Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2021, Vol. 47 ›› Issue (8): 1603-1615.doi: 10.3724/SP.J.1006.2021.03050

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Effects of arbuscular mycorrhizal fungi on grain yield and nitrogen uptake in maize

ZHANG Xue-Lin*(), LI Xiao-Li, HE Tang-Qing, ZHANG Chen-Xi, TIAN Ming-Hui, WU Mei, ZHOU Ya-Nan, HAO Xiao-Feng, YANG Qing-Hua   

  1. Agronomy College, Henan Agricultural University/Co-construction State Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops, Zhengzhou 450002, Henan, China
  • Received:2020-08-24 Accepted:2021-01-13 Online:2021-08-12 Published:2021-03-01
  • Contact: ZHANG Xue-Lin E-mail:xuelinzhang1998@163.com;zxl1998@henau.edu.cn
  • Supported by:
    Natural Science Foundation of Henan Province(182300410013);National Key Research and Development Program of China(2018YFD0200605);Science and Technology Innovation Fund of Henan Agricultural University(30500712)

Abstract:

Clarifying the role of arbuscular mycorrhizae fungi (AMF) in yield of maize grain and associated nitrogen (N) uptake can inform the application of organic fertilizer in farmland, thus, improving nutrient use efficiency, enhancing crop resistance to biotic or abiotic stress, and increasing overall crop yield. A 3-factor experiment was designed and carried out during the maize growing season in 2016 and 2017. The factors were as follows: (1) N fertilizer addition (180 kg hm-2 [N180] and 360 kg hm-2 [N360]), (2) wheat straw addition (without straw: S0 and with straw: S1), and (3) three mycorrhizal treatments, including a control (M0, roots and AMF could not enter the hyphal chamber from the growth chamber), an AMF treatment (M1, only AMF can enter the hyphal chamber from the growth chamber), and a root treatment (M2, both roots and AMF can enter the hyphal chamber from the growth chamber). Maize grain yield, plant biomass, N uptake, and root variables were measured. All three factors had a significant effect on maize yield and N uptake. N360 treatment of N fertilizer significantly increased maize yield and their N accumulation compared with N180 treatment. In the case of straw treatment, the grain yield reduced by 6% than that of the treatment without straw, whereas soil inorganic N increased by 129%. For the N180 treatment, mean maize yield of M1 and M2 treatments were 38% and 82% higher than M0, respectively; for the N360 treatment, these were 16% and 48%, respectively. The contribution of AMF to grain yield was higher for N180 than for N360. The AMF treatment increased maize ear length, grain number per row, and total root length independent of straw addition, but the ability of AMF to improve root biomass and N uptake was significantly higher with straw addition than without straw. M1 and M2 treatments significantly increased grain number per row, grain number per spike, plant biomass, N accumulation, and total root length relative to the M0, whereas inorganic soil N declined significantly. The contribution of AMF to maize yield was higher than M0 under conditions of both N180 and straw addition. Correlation analysis and structural equation revealed that N application and AMF significantly increased maize yield. The results showed that AMF could improve maize root properties, enhance N absorption capacity, improve ear traits, and increase maize grain yield under different N application rates and straw conditions.

Key words: crop residue, arbuscular mycorrhizal fungi, nitrogen fertilizer management, maize yield, nutrient absorption

Table 1

Analysis of variance of N fertilization, straw and mycorrhizae on maize grain yield, plant biomass, N accumulation, and root properties"

