Acta Agronomica Sinica ›› 2021, Vol. 47 ›› Issue (4): 650-659.doi: 10.3724/SP.J.1006.2021.04136
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
ZHANG Chun1,2(), ZHAO Xiao-Zhen1,2, PANG Cheng-Ke1,2, PENG Men-Lu1,2, WANG Xiao-Dong2, CHEN Feng2, ZHANG Wei2, CHEN Song2, PENG Qi2, YI Bin3, SUN Cheng-Ming2,3,*(), ZHANG Jie-Fu2,*(), FU Ting-Dong3
[1] | 王汉中. 我国油菜产业发展的历史回顾与展望. 中国油料作物学报, 2010,32:300-302. |
Wang H Z. Review and future development of rapeseed industry in China. Chin J Oil Crop Sci, 2010,32:300-302 (in Chinese with English abstract). | |
[2] | 易斌, 陈伟, 马朝芝, 傅廷栋, 涂金星. 甘蓝型油菜产量及相关性状的QTL分析. 作物学报, 2006,32:676-682. |
Yi B, Chen W, Ma C Z, Fu T D, Tu J X. Mapping of quantitative trait loci for yield and yield components in Brassica napus L. Acta Agron Sin, 2006,32:676-682 (in Chinese with English abstract). | |
[3] | Horiguchi G, Ferjani A, Fujikura U, Tsukaya H. Coordination of cell proliferation and cell expansion in the control of leaf size in Arabidopsis thaliana. J Plant Res, 2006,119:37-42. |
[4] |
Breuninger H, Lenhard M. Control of tissue and organ growth in plants. Curr Top Dev Biol, 2010,91:185.
doi: 10.1016/S0070-2153(10)91007-7 pmid: 20705183 |
[5] | 朱军, 许馥华. 胚乳性状的遗传模型及其分析方法. 作物学报, 1994,20:264-270. |
Zhu J, Xu F H. A genetic model and analysis methods for endosperm traits. Acta Agron Sin, 1994,20:264-270 (in Chinese with English abstract). | |
[6] | 李娜. 甘蓝型油菜粒重母体调控机理解析. 中国农业科学院博士学位论文, 北京, 2015. |
Li N. Maternal Control of Seed Weight in Rapeseed (Brassica napus L.). PhD Dissertation of Chinese Academy of Agricultural Sciences, Beijing, China, 2015 (in Chinese with English abstract). | |
[7] | Jofuku K D, Pamela K, Omidyar Z G. Control of seed mass and seed yield by the floral homeotic gene APETALA2. Proc Natl Acad Sci USA, 2005,102:3117-3122. |
[8] | Li Y H, Zheng L Y, Corke F, Smith C, Bevan M W. Control of final seed and organ size by the DA1 gene family in Arabidopsis thaliana. Genes Dev, 2008,22:1331-1336. |
[9] | Tian X, Li N, Jack D, Li J, Andrei K, Bevan M W, Gao F, Li Y H. The ubiquitin receptor DA1 interacts with the E3 ubiquitin ligase DA2 to regulate seed and organ size in Arabidopsis. Plant Cell, 2013,25:3347-3359. |
[10] | Li S, Liu Y, Zheng L, Chen L, Li N, Corke F, Lu Y, Fu X, Zhu Z, Bevan M W, Li Y H. The plant-specific G protein γ subunit AGG3 influences organ size and shape in Arabidopsis thaliana. New Phytol, 2012,194:690-703. |
[11] | Song X J. Crop seed size: BR matters. Mol Plant, 2017,10:668-669. |
[12] |
Fang W J, Wang Z B, Cui R F, Li J, Li Y H. Maternal control of seed size by EOD3/CYP78A6 in Arabidopsis thaliana. Plant J, 2012,70:929-939.
pmid: 22251317 |
[13] | Quijada P A, Udall J A, Lambert B, Osborn T C. Quantitative trait analysis of seed yield and other complex traits in hybrid spring rapeseed ( Brassica napus L.): 1. Identification of genomic regions from winter germplasm. Theor Appl Genet, 2006,113:549-561. |
[14] | Basunanda P, Radoev M, Ecke W, Friedt W, Becker H, Snowdon R. Comparative mapping of quantitative trait loci involved in heterosis for seedling and yield traits in oilseed rape ( Brassica napus L.). Theor Appl Genet, 2010,120:271-281. |
[15] | Yang P, Shu C, Chen L, Xu J S, Wu J S, Liu K D. Identification of a major QTL for silique length and seed weight in oilseed rape (Brassica napus L.). Theor Appl Genet, 2012,125:285-296. |
[16] | Zhao W, Wang X, Wang H, Tian J, Li B, Chen L, Chao H, Long Y, Xiang J, Gan J, Liang W, Li M. Genome-wide identification of QTL for seed yield and yield-related traits and construction of a high-density consensus map for QTL comparison in Brassica napus. Front Plant Sci, 2016,7:17. |
[17] |
Fan C C, Cai G Q, Qin J, Li Q Y, Yang M G, Wu J, Zhou Y M. Mapping of quantitative trait loci and development of allele- specific markers for seed weight in Brassica napus. Theor Appl Genet, 2019,121:1289-1301.
