Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2021, Vol. 47 ›› Issue (1): 61-70.doi: 10.3724/SP.J.1006.2021.02030

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Screening of germplasm resources and QTL mapping for germinability under submerged condition in rice (Oryza sativa L.)

SUN Zhi-Guang(), WANG Bao-Xiang, ZHOU Zhen-Ling, FANG Lei, CHI Ming, LI Jing-Fang, LIU Jin-Bo, Bello Babatunde Kazeem, XU Da-Yong*()   

  1. Lianyungang Academy of Agricultural Sciences / Jiangsu Collaborative Innovation Center for Modern Corp Production, Lianyungang 222006, Jiangsu, China
  • Received:2020-04-27 Accepted:2020-07-02 Online:2021-01-12 Published:2020-07-14
  • Contact: XU Da-Yong E-mail:zhiguangsun@126.com;xudayong3030@sina.com
  • Supported by:
    National Key Research and Development Program of China(2017YFD0100400);China Agriculture Research System(CARS-01-61);Project for Agricultural Significant New Varieties Breeding of Jiangsu Province(PZCZ201704);Special Project of Science and Technology in Northern Jiangsu Province(LYG-SZ201930);Financial Grant Support Program of Lianyungang City(QNJJ1801);Financial Grant Support Program of Lianyungang City(QNJJ1902);Financial Grant Support Program of Lianyungang City(QNJJ2001)

Abstract:

Screening of germplasm resources, exploiting and utilization of genes conferring tolerance to hypoxia are the key to breeding new cultivars adapted to direct seeding. In order to evaluate the germinability of germplasm resources under submerged condition in a simple and efficient way, 191 japonica germplasm resources released from different years and regions were screened, 12 japonica varieties with high germinability under submerged condition were found. Among them, Lianjing 15, a japonica variety, showed stable and high tolerance to hypoxia. Using a F2:3 population derived from Lianjing 15 and Huanglizhan (HLZ, a highly susceptible indica rice variety), four quantitative trait loci (QTL) conferring tolerance to hypoxia, namely qGS1, qGS3, qGS9, and qGS10 were identified under simulated field environment, and they explained 70.9% of the total phenotypic variation. Among them, qGS1, qGS3, and qGS10, were repeatedly detected in different years, accounting for 19.2%-24.0%, 12.6%-14.7%, and 19.1%-20.5% of the total phenotypic variation, respectively. The germplasm resources and QTL found in our study would provide innovative resources for breeding rice cultivars with high germinability under submerged condition, and would also provide a theoretical basis for breeding varieties adapted to direct seeding.

Key words: rice, germinability under submerged condition (GS), germplasm resources, quantitative trait loci (QTL)

Table S1

Germinability of 191 germplasm resources under submerged condition"