项目
Item
年份
Year
氮肥处理
Nitrogen (N)
秸秆处理
Straw (S)
菌根处理
Mycorrhizae (M)
N × S N × M S × M N × S × M
产量Yield (g plant-1) 2016 431.97*** 18.38*** 204.09*** 1.19 6.36** 10.93*** 4.62*
2017 287.90*** 21.60*** 430.60*** 0.001 20.70*** 32.80*** 6.80**
收获指数Harvest index (%) 2016 246.67*** 21.86*** 53.95*** 3.28 22.55*** 6.29** 2.84
2017 26.35*** 0.08 29.95*** 0.62 13.40*** 16.16*** 1.08
生物量Biomass (g plant-1)
根Root 2016 17.94*** 2.22 109.44*** 1.24 6.95** 7.08** 1.90
2017 38.34*** 9.87** 116.03*** 1.45 8.41*** 7.41** 1.80
茎Stem 2016 27.94*** 1.41 80.86*** 20.70*** 1.25 0.52 5.45*
2017 49.16*** 5.41* 232.12*** 3.86 4.17* 1.55 0.31
叶Leaf 2016 61.51*** 0.02 88.94*** 5.55* 1.86 4.33* 3.52*
2017 60.58*** 1.98 190.06*** 1.77 0.33 5.36** 1.39
氮素积累量N accumulation (mg plant-1)
籽粒Grain 2016 231.93*** 11.74** 56.63*** 1.31 0.70 2.95 0.24
2017 168.75*** 11.51*** 84.90*** 2.72 5.84** 13.36*** 7.68***
根Root 2016 5.77* 0.21 5.77** 1.77 2.01 0.04 0.19
2017 29.05*** 0.09 9.29*** 7.49** 1.705 0.421 1.621
茎Stem 2016 4.24* 1.47 0.76 10.92** 0.27 0.33 4.07
2017 23.27*** 4.19* 24.31*** 0.13 1.58 0.46 1.51
叶Leaf 2016 25.17*** 0.27 13.34*** 2.09 1.53 1.27 1.73
2017 21.50*** 0.33 12.07*** 0.22 1.39 1.22 0.52
根系特性 Root properties
总根长
Length (cm plant-1)
2016 75.33*** 15.22*** 91.16*** 96.89*** 0.75 9.21*** 2.99
2017 134.36*** 0.37 50.47*** 81.47*** 2.92 6.51** 2.31
根表面积
Surface area (cm2 plant-1)
2016 126.99*** 76.79*** 119.24*** 32.72*** 19.44*** 21.64*** 0.26
2017 231.10*** 70.50*** 128.69*** 37.15*** 9.89*** 53.68*** 5.14*
根直径
Diameter (mm)
2016 13.71*** 3.27 39.07*** 0.37 0.75 11.67*** 0.08
2017 59.44*** 11.43** 101.17** 8.40** 2.39 24.83*** 0.02
根体积
Volume (cm3 plant-1)
2016 108.79*** 126.57*** 285.66*** 3.20 27.09*** 38.78*** 4.73*
2017 92.89*** 12.01*** 125.09*** 0.06 5.75 18.30*** 1.78

Fig. 1

Effects of N fertilization, straw, and mycorrhizae on maize grain yield, N accumulation, and harvest index M0 represents the control; M1 represents that only AMF hyphae can enter the hyphal chamber from the growth chamber; M2 represents that both roots and AMF can enter the hyphal chamber from the growth chamber. N180S0, N180S1, N360S0, N360S1 represent nitrogen level of 180 kg hm-2 without straw, 180 kg hm-2 and straw, 360 kg hm-2 without straw and 360 kg hm-2 with straw, respectively. In the same year, different lowercase letters within a column indicate significantly differences at P < 0.05 among the treatments."

Table 2

Effects of N fertilization, straw, and mycorrhizae on maize ear properties and soil inorganic N concentration"

