Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2022, Vol. 48 ›› Issue (11): 2774-2785.doi: 10.3724/SP.J.1006.2022.14189

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Dirigent gene family identification and expression profiling of Vigna angularis responsive to Uromyces vignae infection

KE Xi-Wang(), YUAN Meng-Qi(), XU Xiao-Dan, YIN Li-Hua, GUO Yong-Xia, ZUO Yu-Hu*()   

  1. College of Agriculture, Heilongjiang Bayi Agricultural University / Heilongjiang Provincial Key Laboratory of Crop-Pest Interaction Biology Ecological Control / National Coarse Cereals Engineering Research Center, Daqing 163319, Heilongjiang, China
  • Received:2021-10-18 Accepted:2022-02-25 Online:2022-11-12 Published:2022-03-23
  • Contact: ZUO Yu-Hu E-mail:kexylh@163.com;2896834372@qq.com;zuoyhu@163.com
  • Supported by:
    The National Natural Science Foundation of China(32102173);The Heilongjiang Provincial Natural Science Foundation of China(YQ2020C034);The Innovative Research Program for Graduates of Heilongjiang Bayi Agricultural University(YJSCX2021-Y50)

Abstract:

To clarify the role of Dirigent (DIR) gene family of adzuki bean (Vigna angularis) in response to Uromyces vignae infection, genome-wide identification of the DIR family genes of V. angularis (VaDIRs) was conducted. A total of 33 VaDIRs in the V. angularis genome were identified, among which 29 members were located on 8 chromosomes, respectively. Phylogenetic analysis showed that VaDIRs consisted of 4 subfamilies (DIR-a, DIR-b/d, DIR-e, and DIR-f). Cis-acting elements analysis of the promoter of VaDIRs indicated that all members of VaDIRs contained hormones and pathogen responsive elements. Transcriptomic data of the rust resistant cultivar at different times after inoculation revealed that 17 VaDIRs members were differentially expressed, among which 6 VaDIRs were significantly upregulated at 24 hours post inoculation (hpi), and 2 members were highly expressed both at 24 and 48 hpi. The relative expression of the genes mentioned above were further confirmed in different resistant cultivars responsive to U. vignae infection by qRT-PCR. Results demonstrated that VaDIR14, VaDIR16, and VaDIR33 in resistant cultivar were significantly induced than those in the susceptible cultivar during the fungal infection. In short, our results indicated that members of VaDIRs could be used as positive regulators in resistant cultivar to prevent U. vignae infection.

Key words: Vigna angularis, adzuki bean rust, Uromyces vignae, DIR gene, gene family

Table 1

Information of DIR gene family members in Vigna angularis"