pmid: 20574694 |
[18] | Sun L J, Wang X D, Yu K J, Li W J, Peng Q, Chen F, Zhang W, Fu S X, Xiong D Q, Chu P, Guan R Z, Zhang J F. Mapping of QTLs controlling seed weight and seed-shape traits in Brassica napus L. using a high-density SNP map. Euphytica, 2018,214:UNSP 228. |
[19] |
Liu J, Hua W, Hu Z, Yang H, Zhang L, Li R, Deng L, Sun X, Wang X, Wang H. Natural variation in ARF18 gene simultaneously affects seed weight and silique length in polyploid rapeseed. Proc Natl Acad Sci USA, 2015,112:5123-5132.
doi: 10.1073/pnas.1423244112 pmid: 25838284 |
[20] | Shi L L, Song J R, Guo C C, Wang B, Guan Z L, Yang P, Chen X, Zhang Q H, Graham J K, Wang J, Liu K D. A CACTA-like transposable element in the upstream region of BnaA9.CYP78A9 acts as an enhancer to increase silique length and seed weight in rapeseed. Plant J, 2019,98:524-539. |
[21] | Sun C M, Wang B Q, Yan L, Hu K N, Liu S, Zhou Y M, Guan C Y, Zhang Z Q, Li J N, Zhang J F, Chen S, Wen J, Ma C Z, Tu J X, Shen J X, Fu T D, Yi B. Genome-wide association study provides insight into the genetic control of plant height in rapeseed ( Brassica napus L.). Front Plant Sci, 2016,7:1102. |
[22] |
Lu K, Wei L, Li X, Wang Y, Wu J, Liu M, Zhang C, Chen Z, Xiao Z, Jian H. Whole-genome resequencing reveals Brassica napus origin and genetic loci involved in its improvement. Nat Commun, 2019,10:1154.
pmid: 30858362 |
[23] | 孙程明, 陈锋, 陈松, 彭琦, 张维, 易斌, 张洁夫, 傅廷栋. 甘蓝型油菜每角粒数的全基因组关联分析. 作物学报, 2020,46:147-153. |
Sun C M, Chen F, Chen S, Peng Q, Zhang W, Yi B, Zhang J F, Fu T D. Genome-wide association study of seed number per silique in rapeseed ( Brassica napus L.). Acta Agron Sin, 2020,46:147-153 (in Chinese with English abstract). | |
[24] | Ihaka R, Gentleman R. R: a language for data analysis and graphics. J Comp Graph Stat, 1996,5:299-314. |
[25] | Merk H L, Yarnes S C, Van Deynze A, Tong N, Menda N, Mueller L A, Mutschler M A, Loewen S A, Myers J R, Francis D M. Trait diversity and potential for selection indices based on variation among regionally adapted processing tomato germplasm. J Am Soc Hortic Sci, 2012,13:427-437. |
[26] | 孙程明, 陈松, 彭琦, 张维, 易斌, 张洁夫, 傅廷栋. 甘蓝型油菜角果长度性状的全基因组关联分析. 作物学报, 2019,45:1303-1310. |
Sun C M, Chen S, Peng Q, Zhang W, Yi B, Zhang J F, Fu T D. Genome-wide association study of silique length in rapeseed ( Brassica napus L.). Acta Agron Sin, 2019,45:1303-1310 (in Chinese with English abstract). | |
[27] | Evanno G, Regnaut S, Goudet J. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol, 2005,14:2611-2620. |
[28] | Hardy O J, Vekemans X. SPAGeDi: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Mol Ecol Notes, 2002,2:618-620. |
[29] | Bradbury P J, Zhang Z, Kroon D E, Casstevens T M, Ramdoss Y, Buckler E S. TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics, 2007,23:2633-2635. |
[30] | Dong H L, Tan C D, Li Y Z, He Y, Wei S, Cui Y X, Chen Y G, Wei D Y, Fu Y, He Y G, Wan H F, Liu H, Xiong Q, Lu K, Li J N, Qian W. Genome-wide association study reveals both overlapping and independent genetic loci to control seed weight and silique length in Brassica napus. Front Plant Sci, 2018,9:921. |
[31] | Cai D F, Xiao Y J, Yang W, Ye W, Wang B, Muhammad Y, Wu J S, Liu K D. Association mapping of six yield-related traits in rapeseed ( Brassica napus L.). Thero Appl Genet, 2014,127:85-96. |
[32] | Shahid U K, Jiao Y M, Liu S, Zhang K P, Muhammad H U K, Zhai Y G, Amoo O, Fan C C, Zhou Y M. Genome-wide association studies in the genetic dissection of ovule number, seed number, and seed weight in Brassica napus L. Ind Crops Prod, 2019,142:UNSP111877. |
[33] |
Li F, Chen B, Xu K, Wu J, Wu X. Genome-wide association study dissects the genetic architecture of seed weight and seed quality in rapeseed ( Brassica napus L.). DNA Res, 2014,21:355-367.
