Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2019, Vol. 45 ›› Issue (2): 267-275.doi: 10.3724/SP.J.1006.2019.84075

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Proteomic analysis of drought stress response on drought resistance for Vicia faba L. variety ‘Qinghai 13’ in Qinghai Plateau of China

Ping LI1,2,Wan-Wei HOU1,2,Yu-Jiao LIU1,2,*()   

  1. 1 Academy of Agriculture and Forestry Science of Qinghai University, Xining 810016, Qinghai, China
    2 State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, Qinghai, China
  • Received:2018-05-29 Accepted:2018-10-08 Online:2019-02-12 Published:2018-11-03
  • Contact: Yu-Jiao LIU E-mail:13997058356@163.com
  • Supported by:
    This study was supported by the National Natural Science Foundation of China(31460377);and the China Agriculture Research System(CARS-09)

Abstract:

Proteomics is playing an increasingly important role in the functional genomics era. Two-dimensional electrophoresis and mass spectrometry can be used to study the changes of proteome of crop under stress and increase the recognization and comprehension of crop response to drought stress. In order to explore the mechanism of drought resistance of Vicia faba L. variety ‘Qinghai 13’, we treated the seedlings with three days for water stress and analyzed by two-dimensional gel electrophoresis combined with mass spectrometry analysis. By t-test, 32 differentially expressed proteins spots were detected between normal and drought-stress treatments, respectively, including up- and down-regulated proteins, seven disappear protein spots and a new protein spot. Twenty-one differentially expressed proteins in seven function categories were identified and confirmed by MALDI-TOF/TOF. Among them, two participated in information transfer, one in oxygen radical scavenging, one in protective response, eight in energy metabolism, one in protein processing, five in photosynthesis, and three unknown in function. These results indicate that drought-inducible 22 kD protein, stress-inducible protein, superoxide dismutase and 17.5 kD class HSP are directly related with drought resistance, which may be the important reasons for strong drought resistance of ‘Qinghai 13’.

Key words: faba bean, drought stress, proteomic, differential expression, functional classification

Fig. 1

Change of SWC and RWC under different drought stress levels The letter denotes differences between stress degree: the same letters indicate significant difference at the 0.05 probability level; Capital letters indicate significant difference at the 0.01 probability level. DS1-DS9 are drought stress treatments and the drought stress degrees gradually strengthened from DS1 to DS9."

Fig. 2

2-DE profile of proteins from leaves of broad bean under drought stress"

Table 1

Identification of differential proteins by MALDI-TOF/TOF in broad bean leaf under drought stress"