编号
Number
品种名称
Cultivar
胚芽鞘长
Coleoptile length (mm)
编号
Number
品种名称
Cultivar
胚芽鞘长
Coleoptile length (mm)
1 早丰11号Zaofeng 11 0 97 扬农粳2号Yangnongjing 2
2 镇稻1号Zhendao 1 0 98 粳系103 Jingxi 103 24.6
3 早粳Zaojing 0 99 台东育30 Taidongyu 30 24.6
4 梧桐Wutong 0 100 盐粳11号Yanjing 11 24.7
5 ITA182 0 101 扬粳4038 Yangjing 4038 24.7
6 临稻10号Lindao 10 13.4 102 ZBS622 24.7
7 华粳4号Huajing 4 13.6 103 盐粳30192 Yanjing 30192 24.7
8 HP3 17.2 104 盐稻15 Yandao 15 24.8
9 丹东陆稻Dandongludao 17.7 105 小黄稻Xiaohuangdao 24.8
10 绍糯9714 Shaonuo9714 17.7 106 武运粳8号Wuyunjing 8 24.8
11 南京11号 Nanjing 11 18.5 107 ZBS665 24.8
12 淮稻13号Huaidao 13 18.7 108 泗稻10号Sidao 10 24.8
13 三光稻Sanguangdao 18.8 109 香糯8333 Xiangnuo 8333 24.9
14 盐稻10号Yandao 10 19.0 110 湖粳75 Hujing 75 25.0
15 凤凰稻Fenghuangdao 19.1 111 畚禾Benhe 25.0
16 矮粳10号 Aijing 10 19.2 112 新宁Xinning 25.2
17 旱糯谷Hannuogu 19.3 113 南粳40 Nanjing 40 25.2
18 武运粳7号Wuyunjing 7 19.5 114 临稻18 Lindao 18 25.2
19 冀粳14 Jijing 14 19.9 115 高雄育122 Gaoxiongyu 122 25.2
20 南粳36 Nanjing 36 20.1 116 农虎早Laohuzao 25.3
21 黄枝糯Huangzhinuo 20.2 117 连粳3号Lianjing 3 25.4
22 垦鉴稻10号Kenjiandao 10 20.3 118 DY158 25.4
23 台东陆稻328
Taidongludao 328
20.8 119 中粳区6号Zhongjingqu 6 25.5
24 淮稻11号Huaidao 11 20.8 120 盐粳4号Yanjing 4 25.5
25 南粳37 Nanjing 37 20.9 121 镇稻18 Zhendao 18 25.5
26 小黄早Xiaohuangzao 20.9 122 越粳618 Yuejing 618 25.6
27 Y136 20.9 123 淮糯12 Huainuo 12 25.6
28 扬粳9538 Yangjing 9538 21.0 124 镇稻88 Zhendao 88 25.6
29 扬粳687 Yangjing 687 21.1 125 秀水21 Xiushui 21 25.7
30 武育粳20号Wuyujing 20 21.2 126 南粳43 Nanjing 43 25.9
31 通科粳Tongkejing 21.2 127 C418 25.9
32 小葱稻Xiaocongdao 21.3 128 盐粳6号Yanjing 6 25.9
33 圣稻13 Shengdao 13 21.3 129 镇稻86 Zhendao 86 26.0
34 盐粳9号Yanjing 9 21.3 130 台东育66 Taidongyu 66 26.0
35 连粳8671 Lianjing8671 21.4 131 锅底黑Guodihei 26.1
36 农林8号Nonglin 8 21.5 132 中粳区5号 Zhongjingqu 5 26.1
37 武育糯16号Wuyunuo 16 21.5 133 苏粳2号Sujing 2 26.1
38 京越1号Jingyue 1 21.6 134 桂花球Guihuaqiu 26.2
39 新稻18 Xindao 18 21.7 135 连粳3号选系 Line of Lianjing 3 26.2
40 矮秆黄Aiganhuang 21.8 136 黄谷粳稻Huanggujingdao 26.2
41 香稻Xiangdao 21.9 137 连粳5号Lianjing 5 26.3
42 迟粳预1号Chijingyu 1 22.0 138 华粳3号Huajing 3 26.3
43 葫芦稻Huludao 22.1 139 桂花黄Guihuahuang 26.4
44 双城糯Shuangchengnuo 22.1 140 新粳1号Xinjing 1 26.4
45 苏州选271 Suzhouxuan 271 22.1 141 白壳糯 1 Baikenuo 1 26.5
46 武糯5系Wunuo 5 22.3 142 盐粳5号Yanjing 5 26.5
