Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2022, Vol. 48 ›› Issue (10): 2463-2474.doi: 10.3724/SP.J.1006.2022.11071

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Genetic mapping and candidate gene analysis of the major QTL cqHD2H-2 for early heading in barley (Hordeum vulgare L.)

YU Xin-Lian(), LI Xin(), YAO Xiao-Hua, YAO You-Hua, BAI Yi-Xiong, AN Li-Kun, WU Kun-Lun()   

  1. Agriculture and Forestry Academy, Qinghai University / Qinghai Key Laboratory of Hulless Barley Genetics and Breeding / Hulless Barley Branch of State Wheat Improvement Centre, Xining 810016, Qinghai, China
  • Received:2021-08-11 Accepted:2022-02-25 Online:2022-10-12 Published:2022-04-01
  • Contact: WU Kun-Lun E-mail:yuxl1777@163.com;lixinyynq@163.com;wklqaaf@sina.com
  • About author:First author contact:

    ** Contributed equally to this work

  • Supported by:
    Natural Science Foundation Project of Qinghai Province(2021-ZJ-950Q);National Natural Science Foundation of China(32160493);China Agriculture Research System of MOF and MARA(CAS-05)

Abstract:

Heading date is closely linked with agronomic performance, which is responsible for the regional and seasonal adaptation of barley varieties, and it is also a key indicator of the early or later maturity in barley. Previous studies indicated that the major QTL cqHD2H-2 for early heading was located in an 84 Mb interval on chromosome 2H of barley. To further verify the effective stability of the cqHD2H-2, in this study, we validated this locus and analyzed candidate genes. New InDel markers were developed based on the primary mapping region of cqHD2H-2 through an F5 population constructed from the cross of DZZ (early heading) and KL10 (late heading). A total of three markers tightly linked to the target gene were obtained, and one flank marker was confirmed as co-dominant marker by scanning 25 extreme early heading and 25 extreme late heading individuals of F5 population, which mapped the locus cqHD2H-2 located in a 40 Mb region between PA22 and Va07 on the chromosome 2H. The homologous gene HORVU2Hr1G087460 (HvNF-YB3) of rice heading date gene DTH8 in barley was acquired by homologous collinearity comparison of the region between barley and rice. Compared with the full length of HvNF-YB3 gene, the encoding region of Hv2H.NF-YB3 (DZZ) and Hv2H.nf-yb3 (KL10) was composed of an exon. The encoding region was 750 bp, and the promoter region was 2116 bp. There were three SNPs detected between the promoter region of Hv2H.NF-YB3 and Hv2H.nf-yb3. The relative expression levels of Hv2H.NF-YB3 and Hv2H.nf-yb3 showed that there were significant differences in the transcriptional level. Hv2H.NF-YB3 and Hv2H.nf-yb3 expressed in stem, awn, and glume, compared with Hv2H.NF-YB3, the relative expression levels of Hv2H.nf-yb3 significantly decreased in the three tissues. The relative expression levels gradually decreased with the development of the plants. In conclusion, Hv2H.NF-YB3 may play a role in the regulation of heading time in barley. The results were useful for developing early heading lines by marker-assisted selection (MAS) and laid a foundation for fine mapping and subsequent map-based cloning of cqHD2H-2.

Key words: barley, cqHD2H-2, molecular marker, genetic map, HvNF-YB3

Table 1

Information of primers"

引物
Primer
正向引物
Forward primer (5′-3′)
反向引物
Reverse primer (5′-3′)
用途
Application
Hv CGCACTCGCATCTCTCGAT CGAGAATACTGTGCCGCCAA gDNA sequence amplification
Hvpro GCCTCGCTACCCCTACTATG CTTGGAGATCTTGGCGTTCG Promoter sequence amplification
qHv GAGTGCGTGTCCGAGTTCAT GTTGATGGTCTTGCGCTTCTC Real-time PCR
18SrRNA CGGCTACCACATCCAAGGAA GCTGGAATTACCGCGGCT Real-time PCR
PA22 CCTCCTCTCTCCGCTCCAAC CGCCTCAGCTATCTTTAAGAGCA Flanking marker
Va07 TCGTATTCTTAGAACCATTCAACTCTCA ATTGAAAGAAAACAAGAGATAGCAGCA Flanking marker
VA07 TGGAGATCATTGCATGGTTCACAT ATTGAAAGAAAACAAGAGATAGCAGCA Flanking marker