pmid: 24510440 |
[34] |
Atwell S, Huang Y S, Vilhjálmsson B J, Willems G, Horton M, Li Y, Meng D, Platt A, Tarone A M, Hu T T, Jiang R, Muliyati N W, Zhang X, Amer M A, Baxter I, Brachi B, Chory J, Dean C, Debieu M, Meaux J, Ecker J R, Faure N, Kniskern J M, Jones J D, Michael T, Nemri A, Roux F, Salt D E, Tang C, Todesco M, TrawM B, Weigel D, Marjoram P, Borevitz J O, Bergelson J, Nordborg M. Genome-wide association study of 107 phenotypes in a common set of Arabidopsis thaliana inbred lines. Nature, 2010,465:627-631.
doi: 10.1038/nature08800 pmid: 20336072 |
[35] |
Luo Z L, Wang M, Long Y, Huang Y J, Shi L, Zhang C Y, Liu X, Bruce D L F, Xiang J X, Mason A S, Snowdon R J, Liu P F, Meng J L, Zou J. Incorporating pleiotropic quantitative trait loci in dissection of complex traits: seed yield in rapeseed as an example. Theor Appl Genet, 2017,130:1569-1585.
pmid: 28455767 |
[36] |
Shi J Q, Li R Y, Qiu D, Jiang C C, Long Y, Morgan C. Unraveling the complex trait of crop yield with quantitative trait loci mapping in Brassica napus. Genetics, 2009,182:851-861.
pmid: 19414564 |
[37] |
Li N, Shi J Q, Wang X H, Liu G H, Wang H Z. A combined linkage and regional association mapping validation and fine mapping of two major pleiotropic QTLs for seed weight and silique length in rapeseed (Brassica napus L.). BMC Plant Biol, 2014,14:114.
pmid: 24779415 |
[38] | Zhao W, Wang X, Wang H, Tian J, Li B, Chen L, Chao H, Xiang J, Gan J. Genome-wide identification of QTL for seed yield and yield-related traits and construction of a high-density consensus map for QTL comparison in Brassica napus. Front Plant Sci, 2016,7:17. |
[39] |
Jako C, Kumar A, Wei Y, Zou J, Barton D L, Giblin E M, Covello P S, Taylor D C. Seed-specific over-expression of an Arabidopsis cDNA encoding a diacylglycerol acyltransferase enhances seed oil content and seed weight. Plant Physiol, 2001,126:861-874.
doi: 10.1104/pp.126.2.861 pmid: 11402213 |
[40] |
Johnson C S, Ben K, Smyth D R. TRANSPARENT TESTA GLABRA2, a trichome and seed coat development gene of Arabidopsis, encodes a WRKY transcription factor. Plant Cell, 2002,14:1359-1375.
doi: 10.1105/tpc.001404 pmid: 12084832 |
[41] | Steffen J G, Kang I, Portereiko M F, Lloyd A, Drews G N. AGL61 interacts with AGL80 and is required for central cell development in Arabidopsis. Plant Physiol, 2008,148:259-268. |
[42] |
An D, Suh M C. Overexpression of Arabidopsis WRI1 enhanced seed mass and storage oil content in Camelina sativa. Plant Biotechnol Rep, 2015,9:137-148.