47 中粳区7 Zhongjingqu 7 22.3 143 连粳2号Lianjing 2 26.5
48 黄粘粳Huangzhanjing 22.4 144 DY162 26.6
49 苏联种Sulianzhong 22.4 145 淮稻8号Huaidao 8 26.7
50 HR539 22.6 146 临稻4号Lindao 4 26.7
51 作作稻Zuozuodao 22.7 147 淮优粳2号Huaiyoujing 2 26.8
52 早熟香Zaoshuxiang 22.7 148 连粳6号Lianjing 6 26.9
53 盐稻7号Yanjing 7 22.7 149 徐稻3号Xudao 3 27.0
54 盐粳10号Yanjing 10 22.8 150 江北糯1号Jiangbeinuo 1 27.1
55 国优5号Guoyou 5 22.8 151 Kinmaze 27.3
56 L12-3 22.9 152 郑稻18 Zhengdao 18 27.3
57 浙粳61 Zhejing 61 22.9 153 镇稻108 Zhendao 108 27.4
58 武香粳1号Wuxiangjing 1 22.9 154 剑粳6号Jianjing 6 27.4
59 盐粳30237 Yanjing 30237 22.9 155 扬辐粳8号Yangfujing 8 27.5
60 HP5 23.0 156 扬糯2号Yangnuo 2 27.5
61 红壳糯Hongkenuo 23.0 157 R0380 27.5
62 辽粳287 Liaojing 287 23.1 158 DY110 27.7
63 武育粳18号Wuyujing 18 23.3 159 扬粳1号Yangjing 1 27.8
64 南粳46 Nanjing 46 23.3 160 淮稻9号Huaidao 9 27.9
65 扬粳4227 Yangjing 4227 23.3 161 盐稻8号Yandao 8 28.0
66 L1346 23.3 162 淮稻7号Huaidao 7 28.0
67 盐粳16 Yanjing 16 23.4 163 苏香粳2号Suxiangjing 2 28.1
68 连16783 Lian 16783 23.4 164 泗稻12号Sidao 12 28.1
69 ZBS152 23.5 165 早丰9号Zaofeng 9 28.2
70 L168-3 23.5 166 盐粳2号Yanjing 2 28.6
71 浙粳66 Zhejing 66 23.5 167 武粳15 Wujing 15 28.6
72 淮稻2号Huaidao 2 23.6 168 9805.0 28.7
73 南粳44 Nanjing 44 23.6 169 徐稻5号Xudao 5 28.8
74 东道Dongdao 23.7 170 徐稻6号Xudao 6 28.9
75 HN363 23.7 171 镇稻2号Zhendao 2 28.9
76 常农粳4号Changnongjing 4 23.8 172 南粳41 Nanjing 41 29.0
77 秀水04 Xiushui 04 23.9 173 宁粳1号Ningjing 1 29.1
78 中粳区8号 Zhongjingqu 8 24.0 174 武运粳11号Wuyunjing 11 29.3
79 武育粳3号Wuyujing 3 24.0 175 临糯Linnuo 29.3
80 ZBS153 24.0 176 华粳6号Huajing 6 29.4
81 小香稻Xiaoxiangdao 24.0 177 连粳4号Lianjing 4 29.5
82 新稻10号Xindao 10 24.1 178 盐稻9号Yandao 9 29.8
83 吾别Wubie 24.1 179 镇稻99 Zhendao 99 29.8
84 矮城804 Aicheng 804 24.2 180 临稻11号Lindao 11 30.1
85 花糯Huanuo 24.2 181 淮稻6号Huaidao 6 30.4
86 奎稻Kuidao 24.2 182 华粳5号Huajing 5 30.5
87 盐稻6号Yandao 6 24.4 183 扬粳186 Yangjing 186 30.7
88 宁粳3号Ningjing 3 24.4 184 徐稻4号Xudao 4 30.9
89 武育粳7号Wuyujing 7 24.4 185 淮稻10号Huaidao 10 31.1
90 宁粳2号Ningjing 2 24.4 186 连粳7号Lianjing 7 31.1
91 武运粳21 Wuyunjing 21 24.5 187 连粳9号Lianjing 9 32.0
92 武香粳14 Wuxiangjing 14 24.5 188 盐粳7号Yanjing 7 32.2
93 盐糯12 Yannuo 12 24.5 189 南粳45 Nanjing 45 32.5
94 昆稻选7号Kundaoxuan 7 24.5 190 连粳15号Lianjing 15 34.2
95 农虎禾-3 Nonghuhe-3 24.5 191 穞稻Ludao 34.6
96 五优稻1号Wuyoudao 1 24.5

