Acta Agronomica Sinica ›› 2022, Vol. 48 ›› Issue (1): 121-137.doi: 10.3724/SP.J.1006.2022.02090
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
ZHAO Hai-Han1(), LIAN Wang-Min1, ZHAN Xiao-Deng1, XU Hai-Ming3, ZHANG Ying-Xin1, CHENG Shi-Hua1, LOU Xiang-Yang1,*(), CAO Li-Yong1,2,*(), HONG Yong-Bo1,*()
[1] | Savary S, Willocquet L, Pethybridge S J, Esker P, McRoberts N, Nelson A. The global burden of pathogens and pests on major food crops. Nat Ecol Evol, 2019, 3:430-439. |
[2] | Mew T W. Focus on bacterial blight of rice. Plant Dis, 1993, 77:5-12. |
[3] | Niño-Liu D O, Ronald P C, Bogdanove A J. Xanthomonas oryzae pathovars: model pathogens of a model crop. Mol Plant Pathol, 2006, 7:303-324. |
[4] | Mew W T. Current status and future prospects of research on bacterial blight of rice. Annu Rev Phytopathol, 1987, 25:359-382. |
[5] | Kim S M. Identification of novel recessive gene Xa44(t) conferring resistance to bacterial blight races in rice by QTL linkage analysis using an SNP chip. Theor Appl Genet, 2018, 131:2733-2743. |
[6] | Hutin M, Sabot F, Ghesquiere A, Koebnik R, Szurek B. A knowledge-based molecular screen uncovers a broad-spectrum OsSWEET14 resistance allele to bacterial blight from wild rice. Plant J, 2015, 84:694-703. |
[7] | Chen X, Liu P, Mei L, He X, Chen L, Liu H, Shen S, Ji Z, Zheng X, Zhang Y, Gao Z, Zeng D, Qian Q, Ma B. Xa7, a new executor R gene that confers durable and broad-spectrum resistance to bacterial disease in rice. Plant Commun, 2021, 2:100143. |
[8] | Luo D, Huguet-Tapia J, Raborn R T, White F F, Brendel V P, Yang B. The Xa7 resistance gene guards the susceptibility gene SWEET14 of rice against exploitation by bacterial blight pathogen. Plant Commun, 2021, 2:100164. |
[9] | Yoshimura S, Yamanouchi U, Katayose Y, Toki S, Wang Z X, Kono I. Expression of Xa1, a bacterial blight resistance gene in rice, is induced by bacterial inoculation. Proc Natl Acad Sci USA, 1998, 95:1663-1668. |
[10] | Chu Z H, Fu B Y, Yang H, Xu C G, Li Z K, Sanchez A, Park Y J, Bennetzen J L, Zhang Q F, Wang S P. Targeting xa13, a recessive gene for bacterial blight resistance in rice. Theor Appl Genet, 2006, 112:455-461. |
[11] | Blair M W, Garris A J, Iyer A S, Chapman B, Kresovich S, McCouch S R. High resolution genetic mapping and candidate gene identification at the Xa5 locus for bacterial blight resistance in rice(Oryza sativa L.). Theor Appl Genet, 2003, 107:62-73. |
[12] | Gu K, Tian D, Yang F, Wu L, Skeekala C, Wang D. High-resolution genetic mapping of Xa27(t), a new bacterial blight resistance gene in rice, Oryza sativaL. Theor Appl Genet, 2004, 5:800-807. |
[13] | Sun X, Cao Y, Yang Z, Xu C, Li X, Wang S. Xa26, a gene conferring resistance to Xanthomonas oryzae pv. oryzae in rice, encodes an LRR receptor kinase-like protein. Plant J, 2004, 37:517-527 |
[14] | Sun X, Yang Z, Wang S, Zhang Q. Identification of a 47-kb DNA fragment containing Xa4, a locus for bacterial blight resistance in rice. Theor Appl Genet, 2003, 4:683-687. |
[15] | 王春连. 水稻抗白叶枯病基因Xa23的图位克隆, 中国农业科学院博士学位论文,北京, 2006. |