基因名称
Gene name
蛋白序列号
Protein sequence
基因组注释
Definition
染色体
Chr.
分子量
Molecular
weight (kD)
等电点
pI
氨基酸数量
Number of the amino acids (aa)
VaDIR1 XP_017433474.1 未知蛋白Uncharacterized protein 01 19.78 9.16 185
VaDIR2 XP_017433817.1 类抗病反应蛋白206
Disease resistance response protein 206-like
01 20.35 6.28 182
VaDIR3 XP_017434121.1 类引导蛋白11 Dirigent protein 11-like 01 19.98 6.05 180
VaDIR4 XP_017414154.1 类引导蛋白22 Dirigent protein 22-like 02 20.79 7.07 190
VaDIR5 XP_017414268.1 类引导蛋白16 Dirigent protein 16-like 02 25.10 4.87 245
VaDIR6 XP_017412750.1 类引导蛋白16 Dirigent protein 16-like 02 27.37 5.10 266
VaDIR7 XP_017417575.1 类引导蛋白24 Dirigent protein 24-like 03 45.28 4.74 431
VaDIR8 XP_017416488.1 类引导蛋白25 Dirigent protein 25-like 03 24.22 5.78 224
VaDIR9 XP_017417865.1 类引导蛋白22 Dirigent protein 22-like 03 21.15 9.49 194
VaDIR10 XP_017416739.1 类引导蛋白22 Dirigent protein 22-like 03 20.98 9.40 192
VaDIR11 XP_017417602.1 类引导蛋白22 Dirigent protein 22-like 03 20.47 9.01 188
VaDIR12 XP_017417783.1 类引导蛋白2 Dirigent protein 2-like 03 20.34 5.22 186
VaDIR13 XP_017417792.1 类引导蛋白2 Dirigent protein 2-like 03 20.34 5.22 186
VaDIR14 XP_017417756.1 类引导蛋白22 Dirigent protein 22-like 03 24.04 6.59 216
VaDIR15 XP_017417215.1 类引导蛋白22 Dirigent protein 22-like 03 24.02 6.37 216
VaDIR16 XP_017417998.1 类引导蛋白22 Dirigent protein 22-like 03 24.17 7.07 216
VaDIR17 XP_017424454.1 类引导蛋白21 Dirigent protein 21-like 05 20.53 5.67 186
VaDIR18 XP_017426991.1 类引导蛋白11 Dirigent protein 11-like 06 21.11 8.83 196
VaDIR19 XP_017432020.1 类引导蛋白19 Dirigent protein 19-like 08 14.76 6.72 134
VaDIR20 XP_017432805.1 类引导蛋白2 Dirigent protein 2-like 08 19.32 9.45 177
VaDIR21 XP_017432829.1 类引导蛋白2 Dirigent protein 2-like 08 18.78 8.09 175
VaDIR22 XP_017438130.1 类引导蛋白22 Dirigent protein 22-like 10 15.03 6.32 135
VaDIR23 XP_017441922.1 类抗病反应蛋白206
Disease resistance response protein 206-like
11 21.32 8.58 189
VaDIR24 XP_017441955.1 类抗病反应蛋白206
Disease resistance response protein 206-like
11 20.22 6.95 183
VaDIR25 XP_017441660.1 类引导蛋白22 Dirigent protein 22-like 11 21.49 9.32 192
VaDIR26 XP_017441835.1 类引导蛋白22 Dirigent protein 22-like 11 21.02 9.25 189
VaDIR27 XP_017442075.1 类引导蛋白22 Dirigent protein 22-like 11 21.17 9.30 192
VaDIR28 XP_017442076.1 类引导蛋白22 Dirigent protein 22-like 11 20.49 9.30 187
VaDIR29 XP_017441889.1 类引导蛋白22 Dirigent protein 22-like 11 20.43 6.05 188
VaDIR30 XP_017411398.1 类引导蛋白9 Dirigent protein 9-like / 26.77 6.30 248
VaDIR31 XP_017411409.1 类引导蛋白10 Dirigent protein 10 like / 31.22 4.88 296
VaDIR32 XP_017405347.1 类引导蛋白22 Dirigent protein 22-like / 21.78 6.97 190
VaDIR33 XP_017411321.1 未知蛋白 Uncharacterized protein / 18.71 6.28 173

Fig. 1

Chromosome distribution of DIR gene family in Vigna angularis Two genes linked by the line indicate a gene pair, and multiple genes linked by the line indicate a gene cluster. NW_016114851.1, NW_016115358.1, and NW_016115450.1 are the scaffolds that are not assembled into chromosomes."

Fig. 2

Phylogenetic tree of DIR family genes from Vigna angularis and other plants constructed by maximum likelihood method Blue represents DIR-a, green represents DIR-b/d, rose red represents DIR-c, purple represents DIR-e, yellow represents DIR-f, and pink represents DIR-g. The number on phylogenetic tree represents the bootstrap value."

Fig. 3

Gene structure and conserved motif distribution of DIR gene family in Vigna angularis A: conserved domain; B: the intron-exon structure of the gene. UTR: non-coding region; CDS: protein-coding sequence; —: intron."