Fig. 1

Evaluation for germinability of germplasm resources under submerged condition A: Frequency distribution of 191 japonica germplasm resources for germinability under submerged condition; B: Comparative analysis of coleoptile length of germplasm resources released from different years under submerged condition."

Table 1

Top 12 germplasm resources with high germinability under submerged condition"

编号
Number
品种名称
Cultivar
胚芽鞘长度
Coleoptile length (mm)
编号
Number
品种名称
Cultivar
胚芽鞘长度
Coleoptile length (mm)
1 穞稻 Ludao 34.6 7 淮稻10号 Huaidao 10 31.1
2 连粳15号 Lianjing 15 34.2 8 徐稻4号 Xudao 4 30.9
3 南粳45 Nanjing 45 32.5 9 扬粳186 Yangjing 186 30.7
4 盐粳7号 Yanjing 7 32.2 10 华粳5号 Huajing 5 30.5
5 连粳9号 Lianjing 9 32.0 11 淮稻6号 Huaidao 6 30.4
6 连粳7号 Lianjing 7 31.1 12 临稻11号 Lindao 11 30.1

Fig. 2

Germinability of Lianjing15 (LJ15) and Huanglizhan (HLZ) under submerged condition A: Phenotypic image of coleoptile length between LJ15 and HLZ under submerged condition; B: Average coleoptile length of LJ15 and HLZ under submerged condition; C: Comparative analysis of coleoptile length between LJ15 and HLZ under different water depth."

Fig. 3

Frequency distribution of germinability under submerged condition (GS) in an F2:3 population derived from the cross between Lianjing 15 (LJ15) and Huangzhan (HLZ) GS: germinability under submerged condition. A: in 2018; B: in 2019."

Table 2

QTLs for germinability under submerged condition (GS) detected in the LJ15/HLZ F2:3 population"

年份
Year
数量性状位点
QTL
染色体
Chr.
标记区间
Marker interval
LOD值
LOD scores
贡献率
PVE (%)
加性效应
Additive effect
2018 qGS1 1 RM11307-RM7341 6.7 24.0 -0.53
qGS3 3 RM15280-RM7134 3.6 14.7 -0.43
qGS9 9 RM24085-RM24271 3.3 11.7 -0.32
qGS10 10 RM474-RM6404 6.1 20.5 -0.50
2019 qGS1 1 RM11307-RM7341 5.1 19.2 -0.49
qGS3 3 RM15280-RM7134 3.0 12.6 -0.41
qGS10 10 RM474-RM6404 5.6 19.1 -0.50

Fig. 4

QTLs for germinability under submerged condition (GS) detected in LJ15/HLZ F2:3 population Marker names are given on the right of the chromosome and map distances (cM) on the left. PVE: phenotypic variation explaned."