处理
Treatment
穗行数
Rows per ear
行粒数
Kernel number
per row
穗粒数
Grain number
per spike
百粒重
100-grain weight
(g)
土壤无机氮
Soil inorganic N
(mg kg-1)
2016 2017 2016 2017 2016 2017 2016 2017 2016 2017
N180S0M0 13 ab 13 20.38 cd 15 de 265.25 cd 193.25 d 21.09 20.024 b 24.57 j 25.48 f
N180S0M1 13 ab 13 19.75 cd 16.38 cde 255.75 cd 213 cd 21.04 21.04 ab 23.35 ij 24.84 f
N180S0M2 14 ab 14.5 25 ab 18 bcd 350 ab 261.75 abc 22.23 20.52 b 20.34 j 17.31 g
N180S1M0 13 ab 13.5 17.63 d 14.62 e 230 d 197.25 d 19.78 20.45 b 108.05 b 79.35 b
N180S1M1 12.5 b 13 19.75 cd 16.13 cde 247 cd 209.5 cd 22.25 20.97 ab 61.92 d 41.20 cd
N180S1M2 14.5 a 13.5 25 ab 19.13 abc 361.5 ab 257.25 abc 23.05 20.02 b 44.62 f 35.83 de
N360S0M0 14 ab 14 25.25 ab 17.13 cde 353.5 ab 239.75 bcd 23.37 19.79 b 54.99 e 41.39 cd
N360S0M1 13 ab 13 28.88 a 19.38 abc 376 a 252.75 abc 23.54 21.45 ab 36.88 g 34.05 e
N360S0M2 13.5 ab 13 27.38 a 20.5 ab 370.25 ab 266.75 ab 24.25 22.86 a 33.73 h 22.45 fg
N360S1M0 13.5 ab 13.75 22.38 bc 17.38 bcde 303.25 bc 239.63 bcd 20.67 21.39 ab 136.45 a 104.13 a
N360S1M1 13.5 ab 14 22.5 bc 16.13 cde 303 bc 225.75 bcd 22.61 23.09 a 66.11 c 43.61 c
N360S1M2 14.5 a 14 28.63 a 21.38 a 416.25 a 299.25 a 24.04 20.32 b 64.49 cd 40.58 cd
氮肥处理Nitrogen (N) 1.41 0.63 39.22*** 12.99*** 31.23*** 12.19*** 3.84 6.42* 877.83*** 89.78***
秸秆处理Straw (S) 0.35 0.63 5.99* 0.22 2.21 0.001 0.46 0.06 6029.79*** 745.02***
菌根处理Mycorrhizal (M) 5.56** 1.24 17.41*** 14.56*** 20.22*** 13.43** 2.79 3.31* 1636.23*** 349.68***
N × S 0.35 2.04 1.43 0.56 0.37 0.03 0.98 0.13 1.73 0.07
N × M 1.15 1.84 1.37 0.27 1.65 0.48 0.004 0.65 94.09*** 20.84***
S × M 1.15 0.33 2.75 1.88 3.65 0.86 0.96 4.37* 789.02*** 170.99***
N × S × M 0.62 2.35 2.57 0.88 1.34 0.95 0.04 2.28 13.71*** 4.33*

Fig. 2

Effects of N fertilization, straw, and mycorrhizae on maize root, stem, and leaf biomass Treatments are the same as those given in Fig. 1. In the same year, different lowercase letters within a column indicate significant differences at P < 0.05 among the treatments."

Fig. 3

Effects of N fertilization, straw and mycorrhizae on maize root, stem, leaf N accumulation Treatments are the same as those given in Fig. 1. In the same year, different lowercase letters within a column indicate significantly differences at P < 0.05 among the treatments."

Fig. 4

Effects of N fertilization, straw, and mycorrhizae on maize total root length, surface area, diameter, and root volume Treatments are the same as those given in Fig. 1. In the same year, different lowercase letters within a column indicate significant differences at P < 0.05 among the treatments."

Table 3

Pearson’s correlation coef?cients (r) between maize grain yield, harvest index, and grain N accumulation with root parameters, ear traits, biomass, and N accumulation"

