, Jha B . DNA methylation and methylation polymorphism in genetically stable in vitro regenerates of Jatropha curcas L. using methylation-sensitive AFLP markers. Appl Biochem Biotechnol, 2016,178:1002-1014.
[9] Khan A, Yadav N S, Morgenstern Y, Zemach A, Grafi G . Activation of Tag1 transposable elements in Arabidopsis dedifferentiating cells and their regulation by CHROMOMETHYLASE 3-mediated CHG methylation. BBA-Gene Regul Mech, 2016,1859:1289-1298.
[10] 潘雅姣, 傅彬英, 王迪, 朱苓华, 黎志康 . 水稻干旱胁迫诱导DNA甲基化时空变化特征分析. 中国农业科学, 2009,42:3009-3018.
Pan Y J, Fu B Y, Wang D, Zhu L H, Li Z K . Spatial and temporal profiling of DNA methylation induced by drought stress in rice. Sci Agric Sin, 2009,42:3009-3018 (in Chinese with English abstract).
[11] Kottler E J, Vanwallendael A, Franks S J . Experimental treatment with a hypomethylating agent alters life history traits and fitness in brassica rapa. J Bot, 2018,2018:1-10.
[12] 许嵘, 张文州, 陈琳琳, 丁小明, 谢志新, 林阳君, 辛军 . DNA去甲基化药物作用机制的研究进展. 现代药物与临床, 2017,32(1):152-157.
Xu R, Zhang W Z, Chen L L, Ding X M, Xie Z X, Lin Y J, Xin J . Research progress on action mechanism of DNA demethylating agents. Drugs Clinic, 2017,32(1):152-157 (in Chinese with English abstract).
[13] 毛锐涛 . 马铃薯甲基转移酶和去甲基化酶预测及表达研究. 内蒙古大学硕士学位论文, 内蒙古呼和浩特, 2014.
Mao R T . Phylogenetics and Expression of Methyltransferases and Demethylases in Potato. MS Thesis of Inner Mongolia University, Hohhot, Inner Mongolia, China, 2014 (in Chinese with English abstract).
[14] Zhong L, Xu Y H, Wang J B . The effect of 5-azacytidine on wheat seedlings responses to NaCl stress. Biol Planta, 2010,54:753-756.
[15] Law R D, Suttle J C . Transient decreases in methylation at 5'-CCGG-3' sequences in potato ( Solanum tuberosum L.) meristem DNA during progression of tubers through dormancy precede the resumption of sprout growth. Plant Mol Biol, 2003,51:437-447.
[16] 李媛媛, 程鹏, 熊兴耀, 洪亚辉 . 干旱胁迫下马铃薯幼苗DNA甲基化变化研究. 中国马铃薯, 2012,26:11-16.
Li Y Y, Cheng P, Xiong X Y, Hong Y H . DNA methylation in potato under drought stress. Chin Potato J, 2012,26:11-16 (in Chinese with English abstract).
[17] 李媛媛 . 干旱胁迫下马铃薯苗基因组甲基化变化情况及生理生化变化研究. 湖南农业大学硕士学位论文, 湖南长沙, 2011.
Li Y Y . Studies on Methylation and Physiological Alterations under Drought Stress in Potato. MS Thesis of Hunan Agricultural University, Changsha, China, 2011 (in Chinese with English abstract).
[18] 王芳, 石茹, 王舰 . 马铃薯茎尖玻璃化法超低温保存后DNA甲基化的遗传变异. 分子植物育种, 2013,11:351-357.
Wang F, Shi R, Wang J . Genetic variation of DNA methylation in potato shoot tips after the cryopreservation by vitrification approach. Mol Plant Breed, 2013,11:351-357 (in Chinese with English abstract).
[19] Arnon D I . Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol, 1949,24:1-15.
[20] 王学奎, 黄见良 . 植物生理生化实验原理与技术(第3版). 北京: 高等教育出版社, 2015. pp 131-287.
Wang X K, Huang J L. Principles and Techniques of Plant Physiological Biochemical Experiment, 3rd edn. Beijing: Higher Education Press, 2015. pp 131-287(in Chinese).
[21] Zhang H, Lang Z, Zhu J K . Dynamics and function of DNA methylation in plants. Nat Rev Mol Cell Biol, 2018,19:489-506.
[22] 李艳, 钱伟强 . 植物中DNA甲基化及去甲基化研究进展. 生命科学, 2017, ( 3):302-309.