[1] Mahajan G, Chauhan B S. Performance of dry direct-seeded rice in response to genotype and seeding rate. Agron J, 2016,108:257-265.
[2] 孙平勇, 李魏, 潘素君, 彭伟业, 戴良英. 水稻品种魔王谷粒形、剑叶性状和株高QTL定位. 作物学报, 2018,44:1673-1680.
Sun P Y, Li W, Pan S J, Peng W Y, Dai L Y. Mapping QTLs for grain Shape, flag leaf traits, and plant height in rice variety Mowanggu. Acta Agron Sin, 2018,44:1673-1680 (in Chinese with English abstract).
[3] 张平, 姜一梅, 曹鹏辉, 张福鳞, 伍洪铭, 蔡梦颖, 刘世家, 田云录, 江玲, 万建民. 通过分子标记辅助选择将耐储藏主效QTL qSS-9Kas转入宁粳4号提高其种子贮藏能力. 作物学报, 2019,45:335-343.
Zhang P, Jiang Y M, Cao P H, Zhang F L, Wu H M, Cai M Y, Liu S J, Tian Y L, Jiang L, Wan J M. Introducing qSS-9Kas into Ningjing 4 by molecular marker-assisted selection to improve its seed storage ability. Acta Agron Sin, 2019,45:335-343 (in Chinese with English abstract).
[4] Peng S B, Tang Q Y, Zou Y B. Current status and challenges of rice production in China. Plant Prod Sci, 2009,12:3-8.
[5] Farooq M, Siddique K H M, Rehman H, Aziz T, Lee D J, Wahid A. Rice direct seeding: experiences, challenges and opportunities. Soil Tillage Res, 2011,111:87-98.
[6] Kumar V, Ladha J K. Direct seeding of rice: recent developments and future research needs. Adv Agron, 2011,111:297-413.
[7] Ghosh D, Singh U P, Brahmachari K, Singh N K, Das A. An integrated approach to weed management practices in direct-seeded rice under zero-tilled rice-wheat cropping system. Int J Pest Manage, 2017,63:37-46.
[8] Liu H Y, Hussain S, Zheng M M, Peng S B, Huang J L, Cui K H, Nie L X. Dry direct-seeded rice as an alternative to transplanted-flooded rice in central China. Agron Sustain Dev, 2015,35:285-294.
doi: 10.1007/s13593-014-0239-0
[9] Tao Y, Chen Q, Peng S B, Wang W Q, Nie L X. Lower global warming potential and higher yield of wet direct-seeded rice in central China. Agron Sustain Dev, 2016,36(2):24-32.
[10] 赵霞, 杜朝云, 徐春梅, 杨华伟, 吕泽林, 章秀福. 水稻对低氧环境的适应及其机制研究进展. 作物杂志, 2015, (3):5-12.
Zhao X, Du C Y, Xu C M, Yang H W, Lyu Z L, Zhang X F. Research advances on the rice adaptation to hypoxia environment and its mechanism. Crops, 2015, (3):5-12 (in Chinese).
[11] 侯名语, 江玲, 王春明, 万建民. 水稻种子低氧发芽力的QTL定位和上位性分析. 中国水稻科学, 2004,18:483-488.
Hou M Y, Jiang L, Wang C M, Wan J M. Quantitative trait loci and epistatic analysis for seed anoxia germinability in rice (Oryza sativa). Chin J Rice Sci, 2004,18:483-488 (in Chinese with English abstract).
[12] Magneschi L, Kudahettige R L, Alpi A, Perata P. Comparative analysis of anoxic coleoptile elongation in rice varieties: relationship between coleoptile length and carbohydrate levels, fermentative metabolism and anaerobic gene expression. Plant Biol, 2009,11:561-573.
doi: 10.1111/j.1438-8677.2008.00150.x pmid: 19538394
[13] 曹栋栋, 阮晓丽, 詹艳, 石瑛琪. 杂交水稻种子不同活力测定方法与其田间成苗率的相关性. 浙江农业学报, 2014,26:1145-1150.
Cao D D, Ruan X L, Zhan Y, Shi Y Q. Relativity analysis between seedling percentage in field and different seed vigor testing methods of hybrid rice seeds. Acta Agric Zhejiangensis, 2014,26:1145-1150 (in Chinese with English abstract).
[14] 孙凯, 李冬秀, 杨靖, 董骥驰, 严贤诚, 罗立新, 刘永柱, 肖武名, 王慧, 陈志强, 郭涛. 水稻耐淹成苗率相关性状全基因组的关联分析. 中国农业科学, 2019,52:385-398.
Sun K, Li D X, Yang J, Dong J C, Yan X C, Luo L X, Liu Y Z, Xiao W M, Wang H, Chen Z Q, Guo T. Genome-wide association analysis for rice submergence seedling rate. Sci Agric Sin, 2019,52:385-398 (in Chinese with English abstract).
[15] 陈孙禄, 王俊敏, 潘佑找, 马健阳, 张建辉, 张红生, 滕胜. 水稻萌发耐淹性的遗传分析. 植物学报, 2012,47:28-35.