Fig. 1

Amplification results of Va07 in extreme plants of heading P1 and P2: parent plant (1-4); B1 (early heading): extreme early heading plant (1-25); B2 (late heading): extreme late heading plant (1-25). Red arrow: recombinant plants; M: 50 bp DNA ladder."

Table 2

Genotype identifications of parents and extreme heading plants"

特异性标记
Specific marker
DZZ KL10 极端晚抽穗单株(25) Extreme late heading plant
HVKASI AA aa AA AA AA AA - aa aa AA aa AA AA aa AA - AA - - aa aa AA AA AA AA AA aa
AA - aa aa AA aa aa aa aa aa AA aa - aa aa AA aa aa AA AA AA AA AA AA AA
PA20 AA aa AA AA AA AA AA AA AA AA aa AA AA aa AA AA AA AA AA AA aa AA AA AA aa AA aa
AA aa aa aa AA - aa - aa aa AA - aa aa aa aa AA AA aa aa AA AA aa AA AA
PA22 AA aa AA AA AA AA AA AA AA AA AA AA AA aa AA AA AA AA AA AA aa AA AA AA aa AA aa
aa aa aa aa AA aa aa - aa aa AA aa aa aa - aa aa aa aa aa aa aa aa aa aa
PA23 AA aa AA AA AA AA AA AA AA AA AA AA AA aa AA AA AA AA AA AA aa AA AA AA aa AA aa
aa aa aa aa AA aa aa - aa aa AA aa aa aa aa aa aa aa aa aa aa aa aa aa aa
PA28 AA aa AA AA AA AA AA AA AA AA AA AA AA aa AA AA AA aa AA AA AA AA AA AA AA AA aa
aa aa aa aa AA aa aa - aa aa AA AA AA aa aa aa AA aa aa aa aa aa AA AA AA
PA30 AA aa AA AA AA aa AA aa AA AA aa aa AA aa AA AA aa aa aa AA aa AA aa aa aa AA aa
aa aa aa AA AA aa aa aa aa aa AA AA aa aa aa aa aa aa aa aa aa aa aa aa aa
VA07 AA aa AA AA AA AA AA AA AA AA AA AA AA aa AA AA AA aa AA aa AA AA AA AA AA AA aa
aa aa aa aa AA aa aa - aa aa - AA AA aa aa aa aa aa aa aa aa aa aa AA AA
Va07 AA aa AA - AA AA AA AA AA AA AA AA AA aa AA AA AA aa AA aa AA AA AA AA AA AA aa
aa aa aa aa AA aa aa - aa aa AA AA AA aa aa aa aa aa aa aa aa aa aa AA AA

Fig. 2

Genetic and comparative mapping of cqHD2H-2 a: the linkage map of markers of cqHD2H-2; b: the map of markers linked with cqHD2H-2 on 2H of barely; c: the corresponding homologous gene DTH8 on rice chromosome."

Fig. 3

Comparison of gDNA sequences between Hv2H.NF-YB3 and Hv2H.nf-yb3 Hordeum_vulgare_HORVU2Hr1G087460: reference gene sequence of barley. Blue marker: SNPs."

Fig. 4

Comparison of the promoter sequences between Hv2H.NF-YB3 and Hv2H.nf-yb3 Blue marker: SNPs."