Li Y, Qian W Q . Mechanisms of DNA methylation and demethylation in plants. Chin Bull Life Sci, 2017, ( 3):302-309 (in Chinese with English abstract).
[23] Akimoto K, Katakami H, Kim H J, Ogawa E, Sano C M, Wada Y, Sano H . Epigenetic inheritance in rice plants. Ann Bot, 2007,100:205-217.
[24] Marfil C F, Asurmendi S, Masuelli R W . Changes in micro RNA expression in a wild tuber-bearing Solanum species induced by 5-azacytidine treatment. Plant Cell Rep, 2012,31:1449-1461.
[25] 郝小琴, 姚鹏鹤, 高峥荣, 吴子恺 . 低温胁迫对微胚乳超甜超高油玉米耐寒性生理生化特性的影响. 作物学报, 2014,40:1470-1484.
Hao X Q, Yao P H, Gao Z R, Wu Z K . Effects of low temperature stress on the physiological and biochemical characteristics of cold tolerance in micro-endosperm super sweet and super high oil maize. Acta Agron Sin, 2014,40:1470-1484 (in Chinese with English abstract).
[26] 徐宁, 陈冰嬬, 王明海, 包淑英, 王桂芳, 郭中校 . 绿豆品种资源萌发期耐碱性鉴定. 作物学报, 2017,43:112-121.
Xu N, Chen B R, Wang M H, Bao S Y, Wang G F, Guo Z X . Identification of alkali tolerance of mungbean germplasm resources during germination. Acta Agron Sin, 2017,43:112-121 (in Chinese with English abstract).
[27] 杨宏羽, 平海涛, 王蒂, 王丽, 刘玉汇, 白江平, 余斌, 张俊莲 . 不同倍性马铃薯品种的抗旱性. 中国沙漠, 2016,36:1041-1049.
Yang H Y, Ping H T, Wang D, Wang L, Liu Y H, Bai J P, Yu B, Zhang J L . Drought resistance of different ploidy potato varieties. J Desert Res, 2016,36:1041-1049 (in Chinese with English abstract).
[28] Al-Lawati A, Al-Bahry S, Victor R, Al-Lawati A H, Yaish M W . Salt stress alters DNA methylation levels in alfalfa ( Medicago spp.). Genet Mol Res, 2016,15:15018299.
[29] 黄玉兰, 殷奎德, 向君亮, 徐业梅, 刘兆兵, 丰经书, 任海娟 . 干旱胁迫下植物生理生化及DNA甲基化的研究进展. 玉米科学, 2016,24(2):96-102.
Huang Y L, Yin K D, Xiang Y L, Xu Y M, Liu Z B, Feng J S, Ren H J . Research progress on physiological reaction and DNA methylation under drought stress in plant. J Maize Sci, 2016,24(2):96-102 (in Chinese with English abstract).
[30] 钟兰 . 盐胁迫下小麦幼苗的生理生化特性及表观遗传学研究. 武汉大学博士学位论文, 湖北武汉, 2009.
Zhong L . Studies on the Physio-biochemical Properties and Epigenetics of Seedlings of Wheat under Salt Stress. PhD Dissertation of Wuhan University. Wuhan, Hubei, China, 2009 (in Chinese with English abstract).
[1] WANG Hai-Bo, YING Jing-Wen, HE Li, YE Wen-Xuan, TU Wei, CAI Xing-Kui, SONG Bo-Tao, LIU Jun. Identification of chromosome loss and rearrangement in potato and eggplant somatic hybrids by rDNA and telomere repeats [J]. Acta Agronomica Sinica, 2022, 48(5): 1273-1278.
[2] SHI Yan-Yan, MA Zhi-Hua, WU Chun-Hua, ZHOU Yong-Jin, LI Rong. Effects of ridge tillage with film mulching in furrow on photosynthetic characteristics of potato and yield formation in dryland farming [J]. Acta Agronomica Sinica, 2022, 48(5): 1288-1297.
[3] WANG Xia, YIN Xiao-Yu, Yu Xiao-Ming, LIU Xiao-Dan. Effects of drought hardening on contemporary expression of drought stress memory genes and DNA methylation in promoter of B73 inbred progeny [J]. Acta Agronomica Sinica, 2022, 48(5): 1191-1198.
