Acta Agronomica Sinica ›› 2021, Vol. 47 ›› Issue (4): 638-649.doi: 10.3724/SP.J.1006.2021.04139
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
JIA Xiao-Ping1,*(), LI Jian-Feng1, ZHANG Bo1, QUAN Jian-Zhang2, WANG Yong-Fang2, ZHAO Yuan1, ZHANG Xiao-Mei1, WANG Zhen-Shan1, SANG Lu-Man1, DONG Zhi-Ping2,*()
[1] |
Makino S, Kiba T, Imamura A, Hanaki N, Nakamura A, Suzuki T, Taniguchi M, Ueguchi C, Sugiyama T, Mizuno T. Genes encoding pseudo-response regulators: insight into His-to-Asp phosphorelay and circadian rhythm in Arabidopsis thaliana. Plant Cell Physiol, 2000,41:791-803.
doi: 10.1093/pcp/41.6.791 pmid: 10945350 |
[2] | 李剑峰, 李婷, 贾小平. PRRs家族功能基因的研究进展. 植物遗传资源学报, 2019,20:1399-1407. |
Li J F, Li T, Jia X P. Advances on unlocking the functional basis of PRRs family genes. J Plant Genet Resour, 2019,20:1399-1407 (in Chinese with English abstract). | |
[3] |
Farré Eva M, Kay S A. PRR7 protein levels are regulated by light and the circadian clock in Arabidopsis. Plant J, 2007,52:548-560.
doi: 10.1111/j.1365-313X.2007.03258.x pmid: 17877705 |
[4] |
Matsushika A, Makino S, Kojima M, Mizuno T. Circadian waves of expression of the APRR1/TOC1 family of pseudo-response regulators in Arabidopsis thaliana: insight into the plant circadian clock. Plant Cell Physiol, 2000,41:1002-1012.
doi: 10.1093/pcp/pcd043 pmid: 11100772 |
[5] |
Koo B H, Yoo S C, Park J W, Kwon C T, Lee B D, An G, Zhang Z Y, Li J J, Li Z C, Paek N C. Natural variation in OsPRR37 regulates heading date and contributes to rice cultivation at a wide range of latitudes. Mol Plant, 2013,6:1877-1888.
doi: 10.1093/mp/sst088 |
[6] |
Nakagawa H, Yamagishi J, Miyamoto N, Motoyama M, Yano M, Nemoto K. Flowering response of rice to photoperiod and temperature: a QTL analysis using a phenological model. Theor Appl Genet, 2005,110:778-786.
doi: 10.1007/s00122-004-1905-4 pmid: 15723276 |
[7] |
Liu C, Song G Y, Zhou Y H, Qu X F, Guo Z B, Liu Z W, Jiang D M, Yang D C. OsPRR37 and Ghd7 are the major genes for general combining ability of DTH, PH and SPP in rice. Sci Rep, 2015,5:12803.
doi: 10.1038/srep12803 pmid: 26238949 |
[8] |
Gao H, Jin M N, Zheng X M, Chen J, Yuan D Y, Xin Y Y, Wang M Q, Huang D Y, Zhang Z, Zhou K N, Sheng P K, Ma J, Ma W W, Deng H F, Jiang L, Liu S J, Wang H Y, Wu C Y, Yuan L P, Wan J M. Days to heading 7, a major quantitative locus determining photoperiod sensitivity and regional adaptation in rice. Proc Natl Acad Sci USA, 2014,111:16337-16342.
doi: 10.1073/pnas.1418204111 pmid: 25378698 |
[9] |
Xue W, Xing Y, Weng X, Zhao Y, Tang W, Wang L, Zhou H, Yu S, Xu C, Li X, Zhang Q. Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nat Genet, 2008,40:761-767.
doi: 10.1038/ng.143 pmid: 18454147 |
[10] |
Fujino K, Yamanouchi U, Yano M. Roles of the Hd5 gene controlling heading date for adaptation to the northern limits of rice cultivation. Theor Appl Genet, 2012,126:611-618.
pmid: 23090144 |
[11] |
Turner A, Beales J, Faure S, Dunford R P, Laurie D A. The pseudo-response regulator Ppd-H1 provides adaptation to photoperiod in barley. Science, 2005,310:1031-1034.
doi: 10.1126/science.1117619 pmid: 16284181 |
[12] |
Beales J, Turner A, Griffiths S, Snape J W, Laurie D A. A pseudo-response regulatoris misexpressed in the photoperiod insensitive Ppd-D1a mutant of wheat(Triticum aestivum L.). Theor Appl Genet, 2007,115:721-733.