Fig. 4

Distribution of cis-acting elements of promoter of DIR gene family in Vigna angularis TGA-element: auxin-responsive element; Myb: involved in plant cell differentiation, hormonal and environmental factor responses; as-1: auxin and salicylic acid responsive elements; ERE: ethylene response element; ABRE: cis-acting element involved in the abscisic acid responsiveness; TGACG-motif: MeJA-responsive; CGTCA-motif: MeJA-responsive; TC-rich repeats: cis-acting element involved in defense and stress responsiveness; ARE: cis-acting regulatory element essential for the anaerobic induction; W-box: the inducer, injury, and pathogen responses bind to WRKY class transcription factors; TATC-box: cis-acting element involved in gibberellin-responsiveness; P-box: gibberellin-responsive element; WUN-motif: wound-responsive element; LTR: cis-acting element involved in low-temperature responsiveness; TCA-element: cis-acting element involved in salicylic acid responsiveness; GARE-motif: gibberellin-responsive element; SARE: cis-acting element involved in salicylic acid responsiveness; AuxRR-core: cis-acting regulatory element involved in auxin responsiveness."

Fig. 5

Relative expression level analysis of DIR gene family members in Vigna angularis in response to rust infection The value in the figure is the value of log2 ratio, log2 ratio = log2 (post-inoculation expression/control expression), positive value means significantly up-regulated expression at 24 or 48 hours post-inoculation (hpi), negative value means significantly down- regulated expression."

Fig. 6

Symptoms of different adzuki bean varieties at 10 days post inoculated with U. vignae and number of uredia on leaf surface statistics A, B: symptoms of “QH1” and “BQH” at 10 days post inoculation; C: number of the uredia on leaf surface of different varieties at 10 days post inoculation, *: P < 0.05. BQH: Baoqinghong."

Table 2

Primers for VaDIRs and reference genes for qRT-PCR"

基因
Gene
上游引物
Upstream primer (5°-3°)
下游引物
Downstream primers (5°-3°)
产物长度
Product length (bp)
VaDIR9 GGAAAGGCCCAAGGTGTTTA GCGTGCTGCCATTGTATTTC 103
VaDIR12 CGTCACCGCCACTTACTATC GTCGTGGAAGAAGAAGTGAAGA 91
VaDIR14 GCCACCTTCTACCAAACTATCT GGAGGGTTTGTCGTTTGTTATG 105
VaDIR15 GACCCACTGACCATCGGACCTG CTGCGAGCAAGAACAAAGCCAC 260
基因
Gene
上游引物
Upstream primer (5°-3°)
下游引物
Downstream primers (5°-3°)
产物长度
Product length (bp)
VaDIR16 TCTTGTTTCTGGCACCTTCTAC GTCTGATCGTCAATGGGTTCTC 206
VaDIR18 CCCATCTCAGCCACAACAACCG CACTTCCTTCCACGCCATTCAC 129
VaDIR28 AGGTGGTCGGAAGAATTGAG GCTGCTGCCATTGTACTTTC 110
VaDIR33 ATGTTTCAGCAATCGGCGTTCA CAAGACCACGAGCAAAGGCAAA 148
VaACT CTAAGGCTAATCGTGAGAA CGTAAATAGGAACCGTGT 165

Fig. 7

Relative expression level of some members of DIR gene family in Vigna angularis under rust infection R: the highly resistant variety “QH1”, S: the highly susceptible variety “BQH”, Inoculation: the samples inoculated with urediospores of U. vignae, * indicates significant difference at P < 0.05 in different treatments at the same time. BQH: Baoqinghong."