性状
Trait
参数
Parameter
产量
Yield (g plant-1)
收获指数
Harvest index (%)
籽粒氮素积累量
Grain accumulation (mg plant-1)
2016 2017 2016 2017 2016 2017
根系
Root traits
总根长Length (cm plant-1) 0.69** 0.64** 0.62** 0.19 0.60** 0.62**
根表面积Surface area (cm2 plant-1) 0.84** 0.62** 0.82** 0.04 0.74** 0.56**
根直径Diameter (mm) 0.73** 0.66** 0.62** 0.08 0.66** 0.53**
根体积Volume (cm3 plant-1) 0.83** 0.67** 0.74** 0.05 0.72** 0.59**
穗部
Ear traits
穗长Ear length (cm) 0.92** 0.70** 0.86** 0.37* 0.86** 0.68**
穗粗Ear diameter (cm) 0.29* 0.68** 0.22 0.64** 0.17 0.63**
穗行数Rows per ear 0.47** 0.03 0.50** -0.14 0.45** -0.001
行粒数Kernel number per row 0.82** 0.61** 0.74** 0.18 0.77** 0.57**
穗粒数Grain number per spike 0.83** 0.56** 0.77** 0.12 0.77** 0.51**
百粒重100-grain weight (g) 0.16 0.42** 0.12 0.51** 0.15 0.50**
生物量
Biomass
(g plant-1)
根Root 0.78** 0.73** 0.63** 0.14 0.68** 0.59**
茎Stem 0.72** 0.83** 0.51** 0.17 0.67** 0.72**
叶Leaf 0.84** 0.87** 0.67** 0.26 0.79** 0.74**
氮素积累量
N accumulation
(mg plant-1)
根Root 0.53** 0.52** 0.46** 0.23 0.49** 0.55**
茎Stem 0.19 0.71** 0.09 0.19 0.25 0.69**
叶Leaf 0.65** 0.61** 0.55** 0.25 0.67** 0.65**

Fig. 5

Structural equation model (SEM) analysis of direct and indirect effects of N fertilization, straw, and mycorrhizae on maize yield The solid and dashed lines represent the positive and negative paths, respectively. The values indicate the path coefficients, and R2 value indicates the correlation coefficient."