doi: 10.1007/s00122-007-0603-4 pmid: 17634915 |
[13] |
Murphy R L, Klein R R, Morishige D T, Brady J A, Rooney W L, Miller F R, Dugas D V, Klein P E, Mullet J E. Coincident light and clock regulation of pseudoresponse regulator protein 37 (PRR37) controls photoperiodic flowering in sorghum. Proc Natl Acad Sci USA, 2011,108:16469-16474.
doi: 10.1073/pnas.1106212108 pmid: 21930910 |
[14] |
Shrestha R, Gómez-Ariza J, Brambilla V, Fornara F. Molecular control of seasonal flowering in rice, arabidopsis and temperate cereals. Ann Bot-London, 2014,114:1445-1458.
doi: 10.1093/aob/mcu032 |
[15] |
Lister D L, Thaw S, Bower M A, Jones H, Charles M P, Jones G, Smith L M J, Howe C J, Brown T A, Jones M K. Latitudinal variation in a photoperiod response gene in European barley: insight into the dynamics of agricultural spread from ‘historic’ specimens. J Archaeol Sci, 2009,36:1092-1098.
doi: 10.1016/j.jas.2008.12.012 |
[16] |
Klein R R, Miller F R, Dugas D V, Brown P J, Burrell A M, Klein P E. Allelic variants in the PRR37 gene and the human-mediated dispersal and diversification of sorghum. Theor Appl Genet, 2015,128:1669-1683.
doi: 10.1007/s00122-015-2523-z pmid: 25982128 |
[17] |
Liu C, Qu X, Zhou Y, Song G, Abiri N, Xiao Y, Liang F, Jiang D, Hu Z, Yang D. OsPRR37 confers an expanded regulation of the diurnal rhythms of the transcriptome and photoperiodic flowering pathways in rice. Plant Cell Environ, 2018,41:630-645.
pmid: 29314052 |
[18] |
Liu T, Carlsson J, Takeuchi T, Newton L, Farré E M. Direct regulation of abiotic responses by the Arabidopsis circadian clock component PRR7. Plant J, 2013,76:101-114.
pmid: 23808423 |
[19] |
Fukushima A, Kusano M, Nakamichi N, Kobayashi M, Hayashi N, Sakakibara H, Mizuno T, Saito K. Impact of clock associated Arabidopsis pseudo-response regulators in metabolic coordination. Proc Natl Acad Sci USA, 2009,106:7251-7256.
doi: 10.1073/pnas.0900952106 pmid: 19359492 |
[20] |
Nakamichi N, Kusano M, Fukushima A, Kita M, Ito S, Yamashino T, Saito K, Sakakibara H, Mizuno T. Transcript profiling of an Arabidopsis pseudo response regulator arrhythmic triple mutant reveals a role for the circadian clock in cold stress response. Plant Cell Physiol, 2009,50:447-462.
doi: 10.1093/pcp/pcp004 pmid: 19131357 |
[21] | Briat J F, Ravet K, Arnaud N, Duc C, Boucherez J, Touraine B, Cellier F, Gaymard F. New insights into ferritin synthesis and function highlight a link between iron homeostasis and oxidative stress in plants. Ann Bot, 2010,105:811-822. |
[22] |
Grundy J, Stoker C, Carré I A. Circadian regulation of abiotic stress tolerance in plants. Front Plant Sci, 2015,6:1-15.
pmid: 25653664 |
[23] |
Seo P J, Mas P. STRESSing the role of the plant circadian clock. Trends Plant Sci, 2015,20:230-237.
pmid: 25631123 |
[24] | Li H W, Li C H, Pao W K. Cytogenetical and genetical studies of the interspecific cross between the cultivated foxtail millet, Setaria italica(L.) Beauv., and the green foxtail millet S. viridis L. J Am Soc Agron, 1945,37:32-54. |
[25] | Brutnell T P, Lin W, Swartwood K, Goldschmidt A, Jackson D, Zhu X G, Kellogg E, Van Eck J. Setaria viridis: a model for C4 photosynthesis. Plant Cell, 2010,22:2537-2544. |
[26] |
Lata C, Gupta S, Prasad M. Foxtail millet: a model crop for genetic and genomic studies in bioenergy grasses. Crit Rev Biotechnol, 2013,33:328-343.