[1] 国家统计局农村社会经济调查司. 中国农村统计年鉴-2019. 北京: 中国统计出版社, 2020. pp 121-215.
Rural Socioeconomic Investigation Department, National Bureau of Statistics of China. The Yearly Statistical Book of Rural China-2019. Beijing: China Statistics Press, 2020. pp 121-215. (in Chinese)
[2] 何宁, 王雪扬, 曹良子, 曹大为, 洛育, 姜连子, 孟英, 冷春旭, 唐晓东, 李一丹, 万书明, 卢环, 程须珍. 光温处理对小豆苗期生理性状及叶绿素合成前体的影响. 作物学报, 2019, 45: 460-468.
He N, Wang X Y, Cao L Z, Cao D W, Luo Y, Jiang L Z, Meng Y, Leng C H, Tang X D, Li Y D, Wan S M, Lu H, Cheng X Z. Effects of photoperiods and temperatures on physiological characteristics and chlorophyll synthesis precursors of adzuki bean seedlings. Acta Agron Sin, 2019, 45: 460-468. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2019.84002
[3] 郑素娇, 柯希望, 殷丽华, 崔冬梅, 张海涛, 台莲梅, 左豫虎. 黑龙江省一株红小豆锈病病原菌鉴定. 微生物学报, 2015, 55: 425-432.
Zheng S J, Ke X W, Yin L H, Cui D M, Zhang H T, Tai L M, Zuo Y H. Identification of a fungal isolate causing adzuki bean rust in Heilongjiang. Acta Microbiol Sin, 2015, 55: 425-432. (in Chinese with English abstract)
[4] 刘春红. 黄瓜低霜霉威残留性相关基因CsDIR16的鉴定及功能分析. 东北农业大学博士学位论文, 黑龙江哈尔滨, 2017.
Liu C H. Identification and Functional Analysis of the Propamcarb-related Gene CsDIR16 in Cucumber. PhD Dissertation of Northeast Agricultural University, Harbin, Heilongjiang, China, 2017. (in Chinese with English abstract)
[5] 陈家璐, 张智俊, 刘笑雨, 朱丰晓. 毛竹Dirigent基因家族的全基因组鉴定与分析. 植物生理学报, 2019, 55: 1406-1417.
Chen J L, Zhang Z J, Liu X Y, Zhu F X. Genome-wide identification and analysis of Dirigent gene family in moso bamboo (Phyllostachys edulis). Plant Physiol J, 2019, 55: 1406-1417. (in Chinese with English abstract)
[6] Liao Y, Liu S, Jiang Y, Hu C Zhang X, Cao X, Xu Z, Gao X, Li L, Zhu J, Chen R. Genome-wide analysis and environmental response profiling of dirigent family genes in rice (Oryza sativa). Genes Genom, 2017, 39: 47-62.
doi: 10.1007/s13258-016-0474-7
[7] 宋敏. 小麦JRL和DIR基因家族的鉴定与分析. 南京农业大学博士学位论文, 江苏南京, 2013.
Song M. Characterization of Wheat JRL Gene and DIR Gene Families. PhD Dissertation of Nanjing Agricultural University, Nanjing, Jiangsu, China, 2013. (in Chinese with English abstract)
[8] 马金洋, 杨瑾冬, 李卿, 张磊. 丹参Dirigent基因家族的发现与生物信息学分析. 基因组学与应用生物学, 2017, 36: 1594-1610.
Ma J Y, Yang J D, Li Q, Zhang L. Discovery and bioinformatics analysis of Dirigent multigene family in Salvia miltiorrhiza. Genom Appl Biol, 2017, 36: 1594-1610. (in Chinese with English abstract)
[9] 张洪伟, 李继刚, 郑建坡, 曲占良. 马铃薯晚疫病抗性相关基因StDIR1的克隆与表达. 华北农学报, 2012, 27(2): 23-29.
Zhang H G, Li J G, Zheng J P, Qu Z L. Cloning and expression of a potato Dirigent-like gene (StDIR1) responsive to infection by Phytophthora infestans. Acta Agric Boreali-Sin, 2012, 27(2): 23-29. (in Chinese with English abstract)
[10] 王维东. 杜仲Dirigent编码基因克隆及表达分析. 贵州大学硕士学位论文, 贵州贵阳, 2017.