Wang C L. Mapping Cloning of Rice Bacterial Blight Resistance Gene Xa23 in China. PhD Dissertation of Chinese Academy of Agricultural Sciences, Beijing,China, 2006 (in Chinese with English abstract). | |
[16] | Tian D, Wang J, Zeng X, Gu K, Qiu C, Yang X. The rice TAL effector-dependent resistance protein Xa10 triggers cell death and calcium depletion in the endoplasmic reticulum. Plant Cell, 2014, 26:497-515. |
[17] | Song W Y, Wang G L, Chen L L, Kim H S, Pi L Y, Holsten T, Gardner J, Wang B, Zhai W X, Zhu L H. A receptor kinase-like protein encoded by the rice disease resistance gene,Xa21. Science, 1995, 270:1804-1806. |
[18] | Wang C L, Zhang X P, Fan Y L, Gao Y, Zhu Q L, Zheng C K, Qin T F, Li Y Q, Che J Y. Xa23 is an executor R protein and confers broad-spectrum disease resistance in rice. Mol Plant, 2015. 8:290-302. |
[19] | Heath M C. Hypersensitive response-related death. Plant Mol Biol, 2000, 44:321-334. |
[20] | Shirasu K, Schulze-Lefert P. Regulators of cell death in disease resistance. Plant Mol Biol, 2000, 44:371-385. |
[21] | Boller T, Felix G. A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annu Rev Plant Biol, 2009, 60:379-406. |
[22] | Monteiro F, Nishimura M T. Structure fuction and genomic diversity of plant NLR proteins: an evolved resource for rational engineering of plant immunity. Annu Rev Phytopathol, 2018, 56:243-267. |
[23] | Andersen E J, Nepal M P, Purintun J M, Nelson D, Mermigka G, Sarris P F. Wheat disease resistance genes and their diversification through integrated domain fusions. Front Genet, 2020, 11. |
[24] | Monosi B, Wisser R J, Pennill L, Hulbert S H. Full-genome analysis of resistance gene homologues in rice. Theor Appl Genet, 2004, 109:1434-1447. |
[25] | Ronald P C, Albano B, Tabien R, Abenes L, Tanksley S D. Genetic and physical analysis of the rice bacterial blight disease resistance locus,Xa21. Mol Gen Genet, 1992, 236:113-120. |
[26] | Kiyosawa S, Yamaguchi H, Yamada M. The influence of resistance gene frequencies in rice plants on virulence gene frequencies in blast fungus population in Japan. Jpn J Phytopathol, 1982, 48:199-209. |
[27] | Khan M A, Naeem M, Iqbal M. Breeding approaches for bacterial leaf blight resistance in rice (Oryza sativa L.), current status and future directions. Eur J Plant Pathol, 2014, 139:27-37. |
[28] | Li Z K, Arif M, Zhong D B, Fu B Y, Xu J L, Domingo-Rey J. Complex genetic networks underlying the defensive system of rice (Oryza sativa L.) to Xanthomonas oryzae pv. oryzae. Proc Natl Acad Sci USA, 2006, 103:7994-7999 |
[29] | Zhang F, Xie X, Xu M, Wang W, Xu J, Zhou Y. Detecting major QTL associated with resistance to bacterial blight using a set of rice reciprocal introgression lines with high density SNP markers. Plant Breed, 2015, 134:286-292. |
[30] | 杨长登, 曾大力, 马良勇. 水稻籼粳交DH群体白叶枯病抗性的QTL定位. 中国水稻科学, 2006, 20:102-104. |
Yang C D, Zeng D L, Ma L Y. Mapping QTLs for bacterial blight resistance in a DH population from japonica/indica cross of rice(Oryza sativa). Chin J Rice Sci, 2006, 20:102-104 (in Chinese with English abstrat). | |