doi: 10.3109/07388551.2012.716809 pmid: 22985089 |
[27] | 王海岗, 贾冠清, 智慧, 温琪汾, 董俊丽, 陈凌, 王君杰, 曹晓宁, 刘思辰, 王纶, 乔治军, 刁现民. 谷子核心种质表型遗传多样性分析及综合评价. 作物学报, 2016,42:19-30. |
Wang H G, Jia G Q, Zhi H, Wen Q F, Dong J L, Chen L, Wang J J, Cao X N, Liu S C, Wang L, Qiao Z J, Diao X M. Phenotypic diversity evaluations of foxtail millet core collections. Acta Agron Sin, 2016,42:19-30 (in Chinese with English abstract). | |
[28] | Diao X M, Jia G Q. Origin and domestication of foxtail millet. In: Doust A, Diao X M, eds. Genetics and Genomics of Setaria. Plant Genetics and Genomics: Crops and Models. Cham: Springer Press, 2017. pp 61-72. |
[29] | 贾小平, 李剑峰, 全建章, 王永芳, 董志平, 张博, 袁玺垒. 不同光周期条件下谷子农艺性状的光周期敏感性评价. 植物遗传资源学报, 2018,19:919-924. |
Jia X P, Li J F, Quan J Z, Wang Y F, Dong Z P, Zhang B, Yuan X L. Evaluation of photoperiod sensitivity of agronomic traits of foxtail millet varieties ( Setaria italica) under different photoperiod conditions. J Plant Genet Resour, 2018,19:919-924 (in Chinese with English abstract). | |
[30] | 贾小平, 袁玺垒, 李剑峰, 张博, 张小梅, 郭秀璞, 陈春燕. 不同光温条件谷子资源主要农艺性状的综合评价. 中国农业科学, 2018,51:2429-2441. |
Jia X P, Yuan X L, Li J F, Zhang B, Zhang X M, Guo X P, Chen C Y. Comprehensive evaluation of main agronomic traits of millet resources under different light and temperature conditions. Sci Agric Sin, 2018,51:2429-2441 (in Chinese with English abstract). | |
[31] | Margarita M H, Wang X W, Barbier H, Brutnell T P, Devos K M, Doust A N. Genetic control and comparative genomic analysis of flowering time inSetaria( Poaceae). G3: Genes Genom Genet, 2013,3:283-295. |
[32] | Ni X M, Xia Q J, Zhang H B, Cheng S, Li H, Fan G Y, Guo T, Huang P, Xiang H T, Chen Q C, Li N, Zou H F, Cai X M, Lei X J, Wang X M, Zhou C S, Zhao Z H, Zhang G Y, Du G H, Cai W, Quan Z W. Updated foxtail millet genome assembly and gene mapping of nine key agronomic traits by resequencing a RIL population. Gigascience, 2017,6:1-8. |
[33] | Doust A N, Mauro-Herrera M, Hodgeand J G, Stromsk J. The C4 model grass Setaria is a short day plant with secondary long day genetic regulation. Front Plant Sci, 2017,8:1-10. |
[34] | 谢丽莉. 谷子光周期敏感相关性状的QTL定位与分析. 河南农业大学硕士学位论文, 河南郑州, 2012. |
Xie L L. QTL Mapping and Analysis of the Photoperiod-sensitive Traits in Foxtail Millet. MS Thesis of Henan Agricultural University, Zhengzhou, Henan, China, 2012 (in Chinese with English abstract). | |
[35] | Jia G Q, Huang X H, Zhi H, Zhao Y, Zhao Q, Li W J, Chai Y, Yang L F, Liu K Y, Lu H Y, Zhu C R, Lu Y Q, Zhou C C, Fan D L, Weng Q J, Guo Y L, Huang T, Zhang L, Lu T T, Feng Q, Hao H F, Liu H K, Lu P, Zhang N, Li Y H, Guo E H, Wang S J, Wang S Y, Liu J R, Zhang W F, Chen G Q, Zhang B J, Li W, Wang Y F, Li H Q, Zhao B H, Li J Y, Diao X M, Han B. A haplotype map of genomic variations and genome-wide association studies of agronomic traits in foxtail millet ( Setaria italica). Nat Genet, 2013,45:957-961. |
[36] | Zhang K, Fan G Y, Zhang X X, Zhao F, Wei W, Du G H, Feng X L, Wang X M, Wang F, Song G L, Zou H F, Zhang X L, Li S D, Ni X M, Zhang G Y, Zhao Z H. Identification of QTLs for 14 agronomically important traits in Setaria italica based on SNPs generated from high-throughput sequencing. G3: Genes Genom Genet, 2017,7:1587-1594. |
[37] |
Mizuno T, Nakamichi N. Pseudo-response regulators (PRRs) or true oscillator components (TOCs). Plant Cell Physiol, 2005,46:677-685.