[4] FENG Ya, ZHU Xi, LUO Hong-Yu, LI Shi-Gui, ZHANG Ning, SI Huai-Jun. Functional analysis of StMAPK4 in response to low temperature stress in potato [J]. Acta Agronomica Sinica, 2022, 48(4): 896-907.
[5] ZHANG Xia, YU Zhuo, JIN Xing-Hong, YU Xiao-Xia, LI Jing-Wei, LI Jia-Qi. Development and characterization analysis of potato SSR primers and the amplification research in colored potato materials [J]. Acta Agronomica Sinica, 2022, 48(4): 920-929.
[6] JIN Rong, JIANG Wei, LIU Ming, ZHAO Peng, ZHANG Qiang-Qiang, LI Tie-Xin, WANG Dan-Feng, FAN Wen-Jing, ZHANG Ai-Jun, TANG Zhong-Hou. Genome-wide characterization and expression analysis of Dof family genes in sweetpotato [J]. Acta Agronomica Sinica, 2022, 48(3): 608-623.
[7] TAN Xue-Lian, GUO Tian-Wen, HU Xin-Yuan, ZHANG Ping-Liang, ZENG Jun, LIU Xiao-Wei. Characteristics of microbial community in the rhizosphere soil of continuous potato cropping in arid regions of the Loess Plateau [J]. Acta Agronomica Sinica, 2022, 48(3): 682-694.
[8] DING Hong, XU Yang, ZHANG Guan-Chu, QIN Fei-Fei, DAI Liang-Xiang, ZHANG Zhi-Meng. Effects of drought at different growth stages and nitrogen application on nitrogen absorption and utilization in peanut [J]. Acta Agronomica Sinica, 2022, 48(3): 695-703.
[9] ZHANG Hai-Yan, XIE Bei-Tao, JIANG Chang-Song, FENG Xiang-Yang, ZHANG Qiao, DONG Shun-Xu, WANG Bao-Qing, ZHANG Li-Ming, QIN Zhen, DUAN Wen-Xue. Screening of leaf physiological characteristics and drought-tolerant indexes of sweetpotato cultivars with drought resistance [J]. Acta Agronomica Sinica, 2022, 48(2): 518-528.
[10] JIAN Hong-Ju, SHANG Li-Na, JIN Zhong-Hui, DING Yi, LI Yan, WANG Ji-Chun, HU Bai-Geng, Vadim Khassanov, LYU Dian-Qiu. Genome-wide identification and characterization of PIF genes and their response to high temperature stress in potato [J]. Acta Agronomica Sinica, 2022, 48(1): 86-98.
[11] XU De-Rong, SUN Chao, BI Zhen-Zhen, QIN Tian-Yuan, WANG Yi-Hao, LI Cheng-Ju, FAN You-Fang, LIU Yin-Du, ZHANG Jun-Lian, BAI Jiang-Ping. Identification of StDRO1 gene polymorphism and association analysis with root traits in potato [J]. Acta Agronomica Sinica, 2022, 48(1): 76-85.
[12] ZHANG Ming-Cong, HE Song-Yu, QIN Bin, WANG Meng-Xue, JIN Xi-Jun, REN Chun-Yuan, WU Yao-Kun, ZHANG Yu-Xian. Effects of exogenous melatonin on morphology, photosynthetic physiology, and yield of spring soybean variety Suinong 26 under drought stress [J]. Acta Agronomica Sinica, 2021, 47(9): 1791-1805.
[13] ZHANG Si-Meng, NI Wen-Rong, LYU Zun-Fu, LIN Yan, LIN Li-Zhuo, ZHONG Zi-Yu, CUI Peng, LU Guo-Quan. Identification and index screening of soft rot resistance at harvest stage in sweetpotato [J]. Acta Agronomica Sinica, 2021, 47(8): 1450-1459.
[14] LI Jie, FU Hui, YAO Xiao-Hua, WU Kun-Lun. Differentially expressed protein analysis of different drought tolerance hulless barley leaves [J]. Acta Agronomica Sinica, 2021, 47(7): 1248-1258.
[15] SONG Tian-Xiao, LIU Yi, RAO Li-Ping, Soviguidi Deka Reine Judesse, ZHU Guo-Peng, YANG Xin-Sun. Identification and expression analysis of cell wall invertase IbCWIN gene family members in sweet potato [J]. Acta Agronomica Sinica, 2021, 47(7): 1297-1308.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!