Wang W D. Cloning and Expression Analysis of Dirigent Protein in Eucommia ulmoides. MS Thesis of Guizhou University, Guiyang, Guizhou, China, 2017. (in Chinese with English abstract)
[11] Ralph S G, Jancsik S, Bohlmann J. Dirigent proteins in conifer defense: II. Extended gene discovery, phylogeny, and constitutive and stress-induced gene expression in spruce (Picea spp.). Phytochemistry, 2007, 68: 1975-1991.
doi: 10.1016/j.phytochem.2007.04.042
[12] Ma Q, Liu Y. TaDIR13, a Dirigent protein from wheat, promotes lignan biosynthesis and enhances pathogen resistance. Plant Mol Biol Rep, 2015, 33: 143-152.
doi: 10.1007/s11105-014-0737-x
[13] 吴仁花, 王丽丽, 王智, 商海红, 刘霞, 朱燕, 亓岽东, 邓馨. 复苏植物牛耳草引导蛋白基因的克隆与表达. 自然科学进展, 2008, 18: 1111-1118.
Wu R H, Wang L L, Wang Z, Shang H H, Liu X, Zhu Y, Qi D D, Deng X. Cloning and expression of the DIR gene of the resurrection plant Boea hygrometrica. Prog Nat Sci, 2008, 18: 1111-1118. (in Chinese with English abstract)
[14] Guo J L, Xu L P, Fang J P, Su Y C, Fu H Y, Que Y X, Xu J S. A novel dirigent protein gene with highly stem-specific expression from sugarcane, response to drought, salt and oxidative stresses. Plant Cell Rep, 2012, 31: 1801-1812.
doi: 10.1007/s00299-012-1293-1
[15] 张金鹏. 小豆感染豇豆单胞锈菌的早期分子检测及差异表达蛋白鉴定. 黑龙江八一农垦大学硕士学位论文, 黑龙江大庆, 2020.
Zhang J P. Early Molecular Detection and Identification of Differential Expressed Proteins of Adzuki bean Infected with Uromyces vignae. MS Thesis of Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China, 2020. (in Chinese with English abstract)
[16] Stavely J R. The modified Cobb scale for estimating bean rust intensity. Annu Rep Bean Improv Coop, 1985, 28: 31-32.
[17] 姚宁涛, 祝建波, 邓福军. 改良TRIzol法快速提取棉叶片总RNA. 生物技术通报, 2010, (7): 125-127.
Yao N T, Zhu J B, Deng F J. Fast extraction of high-quality total RNA in the cotton leaf with improved TRIzol method. Biotechnol Bull, 2010, (7): 125-127.
[18] Kang Y, Satyawan D, Shim S, Lee T, Lee J, Hwang W, Kim S, Lestari P, Laosatit K, Kim K, Ha T, Chitikineni A, Kim M, Ko J, Gwag J, Moon J, Lee Y, Park B, Varshney R, Lee S. Draft genome sequence of adzuki bean, Vigna angularis. Sci Rep, 2015, 5: 8069.
[19] Chen C J, Chen H, Zhang Y, Hannah R T, Margaret H F, He Y, Xia R. TBtools—an integrative toolkit developed for interactive analyses of big biological data. Mol Plant, 2020, 13: 1194-1202.
doi: 10.1016/j.molp.2020.06.009
[20] Ma X, Xu W, Liu T, Chen R, Zhu H, Zhang H, Cai C, Li S. Functional characterization of soybean (Glycine max) DIRIGENT genes reveals an important role of GmDIR27 in the regulation of pod dehiscence. Genomics, 2021, 113: 979-990.
doi: 10.1016/j.ygeno.2020.10.033
[21] Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol, 2018, 35: 1547-1549.
doi: 10.1093/molbev/msy096
[22] Chi C, Shen Y, Yin L, Ke X, Han D, Zuo Y. Selection and validation of reference genes for gene expression analysis in Vigna angularis using quantitative real-time RT-PCR. PLoS One, 2016, 11: e0168479.