doi: 10.1007/s11816-015-0351-x |
[43] |
Hyun-Young S, Hee N K. RAV1 negatively regulates seed development by directly repressing MINI3 and IKU2 in Arabidopsis. Mol Cells, 2018,41:1072-1080.
pmid: 30518173 |
[44] |
Cai G Q, Fan C C, Liu S, Yang Q Y, Liu D, Wu J, Li J W, Zhou Y M, Guo L, Wang X M. Nonspecific phospholipase C6 increases seed oil production in oilseed Brassica ceae plants. New Phytol, 2020,226:1055-1073.
doi: 10.1111/nph.16473 pmid: 32176333 |
[45] |
Yang Y, Zhu K Y, Li H L, Han S Q, Meng Q W, Shahid U K, Fan C C, Xie K B, Zhou Y M. Precise editing of CLAVATA genes in Brassica napus L. regulates multilocular silique development. Plant Biotechnol J, 2018,16:1322-1335.
doi: 10.1111/pbi.12872 pmid: 29250878 |
[46] |
Liu J, Hua W, Yang H, Li Z, Han Z. TheBnGRF2 gene(GRF2-like gene from Brassica napus) enhances seed oil production through regulating cell number and plant photosynthesis. J Exp Bot, 2012,63:3727-3740.
doi: 10.1093/jxb/ers066 |
[47] |
Weng J F, Gu S H, Wan X Y, Gao H, Guo T, Su N, Lei C L, Zhang X, Cheng Z J, Guo X P, Wang J L, Jiang L, Zhai H Q, Wan J M. Isolation and initial characterization of GW5, a major QTL associated with rice grain width and weight. Cell Res, 2008,18:1199-1209.
doi: 10.1038/cr.2008.307 pmid: 19015668 |
[48] |
Zhou Y, Zhang X, Kang X, Zhao X, Zhang X, Ni M. SHORT HYPOCOTYL UNDER BLUE1 associates with MINISEED3 and HAIKU2 promoters in vivo to regulate Arabidopsis seed development. Plant Cell, 2009,21:106-117.
doi: 10.1105/tpc.108.064972 pmid: 19141706 |
[49] | Zhai Y G, Cai S G, Hu L M, Yang Y, Amoo O, Fan C C, Zhou Y M. CRISPR/Cas9-mediated genome editing reveals differences in the contribution of INDEHISCENT homologues to pod shatter resistance in Brassica napus L. Thero Appl Genet, 2019,132:2111-2123. |
[50] |
Zheng M, Zhang L, Tang M, Liu J L, Liu H F, Yang H L, Fan S H, Terzaghi W, Wang H Z, Hua W. Knockout of two BnaMAX1 homologs by CRISPR/Cas9-targeted mutagenesis improves plant architecture and increases yield in rapeseed (Brassica napus L.). Plant Biotechnol J, 2020,18:644-654.
doi: 10.1111/pbi.13228 pmid: 31373135 |
[51] | 高谢旺, 谭安琪, 胡信畅, 祝孟洋, 阮颖, 刘春林. 利用CRISPR/Cas9技术创制高油酸甘蓝型油菜新种质. 植物遗传资源学报, 2020,21:1002-1008. |
Gao X W, Tan A Q, Hu X C, Zhu M Y, Ruan Y, Liu C L. Creation of new germplasm of high-oleic rapeseed using CRISPR/Cas9. J Plant Genetic Res, 2020,21:1002-1008 (in Chinese with English abstract). |
[1] | CHEN Ling-Ling, LI Zhan, LIU Ting-Xuan, GU Yong-Zhe, SONG Jian, WANG Jun, QIU Li-Juan. Genome wide association analysis of petiole angle based on 783 soybean resources (Glycine max L.) [J]. Acta Agronomica Sinica, 2022, 48(6): 1333-1345. |
[2] | HU Wen-Jing, LI Dong-Sheng, YI Xin, ZHANG Chun-Mei, ZHANG Yong. Molecular mapping and validation of quantitative trait loci for spike-related traits and plant height in wheat [J]. Acta Agronomica Sinica, 2022, 48(6): 1346-1356. |
[3] | WANG Dan, ZHOU Bao-Yuan, MA Wei, GE Jun-Zhu, DING Zai-Song, LI Cong-Feng, ZHAO Ming. Characteristics of the annual distribution and utilization of climate resource for double maize cropping system in the middle reaches of Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(6): 1437-1450. |