Table 3

Structure of elements in promoter region of Hv2H.NF-YB3"

顺式作用元件
Cis-acting element
核心序列
Core motif
数量
Number
位置
Position
功能
Function
AT-rich element ATAGAAATCAA 1 +204 富含AT的DNA结合蛋白(ATBP-1)结合位点
Binding site of AT-rich DNA binding protein (ATBP-1)
A-box CCGTCC 3 -1212/+1991/+1976 顺式调控元件
Cis-acting regulatory element
ABRE ACGTG/TACGGTC/
GCAACGTGTC
5 +699/+1851/+1013/
-901/+1848
参与脱落酸响应的顺式作用元件
Cis-acting element involved in the abscisic acid responsiveness
ARE AAACCA 1 +50 厌氧诱导必需顺式调节元件
Cis-acting regulatory element essential for the anaerobic induction
ATC-motif AGTAATCT/
AATCTAATCC
1 -1405 参与光响应的部分保守DNA模块
Part of a conserved DNA module involved in light responsiveness
ATCT-motif AATCTAATCC 1 +1362 参与光响应的部分保守DNA模块
Part of a conserved DNA module involved in light responsiveness
AuxRR-core GGTCCAT 2 -280/+1016 参与生长素响应的顺式调控元件
Cis-acting regulatory element involved in auxin responsiveness
Box 4 ATTAAT 1 +763 参与光响应的部分保守DNA模块
Part of a conserved DNA module involved in light responsiveness
CAAT-box CCAAT/CAAT 29 +35/-471/+916/+1066/
+1154/-1156/-1428/
-1628, etc.
启动子和增强子区的共顺式作用元件
Common cis-acting element in promoter and enhancer regions
CCAAT-box
CAACGG 1 +814 MYBHv1结合位点
MYBHv1 binding site
CGTCA-motif CGTCA 2 +750/+910 参与茉莉酸甲酯响应的顺式调控元件
Cis-acting regulatory element involved in the MeJA-responsiveness
circadian CAAAGATATC 1 +79 参与昼夜节律控制的顺式调节元件
Cis-acting regulatory element involved in circadian control
GATA-motif GATAGGG/
AAGGATAAGG
2 -981/-1364 部分光响应元件
Part of a light responsive element
G-box TAACACGTAG/
CACGTT/CACGAC
4 -1319/-1849/-698/
-1850
参与光响应的顺式调节元件
Cis-acting regulatory element involved in light responsiveness
GT1-motif GGTTAA 1 -1161 光响应元件
Light responsive element
MRE AACCTAA 1 +1362 参与光响应的MYB结合位点
MYB binding site involved in light responsiveness
O2-site GATGATGTGG 2 -310/+1681 参与玉米醇溶蛋白代谢调节的顺式调控元件
Cis-acting regulatory element involved in zein metabolism regulation
TATA-box TATA/TATAA/
TATAAAT/ATATAT/
ATATAA/TATACA/
TACAAAA
27 -680/+681/+876/
-1186/
-1313/+1470//-1614/
-1811/+1930, etc.
转录起始-30左右的核心启动子元件
Core promoter element around -30 of transcription start
TCA-element TCAGAAGAGG/
CCATCTTTTT
2 +108/+1565 参与水杨酸响应的顺式作用元件
Cis-acting element involved in salicylic acid responsiveness
TCT-motif TCTTAC 1 -951 部分光响应元件
Part of a light responsive element
TGACG-motif TGACG 2 -750/-910 参与茉莉酸甲酯响应的顺式调控元件
Cis-acting regulatory element involved in the MeJA-responsiveness

Fig. 5

Relative expression levels of Hv2H.NF-YB3 and Hv2H. nf-yb3 in different tissues at different growth stages **: P < 0.01; *: P < 0.05."