Chen S L, Wang J M, Pan Y Z, Ma J Y, Zhang J H, Zhang H S, Teng S. Genetic analysis of rice germination tolerance to flooding. Chin Bull Bot, 2012,47:28-35 (in Chinese).
[16] Jiang L, Liu S J, Hou M Y, Tang J Y, Chen L M, Zhai H Q, Wan J M. Analysis of QTLs for seed low temperature germinability and anoxia germinability in rice (Oryza sativa L.). Field Crops Res, 2006,98:68-75.
[17] 胡涛, 宋佳瑜, 吴爱婷, 刘思彤, 郭志富, 姜秀娟, 高继平, 赵明辉, 黎毛毛. 东乡野生稻低温发芽力QTL定位及超级稻耐冷改良. 植物遗传资源学报, 2018,19:627-632.
Hu T, Song J Y, Wu A T, Liu S T, Guo Z F, Jiang X J, Gao J P, Zhao M H, Li M M. QTLs mapping for low temperature germinability in a population of Dongxiang wild rice (Oryza rufipogon Griff.) and super rice variety. J Plant Genet Res, 2018,19:627-632 (in Chinese with English abstract).
[18] Junichi K, Koji H, Yutaka J. Rice (Oryza sativa L.) germplasm with better seedling emergence under direct sowing in flooded paddy field. Plant Genet Resour-C, 2018,16:1-7.
[19] Yamauchi M, Aguilar A M, Vaughan D A, Seshu D V. Rice (Oryza sativa L.) germplasm suitable for direct sowing under flooded soil surface. Euphytica, 1993,67:177-184.
[20] Yamauchi M, Biswas J K. Rice cultivar difference in seedling establishment in flooded soil. Plant Soil, 1997,189:145-153.
[21] 刘艳, 宋兆强, 夏祥华, 王宝祥, 周振玲, 卢百关, 李健, 秦德荣, 徐大勇. 大田模拟环境下水稻种子耐缺氧能力遗传研究. 西南农业学报, 2016,29:2279-2283.
Liu Y, Song Z Q, Xia X H, Wang B X, Zhou Z L, Lu B G, Li J, Qin D R, Xu D Y. Genetic variation of seed tolerance to anoxia amog rice (Oryza saliva L.). Southwest China J Agric Sci, 2016,29:2279-2283 (in Chinese with English abstract).
[22] 王洋, 王盈盈, 洪德林. 太湖流域水稻种子活力和耐缺氧能力遗传变异研究. 南京农业大学学报, 2009,32(3):1-7.
Wang Y, Wang Y Y, Hong D L. Genetic variation of seed vigor and tolerance to anoxia among rice (Oryza sativa L.) varieties in Taihu Lake region. J Nanjing Agric Univ, 2009,32(3):1-7 (in Chinese with English abstract).
[23] 张光恒, 曾大力, 胡时开, 苏岩, 阿加拉铁, 郭龙彪, 钱前. 水稻苗期耐淹相关性状QTL分析. 作物学报, 2006,32:20-26.
Zhang G H, Zeng D L, Hu S K, Su Y, A J L T, Guo L B, Qian Q. QTL analysis of traits concerned submergence tolerance at seedling stage in rice (Oryza sativa L.). Acta Agron Sin, 2006,32:20-26 (in Chinese with English abstract).
[24] 王洋, 郭媛, 洪德林. 水稻幼苗耐缺氧能力的QTL分析. 中国水稻科学, 2010,24:18-24.
Wang Y, Guo Y, Hong D L. QTL analysis of the anoxic tolerance at the seedling stage in rice. Chin J Rice Sci, 2010,24:18-24 (in Chinese with English abstract).
[25] Lee K W, Chen P W, Lu C A, Chen S, Ho T H D, Yu S M. Coordinated responses to oxygen and sugar deficiency allow rice seedlings to tolerate flooding. Sci Signal, 2009, 2: ra61.
doi: 10.1126/scisignal.2000333 pmid: 19809091
[26] Xu K, Xu X, Fukao T, Canlas P, Maghirang-Rodriguez R, Heuer S, Ismail A M, Bailey-Serres J, Ronald P C, Mackill D J. Sub1A is an ethylene-response-factor-like gene that confers submergence tolerance to rice. Nature, 2006,442:705-708.
[1] TIAN Tian, CHEN Li-Juan, HE Hua-Qin. Identification of rice blast resistance candidate genes based on integrating Meta-QTL and RNA-seq analysis [J]. Acta Agronomica Sinica, 2022, 48(6): 1372-1388.
[2] ZHENG Chong-Ke, ZHOU Guan-Hua, NIU Shu-Lin, HE Ya-Nan, SUN wei, XIE Xian-Zhi. Phenotypic characterization and gene mapping of an early senescence leaf H5(esl-H5) mutant in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2022, 48(6): 1389-1400.
[3] ZHOU Wen-Qi, QIANG Xiao-Xia, WANG Sen, JIANG Jing-Wen, WEI Wan-Rong. Mechanism of drought and salt tolerance of OsLPL2/PIR gene in rice [J]. Acta Agronomica Sinica, 2022, 48(6): 1401-1415.