[4] | WANG Wang-Nian, GE Jun-Zhu, YANG Hai-Chang, YIN Fa-Ting, HUANG Tai-Li, KUAI Jie, WANG Jing, WANG Bo, ZHOU Guang-Sheng, FU Ting-Dong. Adaptation of feed crops to saline-alkali soil stress and effect of improving saline-alkali soil [J]. Acta Agronomica Sinica, 2022, 48(6): 1451-1462. |
[5] | YAN Jia-Qian, GU Yi-Biao, XUE Zhang-Yi, ZHOU Tian-Yang, GE Qian-Qian, ZHANG Hao, LIU Li-Jun, WANG Zhi-Qin, GU Jun-Fei, YANG Jian-Chang, ZHOU Zhen-Ling, XU Da-Yong. Different responses of rice cultivars to salt stress and the underlying mechanisms [J]. Acta Agronomica Sinica, 2022, 48(6): 1463-1475. |
[6] | YANG Huan, ZHOU Ying, CHEN Ping, DU Qing, ZHENG Ben-Chuan, PU Tian, WEN Jing, YANG Wen-Yu, YONG Tai-Wen. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system [J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487. |
[7] | CHEN Jing, REN Bai-Zhao, ZHAO Bin, LIU Peng, ZHANG Ji-Wang. Regulation of leaf-spraying glycine betaine on yield formation and antioxidation of summer maize sowed in different dates [J]. Acta Agronomica Sinica, 2022, 48(6): 1502-1515. |
[8] | LI Yi-Jun, LYU Hou-Quan. Effect of agricultural meteorological disasters on the production corn in the Northeast China [J]. Acta Agronomica Sinica, 2022, 48(6): 1537-1545. |
[9] | SHI Yan-Yan, MA Zhi-Hua, WU Chun-Hua, ZHOU Yong-Jin, LI Rong. Effects of ridge tillage with film mulching in furrow on photosynthetic characteristics of potato and yield formation in dryland farming [J]. Acta Agronomica Sinica, 2022, 48(5): 1288-1297. |
[10] | SUN Si-Min, HAN Bei, CHEN Lin, SUN Wei-Nan, ZHANG Xian-Long, YANG Xi-Yan. Root system architecture analysis and genome-wide association study of root system architecture related traits in cotton [J]. Acta Agronomica Sinica, 2022, 48(5): 1081-1090. |
[11] | YU Chun-Miao, ZHANG Yong, WANG Hao-Rang, YANG Xing-Yong, DONG Quan-Zhong, XUE Hong, ZHANG Ming-Ming, LI Wei-Wei, WANG Lei, HU Kai-Feng, GU Yong-Zhe, QIU Li-Juan. Construction of a high density genetic map between cultivated and semi-wild soybeans and identification of QTLs for plant height [J]. Acta Agronomica Sinica, 2022, 48(5): 1091-1102. |
[12] | YAN Xiao-Yu, GUO Wen-Jun, QIN Du-Lin, WANG Shuang-Lei, NIE Jun-Jun, ZHAO Na, QI Jie, SONG Xian-Liang, MAO Li-Li, SUN Xue-Zhen. Effects of cotton stubble return and subsoiling on dry matter accumulation, nutrient uptake, and yield of cotton in coastal saline-alkali soil [J]. Acta Agronomica Sinica, 2022, 48(5): 1235-1247. |
[13] | KE Jian, CHEN Ting-Ting, WU Zhou, ZHU Tie-Zhong, SUN Jie, HE Hai-Bing, YOU Cui-Cui, ZHU De-Quan, WU Li-Quan. Suitable varieties and high-yielding population characteristics of late season rice in the northern margin area of double-cropping rice along the Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(4): 1005-1016. |
[14] | LI Rui-Dong, YIN Yang-Yang, SONG Wen-Wen, WU Ting-Ting, SUN Shi, HAN Tian-Fu, XU Cai-Long, WU Cun-Xiang, HU Shui-Xiu. Effects of close planting densities on assimilate accumulation and yield of soybean with different plant branching types [J]. Acta Agronomica Sinica, 2022, 48(4): 942-951. |
[15] | WANG Lyu, CUI Yue-Zhen, WU Yu-Hong, HAO Xing-Shun, ZHANG Chun-Hui, WANG Jun-Yi, LIU Yi-Xin, LI Xiao-Gang, QIN Yu-Hang. Effects of rice stalks mulching combined with green manure (Astragalus smicus L.) incorporated into soil and reducing nitrogen fertilizer rate on rice yield and soil fertility [J]. Acta Agronomica Sinica, 2022, 48(4): 952-961. |
|