蛋白点
Spot No.
登录号
Accession No.
分子量/等电点
Theoretical Mr (kD)/pI
序列覆盖率
Sequence coverage (%)
评分
Score
蛋白名称
Protein name
物种来源
Source of species
A, up-regulated protein spots
2705 gi|15667623 15.923/5.78 18 230 Drought inducible 22 kD protein 甘蔗Saccharum officinarum
3106 gi|380005612 20.731/5.79 31 717 Superoxide dismutase 蚕豆Vicia faba
3208 gi|83776798 16.256/5.82 19 332 17.5 kDa class I HSP, partial 花生Arachis hypogaea
3809 gi|308810206 85.783/8.69 1 54 Shikimate dehydrogenase substrate binding,N-terminal, partial (ISS) 绿藻类Ostreococcus tauri
5605 gi|357508933 39.616/5.91 9 158 O-acetylserine (thiol) lyase 蒺藜状苜蓿Medicago truncatula
5807 gi|357481949 65.668/5.7 5 237 Stress-inducible protein, putative 蒺藜状苜蓿Medicago truncatula
7206 gi|75220301 23.908/6.16 13 212 Full=Kunitz-type trypsin inhibitor-like 2 protein; 豌豆Pisum sativum
408 gi|571556750 21.914/4.36 35 493 Nascent polypeptide-associated complex subunit alpha-like protein 1 大豆Glycine max
B, down-regulated protein spots
1815 gi|3913031 56.446/5.34 13 387 Full=1,4-alpha-D-glucan maltohydrolase 紫花苜蓿Medicago sativa
2306 gi|115788 28.692/5.47 25 411 Full=Chlorophyll a-b binding protein AB80, chloroplastic; 豌豆Pisum sativum
2309 gi|115788 28.692/5.47 25 415 Full=Chlorophyll a-b binding protein AB80, chloroplastic; 豌豆Pisum sativum
2813 gi|1045394920 86.972/5.46 13 643 Hypothetical protein TSUD_183880 三叶草Trifolium subterraneum
3815 gi|528749836 55.812/5.22 20 659 ATP synthase CF1 alpha subunit (plastid) 蚕豆Vicia faba
3816 gi|528749836 55.812/5.22 20 760 ATP synthase CF1 alpha subunit (plastid) 蚕豆Vicia faba
4707 gi|75308025 43.565/5.5 17 323 Full=S-adenosylmethionine synthase 2; Short=AdoMet synthase 2; 茱萸Elaeagnus umbellata
5202 gi|217071344 31.249/6.59 8 309 Unknown 蒺藜状苜蓿Medicago truncatula
5314 gi|729390274 29.386/8.65 16 426 Chlorophyll a-b binding protein 8, chloroplastic-like 醉蝶花Tarenaya hassleriana
5808 gi|357445031 80.087/6 11 480 Plastid transketolase 蒺藜状苜蓿Medicago truncatula
5809 gi|357445031 80.087/5.78 11 532 Plastid transketolase 蒺藜状苜蓿Medicago truncatula
6303 gi|502090577 37.493/7.04 25 570 Carbonic anhydrase, chloroplastic isoform X1 鹰嘴豆Cicer arietinum
7005 gi|132097 20.402/9.24 39 354 Full=Ribulose bisphosphate carboxylase small chain 3C, chloroplastic; Short=RuBisCO small subunit 3C; AltName: Full=PSS15; Flags: Precursor 豌豆Pisum sativum
7307 gi|502090577 37.493/7.04 31 723 Carbonic anhydrase, chloroplastic isoform X1 鹰嘴豆Cicer arietinum
7311 gi|502090577 37.493/7.04 31 735 Carbonic anhydrase, chloroplastic isoform X1 鹰嘴豆Cicer arietinum
7608 gi|20729 43.696/8.93 24 847 Unnamed protein product 豌豆Pisum sativum
8004 gi|132097 20.402/9.24 31 448 Full=Ribulose bisphosphate carboxylase small chain 3C, chloroplastic; Short=RuBisCO small subunit 3C; AltName: Full=PSS15; Flags: Precursor 豌豆Pisum sativum
8010 gi|502082899 19.055/9.93 20 219 Photosystem II repair protein PSB27-H1, chloroplastic 鹰嘴豆Cicer arietinum
1404 gi|502133626 37.498/7.63 29 541 Haloacid dehalogenase-like hydrolase domain-containing protein At3g48420 鹰嘴豆Cicer arietinum

Fig. 3

Functional classification of the 21 differential protein spots identified from broad bean"

Fig. 4

GO Functional category distribution of difference expressed proteins"