[4] ZHENG Xiao-Long, ZHOU Jing-Qing, BAI Yang, SHAO Ya-Fang, ZHANG Lin-Ping, HU Pei-Song, WEI Xiang-Jin. Difference and molecular mechanism of soluble sugar metabolism and quality of different rice panicle in japonica rice [J]. Acta Agronomica Sinica, 2022, 48(6): 1425-1436.
[5] YAN Jia-Qian, GU Yi-Biao, XUE Zhang-Yi, ZHOU Tian-Yang, GE Qian-Qian, ZHANG Hao, LIU Li-Jun, WANG Zhi-Qin, GU Jun-Fei, YANG Jian-Chang, ZHOU Zhen-Ling, XU Da-Yong. Different responses of rice cultivars to salt stress and the underlying mechanisms [J]. Acta Agronomica Sinica, 2022, 48(6): 1463-1475.
[6] YANG Jian-Chang, LI Chao-Qing, JIANG Yi. Contents and compositions of amino acids in rice grains and their regulation: a review [J]. Acta Agronomica Sinica, 2022, 48(5): 1037-1050.
[7] DENG Zhao, JIANG Nan, FU Chen-Jian, YAN Tian-Zhe, FU Xing-Xue, HU Xiao-Chun, QIN Peng, LIU Shan-Shan, WANG Kai, YANG Yuan-Zhu. Analysis of blast resistance genes in Longliangyou and Jingliangyou hybrid rice varieties [J]. Acta Agronomica Sinica, 2022, 48(5): 1071-1080.
[8] YANG De-Wei, WANG Xun, ZHENG Xing-Xing, XIANG Xin-Quan, CUI Hai-Tao, LI Sheng-Ping, TANG Ding-Zhong. Functional studies of rice blast resistance related gene OsSAMS1 [J]. Acta Agronomica Sinica, 2022, 48(5): 1119-1128.
[9] ZHU Zheng, WANG Tian-Xing-Zi, CHEN Yue, LIU Yu-Qing, YAN Gao-Wei, XU Shan, MA Jin-Jiao, DOU Shi-Juan, LI Li-Yun, LIU Guo-Zhen. Rice transcription factor WRKY68 plays a positive role in Xa21-mediated resistance to Xanthomonas oryzae pv. oryzae [J]. Acta Agronomica Sinica, 2022, 48(5): 1129-1140.
[10] WANG Xiao-Lei, LI Wei-Xing, OU-YANG Lin-Juan, XU Jie, CHEN Xiao-Rong, BIAN Jian-Min, HU Li-Fang, PENG Xiao-Song, HE Xiao-Peng, FU Jun-Ru, ZHOU Da-Hu, HE Hao-Hua, SUN Xiao-Tang, ZHU Chang-Lan. QTL mapping for plant architecture in rice based on chromosome segment substitution lines [J]. Acta Agronomica Sinica, 2022, 48(5): 1141-1151.
[11] WANG Ze, ZHOU Qin-Yang, LIU Cong, MU Yue, GUO Wei, DING Yan-Feng, NINOMIYA Seishi. Estimation and evaluation of paddy rice canopy characteristics based on images from UAV and ground camera [J]. Acta Agronomica Sinica, 2022, 48(5): 1248-1261.
[12] KE Jian, CHEN Ting-Ting, WU Zhou, ZHU Tie-Zhong, SUN Jie, HE Hai-Bing, YOU Cui-Cui, ZHU De-Quan, WU Li-Quan. Suitable varieties and high-yielding population characteristics of late season rice in the northern margin area of double-cropping rice along the Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(4): 1005-1016.
[13] CHEN Yue, SUN Ming-Zhe, JIA Bo-Wei, LENG Yue, SUN Xiao-Li. Research progress regarding the function and mechanism of rice AP2/ERF transcription factor in stress response [J]. Acta Agronomica Sinica, 2022, 48(4): 781-790.
[14] CHEN Xiao-Hong, LIN Yuan-Xiang, WANG Qian, DING Min, WANG Hai-Gang, CHEN Ling, GAO Zhi-Jun, WANG Rui-Yun, QIAO Zhi-Jun. Development of DNA molecular ID card in hog millet germplasm based on high motif SSR [J]. Acta Agronomica Sinica, 2022, 48(4): 908-919.
[15] WANG Lyu, CUI Yue-Zhen, WU Yu-Hong, HAO Xing-Shun, ZHANG Chun-Hui, WANG Jun-Yi, LIU Yi-Xin, LI Xiao-Gang, QIN Yu-Hang. Effects of rice stalks mulching combined with green manure (Astragalus smicus L.) incorporated into soil and reducing nitrogen fertilizer rate on rice yield and soil fertility [J]. Acta Agronomica Sinica, 2022, 48(4): 952-961.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!