[1] 苏乐平, 姚晓华, 吴昆仑, 杨雪, 田昊人, 黄书晴. 大麦(青稞)籽粒颜色相关研究进展. 江苏农业科学, 2019, 47(18): 70-74.
Su L P, Yao X H, Wu K L, Yang X, Tian H R, Huang S Q. Research progress on grain color of barley (hulless barley). Jiangsu Agric Sci, 2019, 47(18): 70-74 (in Chinese)
[2] 张唐伟, 余耀斌, 拉琼. 西藏不同青稞品种的品质差异分析. 大麦与谷类科学, 2017, 34(1): 28-32.
Zhang T W, Yu Y B, La Q. Evaluation of the qualitative differences among different Tibetan Highland barley varieties. Barl Cereal Sci, 2017, 34(1): 28-32. (in Chinese with English abstract)
[3] 臧靖巍, 阚建全, 陈宗道, 赵国华. 青稞的成分研究及其应用现状. 中国食品添加剂, 2004, (4): 43-46.
Zang J W, Kan J Q, Chen Z D, Zhao G H. Applications of barley and study on its components. China Food Add, 2004, (4): 43-46 (in Chinese with English abstract)
[4] 冯宗云. 徐廷文大麦学术文集. 成都: 四川科学技术出版社, 2006. pp 217-222.
Feng Z Y. Professor Xu Tingwen’s Works of Barley Science. Chengdu: Sichuan Scientific and Technical Publishers, 2006. pp 271-222 (in Chinese)
[5] 强小林, 迟德钊, 冯继林. 青藏高原区域青稞生产与发展现状. 西藏科技, 2008, 6(3): 11-17.
Qiang X L, Chi D Z, Feng J L. Status production status and development of Tibetan Plateau region of barley. Tibet Sci Technol, 2008, 6(3): 11-17 (in Chinese)
[6] 韦泽秀, 卓玛, 曲航, 马瑞萍. 海拔与积温梯度对春青稞生长的影响. 西藏农业科技, 2018, 40(增刊1): 15-19.
Wei Z X, Zhuo M, Qu H, Ma R P. Effects of altitude and accumulated temperature gradient on growth of spring highland barley. Tibet J Agric Sci, 2018, 40(S1): 15-19 (in Chinese with English abstract)
[7] 吴昆仑, 姚晓华, 姚有华, 白羿雄, 迟德钊. 多元化用途背景下青稞品种选育的思考与实践. 西藏农业科技, 2018, 40(增刊1): 1-2.
Wu Q L, Yao X H, Yao Y H, Bai Y X, Chi D Z. Reflections and practice on breeding barley varieties under the background of diversified uses. Tibet J Agric Sci, 2018, 40(S1): 1-2 (in Chinese with English abstract)
[8] 达瓦顿珠. 中国大麦低温春化和光周期基因单倍型及表型关联分析. 中国农业科学院研究生院博士学位论文, 北京, 2015. p 17.
Dawadondrop. Haplotypes and Phenotypic Association Analysis of Vernalization and Photoperiod Genes in Chinese Barley. PhD Dissertation of Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China, 2015. p 17. (in Chinese with English abstract)
[9] 陈建平. 普通小麦与栽培大麦之间早熟性机制的差异. 大麦科学, 1990, (3): 52-53.
Chen J P. Differences in early maturity mechanism between common wheat and cultivated barley. Barl Cereal Sci, 1990, (3): 52-53 (in Chinese)
[10] Laurie D A, Pratchett N, Snape J W, Bezant J H. RFLP mapping of five major genes and eight quantitative trait loci controlling flowering time in a winter × spring barley (Hordeum vulgare L.) cross. Genome, 1995, 38: 575-585.
pmid: 18470191
[11] Bezant J, Laurie D, Pratchett N, Chojecki J, Kearsey M. Marker regression mapping of QTL controlling flowering time and plant height in a spring barley (Hordeum vulgare L.) cross. Heredity, 1996, 77: 64-73.
doi: 10.1038/hdy.1996.109
[12] Karsai I, Szücs P, Mészáros K, Filichkina T, Hayes P M, Skinner J S, Láng L, Bedö Z. The Vrn-H2 locus is a major determinant of flowering time in a facultative × winter growth habit barley (Hordeum vulgare L.) mapping population. Theor Appl Genet, 2005, 110: 1458-1466.
pmid: 15834697