[1] Pandey A, Chakraborty S, Datta A, Chakraborty N . Proteomics approach to identify dehydration responsive nuclear proteins from chickpea (Cicer arietinum L.). Mol Cell Proteomics, 2008,7:88-107.
doi: 10.1023/B:COLL.0000023121.03238.e8 pmid: 17921517
[2] Marie P R, Vartavian N, Sallantin M . Characterization of a novel protein induced by progressive or rapid drought and salinity in Brassica napus leaves. Plant Physiol, 1992,100:1486-1493.
doi: 10.1104/pp.100.3.1486 pmid: 16653148
[3] Ingram J, Bartels D . The molecular basis of dehydration tolerance in plant. Annu Rev Plant Physoil Plant Mol Biol, 1996,47:377-403.
doi: 10.1146/annurev.arplant.47.1.377
[4] Levenfors J P, Wikstr M M, Persson L, Gerhardson B . Pathogenicity of aphanomyces spp from different leguminous crops in Sweden. Eur J Plant Pathol, 2003,10:535-543.
doi: 10.1023/A:1024711428760
[5] Agrawal G K, Pedreschi R, Barkla B J, Bindschedler L V, Cramer R, Sarkar A, Renaut J, Job D, Rakwal R . Translational plant proteomics: A perspective. J Proteomics, 2012,75:4588-4601.
doi: 10.1016/j.jprot.2012.03.055 pmid: 22516432
[6] DO Thanh-Trung, 李健, 张风娟, 杨丽涛, 李杨瑞, 邢永秀 . 甘蔗与抗旱性相关差异蛋白质组分析. 作物学报, 2017,43:1337-1346.
doi: 10.3724/SP.J.1006.2017.01337
DO T T, Li J, Zhang F J, Yang L T, Li Y R, Xing Y X . Analysis of differential proteome in relation to drought resistance in Sugarcane. Acta Agron Sin, 2017,43:1337-1346 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2017.01337
[7] Mohammadi P P, Moieni A, Hiraga S, Komatsu S . Organ-specific proteomic analysis of drought-stressed soybean seedlings. J Proteomics, 2012,75:1906-1923.
doi: 10.1016/j.jprot.2011.12.041 pmid: 22245419
[8] Zadražnik T, Hollung K, Egge-Jacobsen W . Differential proteomic analysis of drought stress response in leaves of common bean (Phaseolus vulgaris L.). J Proteomics, 2013,78:254-272.
doi: 10.1016/j.jprot.2012.09.021 pmid: 23026550
[9] Badowiec A, Weidner S . Proteomic changes in the roots of germinating Phaseolus vulgaris seeds in response to chilling stress and post-stress recovery. J Plant Physiol, 2014,2:389-398.
doi: 10.1016/j.jplph.2013.10.020 pmid: 24594390
[10] 熊军波, 杨青川, 蔡化, 田宏, 张贺山, 刘洋 . 紫花苜蓿根响应盐胁迫的比较蛋白质组学分析. 湖北农业科学, 2015,54:5422-5428.
doi: 10.14088/j.cnki.issn0439-8114.2015.21.057
Xiong J B, Yang Q H, Cai H, Tian H, Zhang H S, Li Y . Comparative proteomic analysis of salt-stress response of alfalfa proteins in Root. J Hubei Agric Sci, 2015,54:5422-5428 (in Chinese with English abstract).
doi: 10.14088/j.cnki.issn0439-8114.2015.21.057
[11] 芮海云, 庄凯, 沈振国, 张芬琴 . 两个箭舌豌豆品种根响应镉胁迫的蛋白质组学分析. 植物生理学报, 2016,52:1089-1098.
Rui H Y, Zhuang K, Sheng Z G, Zhang F Q . Proteomics analysis of cadmium stress responses in the roots of two Vicia sativa varieties differing in Cd tolerance. Acta Phytophysiol Sin, 2016,52:1089-1098 (in Chinese with English abstract).
[12] 李萍, 张雁霞, 刘玉皎 . 干旱胁迫对抗旱性蚕豆幼苗生长特性影响及叶片差异蛋白质组学研究. 基因组学与应用生物学, 2017,36:340-351.
Li P, Zhang Y X, Liu Y J . Effects of drought stress on seeding growth characteristics of drought resistance faba bean (Vicia faba L.) and study on differential proteomics of leaves. J Genom Appl Biol, 2017,36:340-351 (in Chinese with English abstract).
[13] 张小静 . 马铃薯块茎蛋白质双向电泳技术体系建立及发育相关蛋白质的分析. 甘肃农业大学硕士学位论文,甘肃兰州, 2008.