[1] Veresoglou S D, Chen B D, Rillig M C. Arbuscular mycorrhiza and soil nitrogen cycling. Soil Biol Biochem, 2012,46:53-62.
doi: 10.1016/j.soilbio.2011.11.018
[2] 金海如, 刘洁, 刘静, 黄晓伟. 丛枝菌根真菌氮吸收、运转和传递机理的总述. 中国科学: 生命科学, 2012,42:355-364.
Jin H R, Liu J, Liu J, Huang X W. Forms of nitrogen uptake, translocation, and transfer via arbuscular mycorrhizal fungi: a review. Sci Sin (Vitae), 2012,42:355-364 (in Chinese with English abstract).
[3] 张亮, 王晓娟, 王强, 王茜, 张云飞, 金樑. 同位素示踪技术在丛枝菌根真菌生态学研究中的应用. 生态学报, 2016,36:2787-2797.
Zhang L, Wang X J, Wang Q, Wang Q, Zhang Y F, Jin L. The role of the isotope tracer technique in ecological research of arbuscular mycorrhizal fungi. Acta Ecol Sin, 2016,36:2787-2797 (in Chinese with English abstract).
[4] Pellegrino E, Öpik M, Bonari E, Ercoli L. Responses of wheat to arbuscular mycorrhizal fungi: a meta-analysis of field studies from 1975 to 2013. Soil Biol Biochem, 2015,84:210-217.
doi: 10.1016/j.soilbio.2015.02.020
[5] Zhang S J, Lehmann A, Zheng W S, You Z Y, Rillig M C. Arbuscular mycorrhizal fungi increase grain yields: a meta-analysis. New Phytol, 2019,222:543-555.
doi: 10.1111/nph.2019.222.issue-1
[6] 陈永亮, 陈保冬, 刘蕾, 胡亚军, 徐天乐, 张莘. 丛枝菌根真菌在土壤氮素循环中的作用. 生态学报, 2014,34:4807-4815.
Chen Y L, Chen B D, Liu L, Hu Y J, Xu T L, Zhang X. The role of arbuscular mycorrhizal fungi in soil nitrogen cycling. Acta Ecol Sin, 2014,34:4807-4815 (in Chinese with English abstract).
[7] Tanaka Y, Yano K. Nitrogen delivery to maize via mycorrhizal hyphae depends on the form of N supplied. Plant Cell Environ, 2005,28:1247-1254.
doi: 10.1111/pce.2005.28.issue-10
[8] Hodge A, Fitter A H. Substantial nitrogen acquisition by arbuscular mycorrhizal fungi from organic material has implications for N cycling. Proc Natl Acad Sci USA, 2010,107:13754-13759.
doi: 10.1073/pnas.1005874107
[9] 李侠, 张俊伶. 丛枝菌根根外菌丝对不同形态氮素的吸收能力. 核农学报, 2007,21:195-200.
Li X, Zhang J L. Uptake of different forms of nitrogen by hyphae of arbuscular mycorrhizal fungi. J Nucl Agric Sci, 2007,21:195-200 (in Chinese with English abstract).
[10] 刘文科, 杜连凤. 不同类型土壤上接种丛枝菌根真菌对玉米氮素吸收的影响. 玉米科学, 2007,15(6):103-105.
Liu W K, Du L F. The effects of six arbuscular mycorrhizal fungi on N uptake of maize in three different type soils. Maize Sci, 2007,15(6):103-105 (in Chinese with English abstract).
[11] 冯固, 白灯莎, 杨茂秋, 李晓林, 张福锁, 李生秀. 盐胁迫下AM真菌对玉米生长及耐盐生理指标的影响. 作物学报, 2000,26:743-750.
Feng G, Bai D S, Yang M Q, Li X L, Zhang F S, Li S X. Influence of inoculating arbuscular mycorrhizal fungi on growth and salinity tolerance parameters of maize plants. Acta Agron Sin, 2000,26:743-750 (in Chinese with English abstract).
[12] 郭静, 罗培宇, 杨劲峰, 李冬冬, 黄月玥, 韩晓日. 长期施肥对棕壤丛枝菌根真菌群落结构及其侵染的影响. 中国农业科学, 2018,51:4677-4689.
Guo J, Luo P Y, Yang J F, Li D D, Huang Y Y, Han X R. Influence of long-term fertilization on community structures and colonization of arbuscular mycorrhizal fungi in a brown soil. Sci Agric Sin, 2018,51:4677-4689 (in Chinese with English abstract).
[13] 秦子娴, 朱敏, 郭涛. 干旱胁迫下丛枝菌根真菌对玉米生理生化特性的影响. 植物营养与肥料学报, 2013,19:510-516.
Qin Z X, Zhu M, Guo T. Influence of mycorrhizal inoculation on physiological and biochemical characteristics of maize (Zea mays) under water stress. Plant Nutr Fert Sci, 2013,19:510-516 (in Chinese with English abstract).
[14] 朱先灿, 宋凤斌, 徐洪文. 低温胁迫下丛枝菌根真菌对玉米光合特性的影响. 应用生态学报, 2010,21:470-475.
Zhu X C, Song F B, Xu H W. Effects of arbuscular mycorrhizal fungi on photosynthetic characteristics of maize under low temperature stress. Chin J Appl Ecol, 2010,21:470-475 (in Chinese with English abstract).