doi: 10.1093/pcp/pci087 pmid: 15767264 |
[38] | Guo Z, Song Y, Zhou R, Ren Z, Jia J. Discovery, evaluation and distribution of haplotypes of the wheat Ppd-D1 gene. New Phytol, 2010,185:841-851. |
[39] | 贾小平, 袁玺垒, 李剑峰, 王永芳, 张小梅, 张博, 全建章, 董志平. 不同光温条件谷子光温互作模式研究及SiCCT基因表达分析. 作物学报, 2020,46:1052-1062. |
Jia X P, Yuan X L, Li J F, Wang Y F, Zhang X M, Zhang B, Quan J Z, Dong Z P. Photo-thermal interaction model under different photoperiod-temperature conditions and expression analysis of SiCCT gene in foxtail millet(Setaria italica L.). Acta Agron Sin, 2020,46:1052-1062 (in Chinese with English abstract). | |
[40] | Campoli C, Shtaya M, Davis S J, Korff M V. Expression conservation within the circadian clock of a monocot: natural variation at barley Ppd-H1 affects circadian expression of flowering time genes, but not clock orthologs. BMC Plant Biol, 2012,12:97. |
[41] | 徐江民, 姜洪真, 林晗, 黄苗苗, 付巧丽, 曾大力, 饶玉春. 水稻ES1参与生物钟基因表达调控以及逆境胁迫响应. 植物学报, 2016,51:743-756. |
Xu J M, Jiang H Z, Lin H, Huang M M, Fu Q L, Zeng D L, Rao Y C. Early Senescence 1 participates in the expression regulation of circadian clock genes and response to stress in rice. Bull Bot, 2016,51:743-756 (in Chinese with English abstract). | |
[42] | Marcolino-Gomes J, Rodrigues F A, Fuganti-Pagliarini R, Bendix C, Nakayama T J, Celaya B, Molinari H B C, Neves de Oliveira M C, Harmon F G, Nepomuceno A. Diurnal oscillations of soybean circadian clock and drought responsive genes. PLoS One, 2014,9:e86402. |
[43] | 李佳, 刘运华, 张余, 陈晨, 余霞, 余舜武. 干旱对水稻生物钟基因和干旱胁迫响应基因每日节律性变化的影响. 遗传, 2017,39:837-846. |
Li J, Liu Y H, Zhang Y, Chen C, Yu X, Yu S W. Drought stress modulates diurnal oscillations of circadian clock and drought- responsive genes in Oryza sativa L. Hereditas, 2017,39:837-846 (in Chinese with English abstract). | |
[44] |
Kurup S, Jones H D, Holdsworth M J. Interactions of the developmental regulator ABI3 with proteins identified from developing Arabidopsis seeds. Plant J, 2000,21:143-155.