[31] | 陈天晓, 朱亚军, 密雪飞. 利用水稻MAGIC群体关联定位白叶枯病抗性QTL和创制抗病新种质. 作物学报, 2016, 42:1437-1447. |
Chen T X, Zhu Y J, Mi X F. Mapping of QTLs for bacterial blight resistance and screening of resistant materials using MAGIC populations of rice. Acta Agron Sin, 2016, 42:1437-1447 (in Chinese with English abstrat). | |
[32] | Antoni R J. Association genetics in crop improvement. Curr Opin Plant Biol, 2010, 13:174-180. |
[33] | Huang X, Wei X, Sang T, Zhao Q, Feng Q, Zhao Y, Li C Y, Zhu C R, Lu T T, Zhang Z W, Li M, Fan D L, Guo Y L, Wang A H, Wang L, Deng L W. Genome-wide association studies of 14 agronomic traits in rice landraces. Nat Genet, 2010, 42:961. |
[34] | Tseng H Y, Lin D G, Hsieh H Y, Tseng Y J, Tseng W B, Chen C W, Wang C S. Genetic analysis and molecular mapping of QTLs associated with resistance to bacterial blight in a rice mutant,SA0423. Euphytica, 2015, 205:231-241. |
[35] | Niño-liu D O, Ronald P C, Bogdanove A J. Xanthomonas oryzae pathovars: model pathogens of a model crop. Mol Plant Pathol, 2010, 7:303-324. |
[36] | Ogawa T, Khush G S. Major genes for resistance to bacterial blight in rice. Bacterial Blight Rice. 1989. |
[37] | Basavaraj S H, Singh V K, Singh A, Singh A, Singh A, Anand D. Marker-assisted improvement of bacterial blight resistance in parental lines of Pusa RH10, a superfine grain aromatic rice hybrid. Mol Breed, 2010, 26:293-305. |
[38] | Zhou L Y, Liu S Y, Wu W X, Chen D B, Zhan X D, Zhu A K, Zhang Y X, Cheng S H, Cao L Y, Lou X Y, Xu H M. Dissection of genetic architecture of rice plant height and heading date by multiple-strategy-based association studies. Sci Rep, 2016, 6:29718. |
[39] | Mather K A, Caicedo A L, Polato N R, Olsen K M, McCouch S, Purugganan M D, The extent of linkage disequilibrium in rice (Oryza sativa L.). Genetics, 2007, 177:2223-2232. |
[40] | Chen X, Shang J, Chen D. A B-lectin receptor kinase gene conferring rice blast resistance. Plant J, 2006, 46:794-804. |
[41] | Cheng Q, Mao W, Xie W, Liu Q, Cao J, Yuan M, Zhang Q, Li X H, Wang S P. Characterization of a disease susceptibility locus for exploring an efficient way to improve rice resistance against bacterial blight. Sci China-Life Sci, 2017, 60:298-306. |
[42] | Li W T, Zhu Z, Chern M, Yin J, Yang C, Ran L, Cheng M, He M, Zhu L H, Li S G, Chen X W. A natural allele of a transcription factor in rice confers broad-spectrum blast resistance. Cell, 2017, 170:114-126. |
[43] | 章琦, 林汉明. 章琦稻病抗性研究选集. 北京: 中国农业出版社, 2010. p 555. |
Zhang Q, Lam H M. Seleted Works of Zhang Qi on Rice Disease Resistance. Beijing: China Agriculture Press, 2010. p 555 (in Chinese). | |
[44] | Kou Y J, Li X H, Xiao J H, Wang S P. Identification of genes contributing to quantitative disease resistance in rice. Sci China: Life Sci, 2010, 53:1263-1273. |
[45] | 王永军, 吴晓蕾, 贺超英, 张劲松, 陈受宜, 盖钧镒. 大豆作图群体检验与调整后构建的遗传图谱. 中国农业科学, 2003, 36:1254-1260. |
Wang Y J, Wu X L, He C Y, Zhang J S, Chen S Y, Gai J Y. A soybean genetic linkage map constructed after the mapping population being tested and adjusted. Sci Agric Sin, 2003, 36:1254-1260 (in Chinese with English abstrat). | |