[15] Toljander J F, Santos-Gonzáles J C, Tehler A, Finlay R D. Community analysis of arbuscular mycorrhizal fungi and bacteria in maize mycorrhizosphere in a long-term fertilization trial. FEMS Microbiol Ecol, 2008,65:323-338.
doi: 10.1111/j.1574-6941.2008.00512.x pmid: 18547325
[16] Bakhshandeh S, Corneoa P E, Mariotte P, Kertesza M A, Dijkstra F A. Effect of crop rotation on mycorrhizal colonization and wheat yield under different fertilizer treatments. Agric Ecosys Environ, 2017,247:130-136.
doi: 10.1016/j.agee.2017.06.027
[17] Tian H, Drijber R A, Zhang J L, Li X L. Impact of long-term nitrogen fertilization and rotation with soybean on the diversity and phosphorus metabolism of indigenous arbuscular mycorrhizal fungi within the roots of maize (Zea mays L.). Agric Ecosys Environ, 2013,164:53-61.
doi: 10.1016/j.agee.2012.09.007
[18] Williams A, Borjesson G, Hedlund K. The effects of 55 years of different inorganic fertiliser regimes on soil properties and microbial community composition. Soil Biol Biochem, 2013,67:41-46.
doi: 10.1016/j.soilbio.2013.08.008
[19] Duffková R, Fučík P, Jurkovská L, Janoušková M. Experimental evaluation of the potential of arbuscular mycorrhiza to modify nutrient leaching in three arable soils located on one slope. Appl Soil Ecol, 2019,143:116-125.
doi: 10.1016/j.apsoil.2019.06.001
[20] Wang X X, Wang X J, Sun Y, Cheng Y, Liu S T, Chen X P, Feng G, Kuyper T W. Arbuscular mycorrhizal fungi negatively affect nitrogen acquisition and grain yield of maize in a n deficient soil. Front Microbiol, 2018,9:418.
doi: 10.3389/fmicb.2018.00418
[21] 毕于运, 高春雨, 王亚静, 李宝玉. 中国秸秆资源数量估算. 农业工程学报, 2009,25(12):211-217.
Bi Y Y, Gao C Y, Wang Y J, Li B Y. Estimation of straw resources in China. Trans CSAE, 2009,25(12):211-217 (in Chinese with English abstract).
[22] Soon Y K, Lupwayi N Z. Straw management in a cold semi-arid region: impact on soil quality and crop productivity. Field Crops Res, 2012,139:39-46.
doi: 10.1016/j.fcr.2012.10.010
[23] 张学林, 周亚男, 李晓立, 侯小畔, 安婷婷, 王群. 氮肥对室内和大田条件下作物秸秆分解和养分释放的影响. 中国农业科学, 2019,52:1746-1760.
Zhang X L, Zhou Y N, Li X L, Hou X P, An T T, Wang Q. Effects of nitrogen fertilizer on crop residue decomposition and nutrient release under lab incubation and field conditions. Sci Agric Sin, 2019,52:1746-1760 (in Chinese with English abstract).
[24] Hodge A, Campbell C D, Fitter A H. An arbuscular mycorrhizal fungus accelerates decomposition and acquires nitrogen directly from organic material. Nature, 2001,413:297-299.
pmid: 11565029
[25] 郭涛, 罗珍, 朱敏, 王晓峰. 丛枝菌根真菌对玉米秸秆降解的影响及其作用机制. 生态学报, 2014,34:4080-4087.
Guo T, Luo Z, Zhu M, Wang X F. Compare different effect of arbuscular mycorrhizal colonization on maize straw degradation. Acta Ecol Sin, 2014,34:4080-4087 (in Chinese with English abstract).
[26] Gui H, Hyde K, Xu J C, Mortimer P. Arbuscular mycorrhiza enhance the rate of litter decomposition while inhibiting soil microbial community development. Sci Rep, 2017,7:42184.
doi: 10.1038/srep42184
[27] 王维华, 孙丹丹, 郑锦龙, 刘润进. AM真菌与作物秸秆对土壤养分和植物生长的影响. 青岛农业大学学报(自然科学版), 2018,35(2):83-89.
Wang W H, Sun D D, Zheng J L, Liu R J. Effects of arbuscular mycorrhizal fungi and plant straw on soil nutrients and plant growth. J Qingdao Agric Univ (Nat Sci Edn), 2018,35(2):83-89 (in Chinese with English abstract).