[13] Börner A, Buck-Sorlin G H, Hayes P M, Malyshev S, Korzun V. Molecular mapping of major genes and quantitative trait loci determining flowering time in response to photoperiod in barley. Plant Breed, 2002, 121: 129-132.
doi: 10.1046/j.1439-0523.2002.00691.x
[14] Comadran J, Russell J R, Booth A, Pswarayi A, Ceccarelli S, Grando S, Stanca A M, Pecchioni N, Akar T, Al-Yassin A, Benbelkacem A, Ouabbou H, Bort J, van Eeuwijk F A, Thomas W T B, Romagosa I. Mixed model association scans of multi- environmental trial data reveal major loci controlling yield and yield related traits in Hordeum vulgare in Mediterranean environments. Theor Appl Genet, 2011, 122: 1363-1373.
doi: 10.1007/s00122-011-1537-4 pmid: 21279625
[15] Wang H Y, Smith K P, Combs E, Blake T, Horsley R D, Muehlbauer G J. Effect of population size and unbalanced data sets on QTL detection using genome-wide association mapping in barley breeding germplasm. Theor Appl Genet, 2012, 124: 111-124.
doi: 10.1007/s00122-011-1691-8
[16] Mesfin A, Smith K P, Dill-Macky R, Evans C K, Waugh R, Gustus C D, Meuhlbauer G J. Quantitative trait loci for Fusarium head blight resistance in barley detected in a two-rowed by six-rowed population. Crop Sci, 2003, 43: 307-318.
doi: 10.2135/cropsci2003.3070
[17] Pauli D, Muehlbauer G J, Smith K P, Cooper B, Hole D, Obert D O, Ullrich S E, Blake T K. Association mapping of agronomic QTLs in US spring barley breeding germplasm. Plant Genome, 2014, 7: plantgenome2013.11.0037.
[18] Maurer A, Draba V, Jiang Y, Schnaithmann F, Sharma R, Schumann E, Kilian B, Reif J C, Pillen K. Modelling the genetic architecture of flowering time control in barley through nested association mapping. BMC Genom, 2015, 16: 290.
[19] Tranquilli G, Dubcovsky J. Epistatic interaction between vernalization genes Vrn-Am1 and Vrn-Am2 in diploid wheat. J Hered, 2000, 91: 304-306.
pmid: 10912677
[20] Yan L, Loukoianov A, Tranquilli G, Helguera M, Fahima T, Dubcovsky J. Positional cloning of the wheat vernalization gene VRN1. Proc Natl Acad Sci USA, 2003, 100: 6263-6268.
doi: 10.1073/pnas.0937399100
[21] Yan L, Loukoianov A, Blechl A, Tranquilli G, Ramakrishna W, Sanmiguel P, Bennetzen J L, Echenique V, Dubcovsky J. The wheat VRN2 gene is a flowering repressor down-regulated by vernalization. Science, 2004, 303: 1640-1644.
doi: 10.1126/science.1094305
[22] Fu D, Szücs P, Yan L, Helguera M, Skinner J S, von Zitzewite J, Hayes P M, Dubcovsky J. Large deletions within the first intron in VRN-1 are associated with spring growth habit in barley and wheat. Mol Genet Genom, 2005, 273: 54-65.
doi: 10.1007/s00438-004-1095-4
[23] Yan L, Fu D, Li C, Blechl A, Tranquilli G, Bonafede M, Sanchez A, Valarik M, Yasuda S, Dubcovsky J. The wheat and barley vernalization gene VRN3 is an orthologue of FT. Proc Natl Acad Sci USA, 2006, 103: 19581-19586.
doi: 10.1073/pnas.0607142103
[24] Decousset L, Griffiths S, Dunford R P, Pratchett N, Laurie D A. Development of STS markers closely linked to the Ppd-H1 photoperiod response gene of barley (Hordeum vulgare L.). Theor Appl Genet, 2000, 101: 1202-1206.