[46] | Liu M H, Kang H X, Xu Y C, Peng Y, Wang D, Gao L J, Wang X L, Ning Y S, Wu J, Liu W D, Li C Y, Liu B, Wang G L. Genome-wide association study identifies an NLR gene that confers partial resistance to Magnaporthe oryzae in rice. Plant Biotech J, 2020, 18:1376-1383. |
[47] | Wang X Q, Pang Y L, Zhang J, Wu Z C, Chen K, Ali J, Ye G Y, Xu J L, Li Z K. Genome-wide and gene-based association mapping for rice eating and cooking characteristics and protein content. Sci Rep, 2017, 7:17203. |
[48] | Zhao K Y, Tung C W, Eizenga G C, Wright M H, Ali M L, Price A H, Norton G J, Islam M R, Reynolds A, Mezey J, McClung A M, Bustamante C D, McCouch S R. Genome-wide association mapping reveals a rich genetic architecture of complex traits in Oryza sativa. Nat Commun, 2011, 1:467. |
[49] | Zhang F, Wu Z C, Wang M M, Zhang F, Dingkuhn M, Xu J L, Zhou Y L, Li Z K. Genome-wide association analysis identifies resistance loci for bacterial blight in a diverse collection of indica rice germplasm. PLoS One, 2017, 12:e0174598. |
[50] | Song W Y, Pi L Y, Bureau T E, Ronald P C. Identification and characterization of 14 transposon-like elements in the noncoding regions of members of the Xa21 family of disease resistance genes in rice. Mol Gen Genet, 1998, 258:449-456. |
[51] | Sesma A, Osbourn A E. The rice leaf blast pathogen undergoes developmental processes typical of root-infecting fungi. Nature, 2004, 431:582-586. |
[52] | Poland J A, Bradbury P J, Buckler E S. Genome-wide nested association mapping of quantitative resistance to northern leaf blight in maize. Proc Natl Acad Sci USA, 2011, 108:6893-6898. |
[53] | Monosi B, Wisser R J, Pennill L. Full-genome analysis of resistance gene homologues in rice. Theor Appl Genet, 2004, 109:1434-1447. |
[54] | Basavaraj S H, Singh V K, Singh A. Marker-assisted improvement of bacterial blight resistance in parental lines of Pusa RH10, a superfine grain aromatic rice hybrid. Mol Breed, 2010, 26:293-305. |
[55] | Triplett L R, Cohen S P, Heffelfinger C. A resistance locus in the American heirloom rice variety carolina gold select is triggered by TAL effectors with diverse predicted targets and is effective against African strains of Xanthomonas oryzae pv. oryzicola. Plant J, 2016, 87:472-483. |
[1] | CHEN Ling-Ling, LI Zhan, LIU Ting-Xuan, GU Yong-Zhe, SONG Jian, WANG Jun, QIU Li-Juan. Genome wide association analysis of petiole angle based on 783 soybean resources (Glycine max L.) [J]. Acta Agronomica Sinica, 2022, 48(6): 1333-1345. |
[2] | SUN Si-Min, HAN Bei, CHEN Lin, SUN Wei-Nan, ZHANG Xian-Long, YANG Xi-Yan. Root system architecture analysis and genome-wide association study of root system architecture related traits in cotton [J]. Acta Agronomica Sinica, 2022, 48(5): 1081-1090. |
[3] | WANG Yan-Hua, LIU Jing-Sen, LI Jia-Na. Integrating GWAS and WGCNA to screen and identify candidate genes for biological yield in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(8): 1491-1510. |