doi: 10.7666/d.y1333475
Zhang X J . Establishment of Two-dimensional Electrophoresis System for Analysis of Proteins during Potato (Solanum tuberosum L.) Tuber Development. MS Thesis of Gansu Agricultural University, Lanzhou, Gansu,China, 2008 (in Chinese with English abstract).
doi: 10.7666/d.y1333475
[14] Demirevska K, Zasheva D, Dimitrov R, Simova-Stoilova L, Stamenova M, Feller U . Drought stress effects on rubisco in wheat: changes in the rubisco large subunit. Acta Physiol Plant, 2009,31:1129-1138.
doi: 10.1007/s11738-009-0331-2
[15] Salekdeh G H, Siopongco J, Wade L J, Ghareyazie B, Benett J . Proteomic analysis of rice leaves during drought stress and recovery. Proteomics, 2002,2:1131-1145.
doi: 10.1002/1615-9861(200209)2:9<1131::AID-PROT1131>3.0.CO;2-1
[16] Mohammadi P P, Moieni A, Hiraga S . Organ-specific proleomic analysis of drought-stressed soybean seedling. J Proteomics, 2012,75:1960-1923.
doi: 10.1016/j.jprot.2011.12.026 pmid: 22230808
[17] Mustafa G, Komatsu S . Quantitative proteomics reveals the effect of protein glycosylation in soybean root under flooding stress. Front Plant Sci, 2014,5:627.
doi: 10.3389/fpls.2014.00627 pmid: 4235293
[18] Ma H Y, Song L R, Huang Z G . Comparative proteomic analysis reveals molecular mechanism of seedling roots of different salt tolerant soybean genotypes in responses to salinity stress. EuPA Open Proteomics, 2014,4:40-57.
doi: 10.1016/j.euprot.2014.05.005
[19] Celis J E, Gromov P . 2D Protein electrophoresis: can it be perfected? Curr Opin Biotechnol, 1999,10:16-21.
doi: 10.1016/S0958-1669(99)80004-4 pmid: 10047502
[20] Desclos M, Dubousset L, Etienne P, Le Caherec F, Satoh H, Bonnefoy J, Ourry A, Avice J C . A proteomic profiling approach to reveal a novel role of Brassica napus drought 22 kD/water- soluble chlorophyll-binding protein in young leaves during nitrogen remobilization induced by stressful conditons. Plant Physiol, 2008,147:1830-1844.
doi: 10.1104/pp.108.116905 pmid: 18552235
[21] Balestrasse K B, Gardey L, Gallego S M . Response of antioxidant defence systerm in soybean nodules and roots subjected to cadmium stress. Plant Physiol, 2001,28:497-453.
doi: 10.1071/PP00158
[22] Malgorzata G, Waldemar B . Effects of a short-term hypoxic treatment followed by re-aeration on free radicals level and anti-oxidative enzymes in lupine roots. Plant Physiol Biochem, 2004,42:233-240.
doi: 10.1016/j.plaphy.2004.01.005 pmid: 15051047
[23] Hernandez J A, Jimenez A, Mullineaux P, Sevilla F . Tolerance of pea (Pisum sativum L.) to long-term salt stress is associated with induction of antioxidant defences. Plant Cell Environ, 2000,23:853-862.
doi: 10.1046/j.1365-3040.2000.00602.x
[24] 严顺平 . 水稻响应盐胁迫和低温胁迫的蛋白质组研究. 中国科学院博士学位论文,上海, 2006.
Yan S P . Proteomic Analysis of Salt Stress Responsive and Chilling Stress Response in Rice. PhD Dissertation of Graduate University of the Chinese Academy of Sciences, Shanghai,China, 2006 (in Chinese with English abstract).
[25] Hajheidari M, Abdollahian-Noghabi M, Askari H, Heidari M, Sadeghian S Y, Ober E S, Salekdeh G H . Proteome analysis of sugar beet leaves under drought stress. Proteomics, 2005,5:950-960.
doi: 10.1002/pmic.200401101 pmid: 15712235