doi: 10.1371/journal.pone.0168479
[23] Yin Z, Ke X, Huang D, Gao X, Voegele R T, Kang Z, Huang L. Validation of reference genes for gene expression analysis in Valsa mali var. mali using real-time quantitative PCR. World J Microbiol Biotechnol, 2013, 29: 1563-1571.
doi: 10.1007/s11274-013-1320-6
[24] Khan A, Li R J, Sun J T, Ma F, Zhang H X, Jin J H, Ali M, Haq S U, Wang J E, Gong Z H. Genome-wide analysis of dirigent gene family in pepper (Capsicum annuum L.) and characterization of CaDIR7 in biotic and abiotic stresses. Sci Rep, 2018, 8: 5500.
doi: 10.1038/s41598-018-23761-0
[25] 郭宝生, 师恭曜, 王凯辉, 刘素恩, 赵存鹏, 王兆晓, 耿军义, 华金平. 黄萎病菌侵染下陆地棉Dirigent-like蛋白基因表达差异分析. 中国农业科学, 2014, 47: 4349-4359.
Guo B S, Shi G Y, Wang K H, Liu S E, Zhao C P, Wang Z X, Geng J Y, Hua J P. Expression differences of Dirigent-like protein genes in upland cotton responsed to infection by Verticillium dahliae. Sci Agric Sin, 2014, 47: 4349-4359. (in Chinese with English abstract)
[26] Song M, Peng X. Genome-wide identification and characterization of DIR genes in Medicago truncatula. Biochem Genet, 2019, 57: 487-506.
doi: 10.1007/s10528-019-09903-7 pmid: 30649641
[27] Davin L B, Wang H B, Crowell A L, Bedgar D L, Martin D M, Sarkanen S, Lewis N G. Stereoselective bimolecular phenoxy radical coupling by an auxiliary (Dirigent) protein without an active center. Science, 1997, 275: 362-367.
pmid: 8994027
[28] 陈雪萍, 荆凌云, 王嘉, 荐红举, 梅家琴, 徐新福, 李加纳, 刘列钊. 甘蓝型油菜茎秆菌核病抗性与木质素含量及其单体G/S的相关性分析及QTL定位. 作物学报, 2017, 43: 1280-1289.
Chen X P, Jing L Y, Wang J, Jian H J, Mei J Q, Xu X F, Li J N, Liu L Z. Correlation analysis of sclerotinia resistance with lignin content and monomer G/S and its QTL mapping in Brassica napus L. Acta Agron Sin, 2017, 47: 4349-4359. (in Chinese with English abstract)
[29] Ralph S, Park J, Bohlmann J, Mansfield S D. Dirigent proteins in conifer defense: gene discovery, phylogeny, and differential wound-and insect-induced expression of a family of DIR and DIR-like genes in spruce (Picea spp.). Plant Mol Biol, 2006, 60: 21-24.
doi: 10.1007/s11103-005-2226-y
[30] Li L, Sun W, Zhou P, Wei H, Wang P, Li H, Rehman S, Li D, Zhuge Q. Genome-wide characterization of dirigent proteins in populus: gene expression variation and expression pattern in response to Marssonina brunnea and phytohormones. Forests, 2021, 12: 507.
doi: 10.3390/f12040507
[31] Borges A F, Ferreira R B, Monteiro S. Transcriptomic changes following the compatible interaction Vitis vinifera-Erysiphe necator. Paving the way towards an enantioselective role in plant defense modulation. Plant Physiol Biochem, 2013, 68: 71-80.
doi: 10.1016/j.plaphy.2013.03.024