[28] Köhl L, Marcel G A, Van D H. Arbuscular mycorrhizal fungal species differ in their effect on nutrient leaching. Soil Biol Biochem, 2016,94:191-199.
doi: 10.1016/j.soilbio.2015.11.019
[29] 王强, 王茜, 董梅, 王晓娟, 张亮, 金樑. 分室培养装置在丛枝菌根真菌研究中的应用及其发展. 植物生态学报, 2014,38:1250-1260.
doi: 10.3724/SP.J.1258.2014.00120
Wang Q, Wang Q, Dong M, Wang X J, Zhang L, Jin L. Application and progress of split-compartment facility in studies of arbuscular mycorrhizal fungi. Chin J Plant Ecol, 2014,38:1250-1260 (in Chinese with English abstract).
[30] Frey B, Schüepp H. Acquisition of nitrogen by external hyphae of arbuscular mycorrhizal fungi associated with Zea mays L. New Phytol, 1993,124:221-230.
doi: 10.1111/nph.1993.124.issue-2
[31] Smith S E, Smith F A. Roles of arbuscular mycorrhizas in plant nutrition and growth: new paradigms from cellular to ecosystem scales. Ann Rev Plant Biol, 2011,62:227-250.
doi: 10.1146/annurev-arplant-042110-103846
[32] 祝英, 刘英霞, 巩晓芳, 陈应龙, 任爱天, 刘润进, 金樑, 熊友才. 3种丛枝菌根真菌与3种寄主植物的共生关系. 微生物学通报, 2016,43:527-533.
Zhu Y, Liu Y X, Gong X F, Chen Y L, Ren A T, Liu R J, Jin L, Xiong Y C. Symbiosis between three arbuscular mycorrhizal fungi and three host plants. Microbiol China, 2016,43:527-533 (in Chinese with English abstract).
[33] Walder F, Niemann H, Natarajan M, Lehmann M F, Boller T, Wiemken A. Mycorrhizal networks: common goods of plants shared under unequal terms of trade. Plant Physiol, 2012,159:789-797.
doi: 10.1104/pp.112.195727
[34] Miransari M. Arbuscular mycorrhizal fungi and nitrogen uptake. Arch Microbiol, 2011,193:77-81.
doi: 10.1007/s00203-010-0657-6
[35] Cavagnaro T R, Barrios-Masias F H, Jackson L E. Arbuscular mycorrhizas and their role in plant growth, nitrogen interception and soil gas efflux in an organic production system. Plant Soil, 2012,353:181-194.
doi: 10.1007/s11104-011-1021-6
[36] Campos-Soriano L, Segundo B S. New insights into the signaling pathways controlling defense gene expression in rice roots during the arbuscular mycorrhizal symbiosis. Plant Signal Behav, 2011,6:553-557.
pmid: 21422823
[37] Bonfante P, Genre A. Mechanisms underlying beneficial plant-fungus interactions in mycorrhizal symbiosis. Nat Commun, 2010,48:1-11.
[38] 姜德峰, 蒋家慧, 李敏, 刘润进, 李晓林. AM菌对玉米某些生理特性和籽粒产量的影响. 中国农业科学, 1998,31(1):15-20.
Jiang D F, Jiang J H, Li M, Liu R J, Li X L. Effects of arbuscular mycorrhizal fungi on physiological characteristics and grain yield of maize. Sci Agric Sin, 1998,31(1):15-20 (in Chinese with English abstract).
[39] 黄京华, 刘青, 李晓辉, 曾任森, 骆世明. 丛枝菌根真菌诱导玉米根系形态变化及其机理. 玉米科学, 2013,21(3):131-135.
Huang J H, Liu Q, Li X H, Zeng R S, Luo S M. Mechanism of maize root morphology change induced by arbuscular mycorrhizal fungi. J Maize Sci, 2013,21(3):131-135 (in Chinese with English abstract).
[40] Liu R J, Li M, Meng X X, Liu X, Li X L. Effects of AM fungi on endogenous hormones in corn and cotton plants. Mycosystema, 2000,19:91-96.
[41] Kaldorf M, Ludwig-Muller J. AM fungi might affect the root morphology of maize by increasing indole-3-butyric acid biosynthesis. Physiol Plant, 2000,109:58-67.
doi: 10.1034/j.1399-3054.2000.100109.x
[42] Craine J M, Morriw C, Fierer N. Microbial nitrogen limitation increases decomposition. Ecology, 2007,88:2105-2113.
doi: 10.1890/06-1847.1
[43] Hobbie S E. Nitrogen effects on decomposition: a five-year experiment in eight temperate sites. Ecology, 2008,89:2633-2644.
pmid: 18831184
[44] Whiteside M D, Treseder K K, Atsatt P R. The brighter side of soils: quantum dots track organic nitrogen through fungi and plants. Ecology, 2009,90:100-108.