[26] Wang W, Vinocur B, Shoseyov O, Altman A . Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci, 2004,9:244-252.
doi: 10.1016/j.tplants.2004.03.006 pmid: 15130550
[27] Sato Y, Yokoya S . Enhanced to tolerance to drought stress in transgenic rice plants overexpressing a small heat-shock protein, sHSP17.7. Plant Cell Rep, 2008,27:329-334.
doi: 10.1007/s00299-007-0470-0 pmid: 17968552
[28] 丁伟 . 水稻干旱胁迫蛋白质组相关数据和生物信息分析研究. 华中农业大学硕士学位论文,湖北武汉, 2009.
doi: 10.7666/d.y1598163
Ding W . Analysis of Bioinformation and Data Related to Proteome of Rice under Drought Stress. MS Thesis of Huazhong Agricultural University, Wuhan, Hubei,China, 2009 (in Chinese with English abstract).
doi: 10.7666/d.y1598163
[29] 舒烈波 . 水稻叶片响应干旱和渗透胁迫的蛋白质组学研究. 华中农业大学博士学位论文,湖北武汉, 2010.
doi: 10.7666/d.y2004679
Shu L B . Proteomic Analysis of Rice Leaves in Response to Drought and Osmotic Stress. PhD Dissertation of Huazhong Agricultural University, Wuhan, Hubei,China, 2010 (in Chinese with English abstract).
doi: 10.7666/d.y2004679
[30] 李丽芳, 罗晓芳, 王华芳 . 植物抗旱基因工程研究进展. 西北林学院学报, 2004,19:53-57.
doi: 10.3969/j.issn.1001-7461.2004.03.018
Li L F, Luo X F, Wang H F . Advances in the studies of gene engineering on plant drought-resistance. J Northwest For Univ, 2004,19:53-57 (in Chinese with English abstract).
doi: 10.3969/j.issn.1001-7461.2004.03.018
[31] Weaver L M, Herrmann K M . Dynamics of the shikimate pathway in plants. Trends Plant Sci, 1997,2:346-351.
doi: 10.1016/S1360-1385(97)84622-5
[32] Diaz J, Bernal A, Pomar F, Merino F . Induction of shikimate dehydrogenase and peroxidase in pepper (Capsicum annuum L.) seedlings in response to copper stress and its relation to lignification. Plant Sci, 2001,161:179-188.
doi: 10.1016/S0168-9452(01)00410-1
[33] Rospert S, Dubaquie Y, Gautschi M . Nascentpolypeptide-associated complex. Cell Mol Life Sci, 2002,59:1632-1639.
doi: 10.1007/PL00012490
[34] Chaves M M, Flexas J, Pinheiro C . Photosynthesis under drought and salt stress: Regulation mechanisms from whole plant to cell. Ann Bot, 2009,103:551-560.
doi: 10.1093/aob/mcn125
[35] Reddy A R, Chaitanya K V, Vivekanandan M . Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants. J Plant Physiol, 2004,161:1189-1202.
doi: 10.1016/j.jplph.2004.01.013
[36] Thomashow M F . Plant cold acclimation: freezing tolerance genes and regulatory mechanisms. Annu Rev Plant Physoil Plant Mol Biol, 1999,50:571-599.
doi: 10.1146/annurev.arplant.50.1.571 pmid: 15012220
[37] Li X J, Yang M F, Chen H, Qu L Q, Chen F, Shen S H . Abscisic acid pretreatment enhances salt tolerance of rice seedlings: proteomic evidence. Biochim Biophys Acta, 2010,1804:929-940
doi: 10.1016/j.bbapap.2010.01.004 pmid: 20079886
[1] WANG Xia, YIN Xiao-Yu, Yu Xiao-Ming, LIU Xiao-Dan. Effects of drought hardening on contemporary expression of drought stress memory genes and DNA methylation in promoter of B73 inbred progeny [J]. Acta Agronomica Sinica, 2022, 48(5): 1191-1198.
[2] DING Hong, XU Yang, ZHANG Guan-Chu, QIN Fei-Fei, DAI Liang-Xiang, ZHANG Zhi-Meng. Effects of drought at different growth stages and nitrogen application on nitrogen absorption and utilization in peanut [J]. Acta Agronomica Sinica, 2022, 48(3): 695-703.