[1] ZHANG Tian-Yu, WANG Yue, LIU Ying, ZHOU Ting, YUE Cai-Peng, HUANG Jin-Yong, HUA Ying-Peng. Bioinformatics analysis and core member identification of proline metabolism gene family in Brassica napus L. [J]. Acta Agronomica Sinica, 2022, 48(8): 1977-1995.
[2] CHEN Song-Yu, DING Yi-Juan, SUN Jun-Ming, HUANG Deng-Wen, YANG Nan, DAI Yu-Han, WAN Hua-Fang, QIAN Wei. Genome-wide identification of BnCNGC and the gene expression analysis in Brassica napus challenged with Sclerotinia sclerotiorum and PEG-simulated drought [J]. Acta Agronomica Sinica, 2022, 48(6): 1357-1371.
[3] JIN Rong, JIANG Wei, LIU Ming, ZHAO Peng, ZHANG Qiang-Qiang, LI Tie-Xin, WANG Dan-Feng, FAN Wen-Jing, ZHANG Ai-Jun, TANG Zhong-Hou. Genome-wide characterization and expression analysis of Dof family genes in sweetpotato [J]. Acta Agronomica Sinica, 2022, 48(3): 608-623.
[4] DONG Yan-Kun, HUANG Ding-Quan, GAO Zhen, CHEN Xu. Identification, expression profile of soybean PIN-Like (PILS) gene family and its function in symbiotic nitrogen fixation in root nodules [J]. Acta Agronomica Sinica, 2022, 48(2): 353-366.
[5] MA Xin-Lei, XU Rui-Qi, SUO Xiao-Man, LI Jing-Shi, GU Peng-Peng, YAO Rui, LIN Xiao-Hu, GAO Hui. Genome-wide identification of the Class III PRX gene family in foxtail millet (Setaria italica L.) and expression analysis under drought stress [J]. Acta Agronomica Sinica, 2022, 48(10): 2517-2532.
[6] JIA Xiao-Xia, QI En-Fang, MA Sheng, HUANG Wei, ZHENG Yong-Wei, BAI Yong-Jie, WEN Guo-Hong. Genome-wide identification and expression analysis of potato PYL gene family [J]. Acta Agronomica Sinica, 2022, 48(10): 2533-2545.
[7] WANG Yan-Peng, LING Lei, ZHANG Wen-Rui, WANG Dan, GUO Chang-Hong. Genome-wide identification and expression analysis of B-box gene family in wheat [J]. Acta Agronomica Sinica, 2021, 47(8): 1437-1449.
[8] SONG Tian-Xiao, LIU Yi, RAO Li-Ping, Soviguidi Deka Reine Judesse, ZHU Guo-Peng, YANG Xin-Sun. Identification and expression analysis of cell wall invertase IbCWIN gene family members in sweet potato [J]. Acta Agronomica Sinica, 2021, 47(7): 1297-1308.
[9] HUANG Ning, HUI Qian-Long, FANG Zhen-Ming, LI Shan-Shan, LING Hui, QUE You-Xiong, YUAN Zhao-Nian. Identification, localization and expression analysis of beta-carotene isomerase gene family in sugarcane [J]. Acta Agronomica Sinica, 2021, 47(5): 882-893.
[10] QIN Tian-Yuan, LIU Yu-Hui, SUN Chao, BI Zhen-Zhen, LI An-Yi, XU De-Rong, WANG Yi-Hao, ZHANG Jun-Lian, BAI Jiang-Ping. Identification of StIgt gene family and expression profile analysis of response to drought stress in potato [J]. Acta Agronomica Sinica, 2021, 47(4): 780-786.
[11] LI Peng, LIU Che, SONG Hao, YAO Pan-Pan, SU Pei-Lin, WEI Yao-Wei, YANG Yong-Xia, LI Qing-Chang. Identification and analysis of non-specific lipid transfer protein family in tobacco [J]. Acta Agronomica Sinica, 2021, 47(11): 2184-2198.