pmid: 19294917
[45] 贾艳艳, 顾大路, 杨文飞, 吴传万, 孙爱侠, 诸俊, 王伟中, 杜小凤. 丛枝菌根真菌对还田麦秆分解及玉米生物量的影响. 江苏农业学报, 2019,35:612-617.
Jia Y Y, Gu D L, Yang W F, Wu C W, Sun A X, Zhu J, Wang W Z, Du X F. Effects of arbuscular mycorrhizal fungi colonization on wheat-straw decomposition and maize biomass. Jiangsu J Agric Sci, 2019,35:612-617 (in Chinese with English abstract).
[1] YAN Xiao-Yu, GUO Wen-Jun, QIN Du-Lin, WANG Shuang-Lei, NIE Jun-Jun, ZHAO Na, QI Jie, SONG Xian-Liang, MAO Li-Li, SUN Xue-Zhen. Effects of cotton stubble return and subsoiling on dry matter accumulation, nutrient uptake, and yield of cotton in coastal saline-alkali soil [J]. Acta Agronomica Sinica, 2022, 48(5): 1235-1247.
[2] KONG Chui-Bao, PANG Zi-Qin, ZHANG Cai-Fang, LIU Qiang, HU Chao-Hua, XIAO Yi-Jie, YUAN Zhao-Nian. Effects of arbuscular mycorrhizal fungi on sugarcane growth and nutrient- related gene co-expression network under different fertilization levels [J]. Acta Agronomica Sinica, 2022, 48(4): 860-872.
[3] ZHANG Jun, ZHOU Dong-Dong, XU Ke, LI Bi-Zhong, LIU Zhong-Hong, ZHOU Nian-Bing, FANG Shu-Liang, ZHANG Yong-Jin, TANG Jie, AN Li-Zheng. Nitrogen fertilizer reduction and precise application model on mechanical transplanting japonica rice with good taste quality under straw returning in Huaibei Area [J]. Acta Agronomica Sinica, 2022, 48(2): 410-422.
[4] ZHAO Jie, LI Shao-Ping, CHENG Shuang, TIAN Jin-Yu, XING Zhi-Peng, TAO Yu, ZHOU Lei, LIU Qiu-Yuan, HU Ya-Jie, GUO Bao-Wei, GAO Hui, WEI Hai-Yan, ZHANG Hong-Cheng. Effects of nitrogen fertilizer in whole growth duration applied in the middle and late tillering stage on yield and quality of dry direct seeding rice under “solo-stalk” cultivation mode [J]. Acta Agronomica Sinica, 2021, 47(6): 1162-1174.
[5] ZHANG Yu-Qin,YANG Heng-Shan,LI Cong-Feng,ZHAO Ming,LUO Fang,ZHANG Rui-Fu. Effects of strip-till with staggered planting on yield formation and shoot-root characteristics of spring maize in irrigation area of Xiliaohe plain [J]. Acta Agronomica Sinica, 2020, 46(6): 902-913.
[6] WANG Yan-Li,WU Peng-Nian,LI Pei-Fu,WANG Xi-Na,ZHU Xu. Effects of organic manure combined with nitrogen fertilizer on spring maize yield and soil fertility under drip irrigation [J]. Acta Agronomica Sinica, 2019, 45(8): 1230-1237.
[7] ZHU Cong-Hua,DAI Zou,YAN Feng-Jun,PENG Yu,XU Hui,SUN Yong-Jian,MA Jun. Effects of Different Paddy Field Drainage Degrees and Panicle Nitrogen Fertilizer Managements on Photosynthetic Productivity and Nitrogen Utilization of Rice under Triangle-Planted System of Rice Intensification [J]. Acta Agron Sin, 2013, 39(04): 735-743.
[8] JIANG Peng, HUANG Min, Md. Ibrahim, CENG Yan, JIA Bing, SHI Wan-Ju, XIE Xiao-Bing, JU Ying-Bin. Effects of “Sanding” Cultivation Method on Nutrient Uptake and Nitrogen Use Efficiency in Double Cropping Super Rice [J]. Acta Agron Sin, 2011, 37(12): 2194-2207.
[9] SUN Yong-Jian, SUN Wan-Wan, LIU Shu-Jin, YANG Zhi-Yuan, CHENG Hong-Biao, GU Xian-Wen, MA Jun. Effects of Water Management and Nitrogen Application Strategies on Nutrient Absorption, Transfer, and Distribution in Rice [J]. Acta Agron Sin, 2011, 37(12): 2221-2232.
[10] Li Dayue; Jiang Xianyan. A Study on the Nutrient Absorption and Characteristic of Dry-matter Production in Hybrid Cotton (G.hirsutum L.) [J]. Acta Agron Sin, 1992, 18(03): 196-204.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!