[3] ZHANG Ming-Cong, HE Song-Yu, QIN Bin, WANG Meng-Xue, JIN Xi-Jun, REN Chun-Yuan, WU Yao-Kun, ZHANG Yu-Xian. Effects of exogenous melatonin on morphology, photosynthetic physiology, and yield of spring soybean variety Suinong 26 under drought stress [J]. Acta Agronomica Sinica, 2021, 47(9): 1791-1805.
[4] LI Jie, FU Hui, YAO Xiao-Hua, WU Kun-Lun. Differentially expressed protein analysis of different drought tolerance hulless barley leaves [J]. Acta Agronomica Sinica, 2021, 47(7): 1248-1258.
[5] LI Fu, WANG Yan-Zhou, YAN Li, ZHU Si-Yuan, LIU Tou-Ming. Characterization of the expression profiling of circRNAs in the barks of stems in ramie [J]. Acta Agronomica Sinica, 2021, 47(6): 1020-1030.
[6] LI Peng-Cheng, BI Zhen-Zhen, SUN Chao, QIN Tian-Yuan, LIANG Wen-Jun, WANG Yi-Hao, XU De-Rong, LIU Yu-Hui, ZHANG Jun-Lian, BAI Jiang-Ping. Key genes mining of DNA methylation involved in regulating drought stress response in potato [J]. Acta Agronomica Sinica, 2021, 47(4): 599-612.
[7] QIN Tian-Yuan, LIU Yu-Hui, SUN Chao, BI Zhen-Zhen, LI An-Yi, XU De-Rong, WANG Yi-Hao, ZHANG Jun-Lian, BAI Jiang-Ping. Identification of StIgt gene family and expression profile analysis of response to drought stress in potato [J]. Acta Agronomica Sinica, 2021, 47(4): 780-786.
[8] ZHOU Lian, LIU Chao-Xian, XIONG Yu-Han, ZHOU Jing, CAI Yi-Lin. Functional analysis of plasma membrane intrinsic protein ZmPIP1;1 involved in drought tolerance and photosynthesis in maize [J]. Acta Agronomica Sinica, 2021, 47(3): 472-480.
[9] LIU Ya-Wen, ZHANG Hong-Yan, CAO Dan, LI Lan-Zhi. Prediction of drought and salt stress-related genes in rice based on multi-platform gene expression data [J]. Acta Agronomica Sinica, 2021, 47(12): 2423-2439.
[10] QIN Tian-Yuan, SUN Chao, BI Zhen-Zhen, LIANG Wen-Jun, LI Peng-Cheng, ZHANG Jun-Lian, BAI Jiang-Ping. Identification of drought-related co-expression modules and hub genes in potato roots based on WGCNA [J]. Acta Agronomica Sinica, 2020, 46(7): 1033-1051.
[11] ZHANG Hai-Yan, WANG Bao-Qing, FENG Xiang-Yang, LI Guang-Liang, XIE Bei-Tao, DONG Shun-Xu, DUAN Wen-Xue, ZHANG Li-Ming. Effects of drought treatments at different growth stages on growth and the activity of osmotic adjustment in sweet potato [Ipomoea batatas (L.) Lam.] [J]. Acta Agronomica Sinica, 2020, 46(11): 1760-1770.
[12] MI Wen-Bo, FANG Yuan, LIU Zi-Gang, XU Chun-Mei, LIU Gao-Yang, ZOU Ya, XU Ming-Xia, ZHENG Guo-Qiang, CAO Xiao-Dong, FANG Xin-Ling. Differential proteomics analysis of fertility transformation of the winter rape thermo-sensitive sterile line PK3-12S (Brassica rapa L.) [J]. Acta Agronomica Sinica, 2020, 46(10): 1507-1516.
[13] MA Jin-Jiao,LAN Jin-Ping,ZHANG Tong,CHEN Yue,GUO Ya-Lu,LIU Yu-Qing,YAN Gao-Wei,WEI Jian,DOU Shi-Juan,YANG Ming,LI Li-Yun,LIU Guo-Zhen. Overexpression of OsMPK17 protein enhances drought tolerance of rice [J]. Acta Agronomica Sinica, 2020, 46(01): 20-30.
[14] CHEN Xiao-Jing,LIU Jing-Hui,YANG Yan-Ming,ZHAO Zhou,XU Zhong-Shan,HAI Xia,HAN Yu-Ting. Effects of salt stress on physiological indexes and differential proteomics of oat leaf [J]. Acta Agronomica Sinica, 2019, 45(9): 1431-1439.
[15] LI Xu-Kai,LI Ren-Jian,ZHANG Bao-Jun. Identification of rice stress-related gene co-expression modules by WGCNA [J]. Acta Agronomica Sinica, 2019, 45(9): 1349-1364.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!