[4] | MA Juan, CAO Yan-Yong, LI Hui-Yong. Genome-wide association study of ear cob diameter in maize [J]. Acta Agronomica Sinica, 2021, 47(7): 1228-1238. |
[5] | GENG La, HUANG Ye-Chang, LI Meng-Di, XIE Shang-Geng, YE Ling-Zhen, ZHANG Guo-Ping. Genome-wide association study of β-glucan content in barley grains [J]. Acta Agronomica Sinica, 2021, 47(7): 1205-1214. |
[6] | CHEN Can, NONG Bao-Xuan, XIA Xiu-Zhong, ZHANG Zong-Qiong, ZENG Yu, FENG Rui, GUO Hui, DENG Guo-Fu, LI Dan-Ting, YANG Xing-Hai. Genome-wide association study of blast resistance loci in the core germplasm of rice landraces from Guangxi [J]. Acta Agronomica Sinica, 2021, 47(6): 1114-1123. |
[7] | ZHANG Chun, ZHAO Xiao-Zhen, PANG Cheng-Ke, PENG Men-Lu, WANG Xiao-Dong, CHEN Feng, ZHANG Wei, CHEN Song, PENG Qi, YI Bin, SUN Cheng-Ming, ZHANG Jie-Fu, FU Ting-Dong. Genome-wide association study of 1000-seed weight in rapeseed (Brassica napus L.) [J]. Acta Agronomica Sinica, 2021, 47(4): 650-659. |
[8] | JIN Yi-Rong, LIU Jin-Dong, LIU Cai-Yun, JIA De-Xin, LIU Peng, WANG Ya-Mei. Genome-wide association study of nitrogen use efficiency related traits in common wheat (Triticum aestivum L.) [J]. Acta Agronomica Sinica, 2021, 47(3): 394-404. |
[9] | WEI Li-Juan, SHEN Shu-Lin, HUANG Xiao-Hu, MA Guo-Qiang, WANG Xi-Tong, YANG Yi-Ling, LI Huan-Dong, WANG Shu-Xian, ZHU Mei-Chen, TANG Zhang-Lin, LU Kun, LI Jia-Na, QU Cun-Min. Genome-wide association analysis reveals zinc-tolerant loci of rapeseed at germination stage [J]. Acta Agronomica Sinica, 2021, 47(2): 262-274. |
[10] | LEI Wei, WANG Rui-Li, WANG Liu-Yan, YUAN Fang, MENG Li-Jiao, XING Ming-Li, XU Lu, TANG Zhang-Lin, LI Jia-Na, CUI Cui, ZHOU Qing-Yuan. Genome-wide association study of seed density and its related traits in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(11): 2099-2110. |
[11] | HUANG Xiao-Fang,BI Chu-Yun,SHI Yuan-Yuan,HU Yun-Zhuo,ZHOU Li-Xiang,LIANG Cai-Xiao,HUANG Bi-Fang,XU Ming,LIN Shi-Qiang,CHEN Xuan-Yang. Discovery and analysis of NBS-LRR gene family in sweet potato genome [J]. Acta Agronomica Sinica, 2020, 46(8): 1195-1207. |
[12] | JIAN Hong-Ju, HUO Qiang, GAO Yu-Min, LI Yang-Yang, XIE Ling, WEI Li-Juan, LIU Lie-Zhao, LU Kun, LI Jia-Na. Selection of candidate genes for chlorophyll content in leaves of Brassica napus using genome-wide association analysis [J]. Acta Agronomica Sinica, 2020, 46(10): 1557-1565. |
[13] | SUN Cheng-Ming,CHEN Feng,CHEN Song,PENG Qi,ZHANG Wei,YI Bin,ZHANG Jie-Fu,FU Ting-Dong. Genome-wide association study of seed number per silique in rapeseed (Brassica napus L.) [J]. Acta Agronomica Sinica, 2020, 46(01): 147-153. |
[14] | XIANG Li-Yuan,XU Kai,SU Jing,WU Chao,YUAN Xiong,ZHENG Xing-Fei,DIAO Ying,HU Zhong-Li,LI Lan-Zhi. Genetic dissection of combining ability and heterosis of rice agronomic traits based on pathway analysis [J]. Acta Agronomica Sinica, 2019, 45(9): 1319-1326. |
[15] | SUN Cheng-Ming,CHEN Song,PENG Qi,ZHANG Wei,YI Bin,ZHANG Jie-Fu,FU Ting-Dong. Genome-wide association study of silique length in rapeseed (Brassica napus L.) [J]. Acta Agronomica Sinica, 2019, 45(9): 1303-1310. |
|