doi: 10.1007/s001220051598
[25] Turner A, Beales J, Faure S, Dunford F R, Laurie D A. The pseudo-response regulator Ppd-H1 provides adaptation to photoperiod in barley. Science, 2005, 310: 1031-1034.
doi: 10.1126/science.1117619
[26] Xia T, Zhang L, Xu J, Wang L, Liu B L, Hao M, Chang X, Zhang T W, Li S M, Zhang H G, Liu D C, Shen Y H. The alternative splicing of EAM8 contributes to early flowering and short-season adaptation in a landrace barley from the Qinghai-Tibetan Plateau. Theor Appl Genet, 2017, 130: 757-766.
doi: 10.1007/s00122-016-2848-2
[27] 刘仁虎, 孟金陵. MapDraw, 在Excel中绘制遗传连锁图的宏. 遗传, 2003, 25: 317-321.
Liu R H, Meng J L. MapDraw: a Microsoft Excel macro for drawing genetic linkage maps based on given genetic linkage data. Hereditas (Beijing), 2003, 25: 317-321. (in Chinese with English abstract)
[28] Lescot M, Déhais P, Thijs G, Marchal K, Moreau Y, Van de Peer Y, Rouzé P, Rombauts S. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res, 2002, 30, 325-327.
[29] Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods, 2001, 25: 402-408.
doi: 10.1006/meth.2001.1262 pmid: 11846609
[30] Li X, Yu X L, Yao X H, Yao Y H, Bai Y X, An L K, Wu K L. Mapping the major quantitative trait loci of the heading date trait in Qingke barley (Hordeum vulgare L.) from the Qinghai-Tibetan Plateau via genotyping by sequencing. All Life, 2021, 14: 882-893.
doi: 10.1080/26895293.2021.1980439
[31] Nitcher R, Distelfeld A, Tan C T, Yan L L, Dubcovsky J. Increased copy number at the HvFT1 locus is associated with accelerated flowering time in barley. Mol Genet Genom, 2013, 288: 261-275.
doi: 10.1007/s00438-013-0746-8
[32] Wei X J, Xu J F, Guo H N, Jiang L, Chen S H, Yu C Y, Zhou Z L, Hu P S, Zhai H Q, Wan J M. DTH8 suppresses flowering in rice, influencing plant height and yield potential simultaneously. Plant Physiol, 2010, 153: 1747-1758.
doi: 10.1104/pp.110.156943
[33] Yan W H, Wang P, Chen H X, Zhou H J, Li Q P, Wang C R, Ding Z H, Zhang Y S, Yu S B, Xing Y Z, Zhang Q F. A major QTL, Ghd8, plays pleiotropic roles in regulating grain productivity, plant height, and heading date in rice. Mol Plant, 2011, 4: 319-330.
doi: 10.1093/mp/ssq070
[34] Hou X, Zhou J, Liu C, Liu L, Shen L S, Yu H. Nuclear factor Y-mediated H3K27me3 demethylation of the SOC1 locus orchestrates flowering responses of Arabidopsis. Nat Commun, 2014, 5: 4601.
[35] Wei Q, Ma C, Xu Y, Wang T L, Chen Y Y, Lu J, Zhang L L, Jiang C Z, Hong B, Gao J P. Control of chrysanthemum flowering through integration with an aging pathway. Nat Commun, 2017, 8: 829.
[36] Liang M, Hole D, Wu J, Blake T, Wu Y J. Expression and functional analysis of NUCLEAR FACTOR-Y, subunit B genes in barley. Planta, 2012, 235: 779-791.
doi: 10.1007/s00425-011-1539-0
[37] 田晨菲, 李建华, 王勇. 植物合成生物学调控元件的研究进展. 植物生理学报, 2020, 56: 2261-2274.
Tian C F, Li J H, Wang Y. Research advances of regulatory elements in plant synthetic biology. Plant Physiol J, 2020, 56: 2261-2274. (in Chinese with English abstract)