[12] HUANG Xiao-Fang,BI Chu-Yun,SHI Yuan-Yuan,HU Yun-Zhuo,ZHOU Li-Xiang,LIANG Cai-Xiao,HUANG Bi-Fang,XU Ming,LIN Shi-Qiang,CHEN Xuan-Yang. Discovery and analysis of NBS-LRR gene family in sweet potato genome [J]. Acta Agronomica Sinica, 2020, 46(8): 1195-1207.
[13] SHI Li-Jie,JIANG Cong-Cong,WANG Fang-Mei,YANG Ping,FENG Zong-Yun. Genome-wide characterization and transcriptional analysis of the protein disulfide isomerase-like genes in barley (Hordeum vulgare) [J]. Acta Agronomica Sinica, 2019, 45(9): 1365-1374.
[14] Jing ZHAO,Xu-Tong LI,Xue-Zhong LIANG,Zhi-Cheng WANG,Jing CUI,Bin CHEN,Li-Qiang WU,Xing-Fen WANG,Gui-Yin ZHANG,Zhi-Ying MA,Yan ZHANG. Genome-wide identification of Laccase gene family in update G. hirsutum L. genome and expression analysis under V. dahliae stress [J]. Acta Agronomica Sinica, 2019, 45(12): 1784-1795.
[15] Kun GAO,Ying-Peng HUA,Hai-Xing SONG,Chun-Yun GUAN,Zhen-Hua ZHANG,Ting ZHOU. Identification and Bioinformatics Analysis of the PIN Family Gene in Brassica napus [J]. Acta Agronomica Sinica, 2018, 44(9): 1334-1346.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[2] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[3] Hu Yuqi;Liao Xiaohai. A STUDY ON THE COEFFICIENT OF LEAVES SHAPE OF MAIZE[J]. Acta Agron Sin, 1986, (01): 71 -72 .
[4] LIANG Tai-Bo;YIN Yan-Ping;CAI Rui-Guo;YAN Su-Hui;LI Wen-Yang;GENG Qing-Hui;WANG Ping;WANG Zhen-Lin. Starch Accumulation and Related Enzyme Activities in Superior and Inferior Grains of Large Spike Wheat[J]. Acta Agron Sin, 2008, 34(01): 150 -156 .
[5] WANG Cheng-Zhang;HAN Jin-Feng;SHI Ying-Hua;LI Zhen-Tian;LI De-Feng. Production Performance in Alfalfa with Different Classes of Fall Dormancy[J]. Acta Agron Sin, 2008, 34(01): 133 -141 .
[6] TIAN Zhi-Jian;Yi Rong;CHEN Jian-Rong;GUO Qing-Quan;ZHANG Xue-Wen;. Cloning and Expression of Cellulose Synthase Gene in Ramie [Boehme- ria nivea (Linn.) Gaud.][J]. Acta Agron Sin, 2008, 34(01): 76 -83 .
[7] ZHAO Xiu-Qin;ZHU Ling-Hua;XU Jian-Long;LI Zhi-Kang. QTL Mapping of Yield under Irrigation and Rainfed Field Conditions for Advanced Backcrossing Introgression Lines in Rice[J]. Acta Agron Sin, 2007, 33(09): 1536 -1542 .
[8] WU Ying ; SONG Feng-Sun ; LU Xu-Zhong; ZHAO Wei; YANG Jian-Bo; LI Li ;. Detecting Genetically Modified Soybean by Real-time Quantitative PCR Technique[J]. Acta Agron Sin, 2007, 33(10): 1733 -1737 .
[9] GOU Ling ; HUANG Jian-Jun; ZHANG Bin; LI Tao; SUN Rui; ZHAO Ming ;. Effects of Population Density on Stalk Lodging Resistant Mechanism and Agronomic Characteristics of Maize[J]. Acta Agron Sin, 2007, 33(10): 1688 -1695 .
[10] YU Jing;ZHANG Lin;CUI Hong;ZHANG Yong-Xia;CANG Jing;HAO Zai-Bin;LI Zhuo-Fu. Physiological and Biochemical Characteristics of Dongnongdongmai 1 before Wintering in High-Cold Area[J]. Acta Agron Sin, 2008, 34(11): 2019 -2025 .