pmid: 10743655 |
[1] | CHEN Song-Yu, DING Yi-Juan, SUN Jun-Ming, HUANG Deng-Wen, YANG Nan, DAI Yu-Han, WAN Hua-Fang, QIAN Wei. Genome-wide identification of BnCNGC and the gene expression analysis in Brassica napus challenged with Sclerotinia sclerotiorum and PEG-simulated drought [J]. Acta Agronomica Sinica, 2022, 48(6): 1357-1371. |
[2] | JIN Min-Shan, QU Rui-Fang, LI Hong-Ying, HAN Yan-Qing, MA Fang-Fang, HAN Yuan-Huai, XING Guo-Fang. Identification of sugar transporter gene family SiSTPs in foxtail millet and its participation in stress response [J]. Acta Agronomica Sinica, 2022, 48(4): 825-839. |
[3] | DU Xiao-Fen, WANG Zhi-Lan, HAN Kang-Ni, LIAN Shi-Chao, LI Yu-Xin, ZHANG Lin-Yi, WANG Jun. Identification and analysis of RNA editing sites of chloroplast genes in foxtail millet [Setaria italica (L.) P. Beauv.] [J]. Acta Agronomica Sinica, 2022, 48(4): 873-885. |
[4] | WU Yan-Fei, HU Qin, ZHOU Qi, DU Xue-Zhu, SHENG Feng. Genome-wide identification and expression analysis of Elongator complex family genes in response to abiotic stresses in rice [J]. Acta Agronomica Sinica, 2022, 48(3): 644-655. |
[5] | LIU Dan, ZHOU Cai-E, WANG Xiao-Ting, WU Qi-Meng, ZHANG Xu, WANG Qi-Lin, ZENG Qing-Dong, KANG Zhen-Sheng, HAN De-Jun, WU Jian-Hui. Rapid identification of adult plant wheat stripe rust resistance gene YrC271 using high-throughput SNP array-based bulked segregant analysis [J]. Acta Agronomica Sinica, 2022, 48(3): 553-564. |
[6] | ZHAO Mei-Cheng, DIAO Xian-Min. Phylogeny of wild Setaria species and their utilization in foxtail millet breeding [J]. Acta Agronomica Sinica, 2022, 48(2): 267-279. |
[7] | WANG Yan-Peng, LING Lei, ZHANG Wen-Rui, WANG Dan, GUO Chang-Hong. Genome-wide identification and expression analysis of B-box gene family in wheat [J]. Acta Agronomica Sinica, 2021, 47(8): 1437-1449. |
[8] | LI Wen-Lan, LI Wen-Cai, SUN Qi, YU Yan-Li, ZHAO Meng, LU Shou-Ping, LI Yan-Jiao, MENG Zhao-Dong. A study of expression pattern of auxin response factor family genes in maize (Zea mays L.) [J]. Acta Agronomica Sinica, 2021, 47(6): 1138-1148. |
[9] | YIN Ming, YANG Da-Wei, TANG Hui-Juan, PAN Gen, LI De-Fang, ZHAO Li-Ning, HUANG Si-Qi. Genome-wide identification of GRAS transcription factor and expression analysis in response to cadmium stresses in hemp (Cannabis sativa L.) [J]. Acta Agronomica Sinica, 2021, 47(6): 1054-1069. |
[10] | MA Gui-Fang, MAN Xia-Xia, ZHANG Yi-Juan, GAO Hao, SUN Zhao-Xia, LI Hong-Ying, HAN Yuan-Huai, HOU Si-Yu. Integrated analysis between folate metabolites profiles and transcriptome of panicle in foxtail millet [J]. Acta Agronomica Sinica, 2021, 47(5): 837-846. |
[11] | YUE Jie-Ru, BAI Jian-Fang, ZHANG Feng-Ting, GUO Li-Ping, YUAN Shao-Hua, LI Yan-Mei, ZHANG Sheng-Quan, ZHAO Chang-Ping, ZHANG Li-Ping. Cloning and potential function analysis of ascorbic peroxidase gene of hybrid wheat in seed aging [J]. Acta Agronomica Sinica, 2021, 47(3): 405-415. |
[12] | MENG Yu-Yu, WEI Chun-Ru, FAN Run-Qiao, YU Xiu-Mei, WANG Xiao-Dong, ZHAO Wei-Quan, WEI Xin-Yan, KANG Zhen-Sheng, LIU Da-Qun. TaPP2-A13 gene shows induced expression pattern in wheat responses to stresses and interacts with adaptor protein SKP1 from SCF complex [J]. Acta Agronomica Sinica, 2021, 47(2): 224-236. |
[13] | HE Xiao, LIU Xing, XIN Zheng-Qi, XIE Hai-Yan, XIN Yu-Feng, WU Neng-Biao. Molecular cloning, expression, and enzyme kinetic analysis of a phenylalanine ammonia-lyase gene in Pinellia ternate [J]. Acta Agronomica Sinica, 2021, 47(10): 1941-1952. |
[14] | JIA Xiao-Ping,YUAN Xi-Lei,LI Jian-Feng,WANG Yong-Fang,ZHANG Xiao-Mei,ZHANG Bo,QUAN Jian-Zhang,DONG Zhi-Ping. Photo-thermal interaction model under different photoperiod-temperature conditions and expression analysis of SiCCT gene in foxtail millet (Setaria italica L.) [J]. Acta Agronomica Sinica, 2020, 46(7): 1052-1062. |
[15] | LI Guo-Ji, ZHU Lin, CAO Jin-Shan, WANG You-Ning. Cloning and functional analysis of GmNRT1.2a and GmNRT1.2b in soybean [J]. Acta Agronomica Sinica, 2020, 46(7): 1025-1032. |
|