[1] HUI Zhi-Ming, XU Jian-Fei, JIAN Yin-Qiao, BIAN Chun-Song, DUAN Shao-Guang, HU Jun, LI Guang-Cun, JIN Li-Ping. 2b-RAD based maturity associated molecular marker identification in tetraploid potato (Solanum tuberosum L.) [J]. Acta Agronomica Sinica, 2022, 48(9): 2274-2284.
[2] XU Yunbi, WANG Bing-Bing, ZAHNG Jian, ZHANG Jia-Nan, LI Jian-Sheng. Enhancement of plant variety protection and regulation using molecular marker technology [J]. Acta Agronomica Sinica, 2022, 48(8): 1853-1870.
[3] GUO Nan-Nan, LIU Tian-Ce, SHI Shuo, HU Xin-Ting, NIU Ya-Dan, LI Liang. Regulation of long non-coding RNA (LncRNA) in barley roots in response to Piriformospora indica colonization [J]. Acta Agronomica Sinica, 2022, 48(7): 1625-1634.
[4] WANG Xing-Rong, LI Yue, ZHANG Yan-Jun, LI Yong-Sheng, WANG Jun-Cheng, XU Yin-Ping, QI Xu-Sheng. Drought resistance identification and drought resistance indexes screening of Tibetan hulless barley resources at adult stage [J]. Acta Agronomica Sinica, 2022, 48(5): 1279-1287.
[5] YAO Xiao-Hua, WANG Yue, YAO You-Hua, AN Li-Kun, WANG Yan, WU Kun-Lun. Isolation and expression of a new gene HvMEL1 AGO in Tibetan hulless barley under leaf stripe stress [J]. Acta Agronomica Sinica, 2022, 48(5): 1181-1190.
[6] FU Mei-Yu, XIONG Hong-Chun, ZHOU Chun-Yun, GUO Hui-Jun, XIE Yong-Dun, ZHAO Lin-Shu, GU Jia-Yu, ZHAO Shi-Rong, DING Yu-Ping, XU Yan-Hao, LIU Lu-Xiang. Genetic analysis of wheat dwarf mutant je0098 and molecular mapping of dwarfing gene [J]. Acta Agronomica Sinica, 2022, 48(3): 580-589.
[7] MA Hong-Bo, LIU Dong-Tao, FENG Guo-Hua, WANG Jing, ZHU Xue-Cheng, ZHANG Hui-Yun, LIU Jing, LIU Li-Wei, YI Yuan. Application of Fhb1 gene in wheat breeding programs for the Yellow-Huai Rivers valley winter wheat zone of China [J]. Acta Agronomica Sinica, 2022, 48(3): 747-758.
[8] SONG Bo-Wen, WANG Chao-Huan, ZHAO Zhe, CHEN Chun, HUANG Ming, CHEN Wei-Xiong, LIANG Ke-Qin, XIAO Wu-Min. Mapping and analysis of QTL for grain size in rice based on high density genetic map [J]. Acta Agronomica Sinica, 2022, 48(11): 2813-2825.
[9] GUO Bao-Jian, WANG Shuang, LYU Chao, WANG Fei-Fei, XU Ru-Gen. Regulation of adventitious root development by HvLBD19 gene in barley (Hordeum vulgare L.) [J]. Acta Agronomica Sinica, 2022, 48(10): 2435-2442.
[10] LI Jian-Ling, GONG Dan, WANG Su-Hua, CHEN Hong-Lin, CHENG Xu-Zhen, XIONG Tao, WANG Li-Xia. Construction of SNP high-density genetic map and QTL analysis of agronomic traits in cowpea (Vigna unguiculata (L.) Walp.) [J]. Acta Agronomica Sinica, 2022, 48(10): 2475-2482.
[11] WANG Yin, FENG Zhi-Wei, GE Chuan, ZHAO Jia-Jia, QIAO Ling, WU Bang-Bang, YAN Su-Xian, ZHENG Jun, ZHENG Xing-Wei. Identification of seedling resistance to stripe rust in wheat-Thinopyrum intermedium translocation line and its potential application in breeding [J]. Acta Agronomica Sinica, 2021, 47(8): 1511-1521.
[12] HE Jun-Yu, ZHONG Wei, CHEN Yun-Qiong, WANG Wei-Bin, XIONG Jing-Lei, JIANG Ya-Li, SHI Hui-Meng, CHEN Sheng-Wei. Analysis on the accumulation characteristics of seven flavonoids at grain development stage in barley [J]. Acta Agronomica Sinica, 2021, 47(8): 1624-1630.
[13] GENG La, HUANG Ye-Chang, LI Meng-Di, XIE Shang-Geng, YE Ling-Zhen, ZHANG Guo-Ping. Genome-wide association study of β-glucan content in barley grains [J]. Acta Agronomica Sinica, 2021, 47(7): 1205-1214.
[14] LI Jie, FU Hui, YAO Xiao-Hua, WU Kun-Lun. Differentially expressed protein analysis of different drought tolerance hulless barley leaves [J]. Acta Agronomica Sinica, 2021, 47(7): 1248-1258.
[15] HE Jun-Yu, YIN Shun-Qiong, CHEN Yun-Qiong, XIONG Jing-Lei, WANG Wei-Bin, ZHOU Hong-Bin, CHEN Mei, WANG Meng-Yue, CHEN Sheng-Wei. Identification of wheat dwarf mutants and analysis on association between the mutant traits of the dwarf plants [J]. Acta Agronomica Sinica, 2021, 47(5): 974-982.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LIANG Tai-Bo;YIN Yan-Ping;CAI Rui-Guo;YAN Su-Hui;LI Wen-Yang;GENG Qing-Hui;WANG Ping;WANG Zhen-Lin. Starch Accumulation and Related Enzyme Activities in Superior and Inferior Grains of Large Spike Wheat[J]. Acta Agron Sin, 2008, 34(01): 150 -156 .
[2] WANG Cheng-Zhang;HAN Jin-Feng;SHI Ying-Hua;LI Zhen-Tian;LI De-Feng. Production Performance in Alfalfa with Different Classes of Fall Dormancy[J]. Acta Agron Sin, 2008, 34(01): 133 -141 .
[3] GOU Ling ; HUANG Jian-Jun; ZHANG Bin; LI Tao; SUN Rui; ZHAO Ming ;. Effects of Population Density on Stalk Lodging Resistant Mechanism and Agronomic Characteristics of Maize[J]. Acta Agron Sin, 2007, 33(10): 1688 -1695 .
[4] LIU Shan-Shan;TIAN Fu-Dong;GAO Li-Hui;WANG Zhi-Kun;GE Yu-Jun;DIAO Gui-Zhu;LI Wen-Bin;. Effect of Subunit Composition of 7S Globulin on Soybean Quality Cha- racteristics[J]. Acta Agron Sin, 2008, 34(05): 909 -913 .
[5] Tang Shengxiang;Jiang Yunzhu;Wei Xinghua;Li Zichao;Yu Hanyong. Genetic Diversity of Isozymes of Cultivated Rice in China[J]. Acta Agron Sin, 2002, 28(02): 203 -207 .
[6] . [J]. Acta Agron Sin, 1962, 1(03): 232 -258 .
[7] LI Jin-Cai ;WEI Feng-Zhen;WANG Cheng-Yu;YIN Jun. Effects of Waterlogging on Senescence of Root System at Booting Stage in Winter Wheat[J]. Acta Agron Sin, 2006, 32(09): 1355 -1360 .
[8] LIN Rui-Yu;CHEN Hong-Fei;DENG Jia-Yao;LIANG Yi-Yuan;LIANG Kang-Jing;LIN Wen-Xiong. Analysis on Energy Accumulation and Calorific Value of Early-Season Rice and Its Ratooning Rice under Different Cultivation Models[J]. Acta Agron Sin, 2007, 33(11): 1794 -1801 .
[9] DAI Zhong-Min;YIN Yan-Ping;ZHANG Min;LI Wen-Yang;YAN Su-Hui;CAI Rui-Guo;WANG Zhen-Lin. Starch Granule Size Distribution in Wheat Grains under Irrigated and Rainfed Conditions[J]. Acta Agron Sin, 2008, 34(05): 795 -802 .
[10] Dong Guichun;Wang Yulong;Wu Hua;Zhou Xiaodong;Shan Yuhua;Wang Jiangang;Cai Huirong;Cai Jianzhong. Varietal Differences in Response of Main Root Traits to Nitrogen Application Time in Rice (Oryza sativa L.)[J]. Acta Agron Sin, 2003, 29(06): 871 -877 .