Acta Agronomica Sinica ›› 2022, Vol. 48 ›› Issue (3): 572-579.doi: 10.3724/SP.J.1006.2022.13005
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
XU Ning-Kun(), LI Bing, CHEN Xiao-Yan, WEI Ya-Kang, LIU Zi-Long, XUE Yong-Kang, CHEN Hong-Yu*(), WANG Gui-Feng
[1] | 赵然, 蔡曼君, 杜艳芳, 张祖新. 玉米籽粒形成的分子生物学基础. 中国农业科学, 2019, 20:3495-3506. |
Zhao R, Cai M J, Du Y F, Zhang Z X. Molecular biological basis of maize grain formation. Chin Agric Sci, 2019, 20:3495-3506 (in Chinese with English abstract). | |
[2] | Dai D W, Tong H Y, Cheng L J, Peng F, Zhang T T, Qi W W, Song R T. Maize Dek33 encodes a pyrimidine reductase in riboflavin biosynthesis that is essential for oil-body formation and ABA biosynthesis during seed development. J Exp Bot, 2019, 19:5173-5187. |
[3] |
Chen X, Feng F, Qi W, Xu L, Yao D, Wang Q, Song R. Dek35 encodes a PPR protein that affects cis-splicing of mitochondrial nad4 intron 1 and seed development in maize. Mol Plant, 2017, 10:427-441.
doi: 10.1016/j.molp.2016.08.008 |
[4] |
Wang G, Zhong M, Shuai B, Song J, Zhang J, Han L, Ling H, Tang Y, Wang G, Song R. Arabidopsis Arabidopsis. New Phytol, 2017, 214:1563-1578.
doi: 10.1111/nph.2017.214.issue-4 |
[5] |
Ren R C, Lu X, Zhao Y J, Wei Y M, Wang L L, Zhang L, Zhang W T, Zhang C, Zhang X S, Zhao X Y. Pentatricopeptide repeat protein DEK40 is required for mitochondrial function and kernel development in maize. J Exp Bot, 2019, 70:6163-6379.
doi: 10.1093/jxb/erz391 |
[6] |
Fu S N, Meeley R, Scanlon M J. Empty pericarp2 encodes a negative regulator of the heat shock response and is required for maize embryogenesis. Plant Cell, 2002, 14:3119-3132.
doi: 10.1105/tpc.006726 |
[7] |
Jose F, Gutierrez M, Mauro D P. Empty pericarp4 encodes a mitochondrion-targeted pentatricopeptide repeat protein necessary for seed development and plant growth in maize. Plant Cell, 2007, 19:196-210.
doi: 10.1105/tpc.105.039594 |
[8] |
Liu Y J, Xiu Z H, Meeley R, Tan B C. Empty pericarp5 encodes a pentatricopeptide repeat protein that is required for mitochondrial RNA editing and seed development in maize. Plant Cell, 2013, 25:868-883.
doi: 10.1105/tpc.112.106781 |
[9] |
Sun F, Wang X, Bonnard G, Shen Y, Xiu Z, Li X, Gao D, Zhang Z, Tan B. Empty pericarp7 encodes a mitochondrial E-subgroup pentatricopeptide repeat protein that is required for ccmFN editing, mitochondrial function and seed development in maize. Plant J, 2015, 84:283-295.
doi: 10.1111/tpj.12993 |
[10] |
Wang G, Sun X, Wang G, Wang F, Song R. Opaque7 encodes an acyl-activating enzyme-like protein that affects storage protein synthesis in maize endosperm. Genetics, 2011, 189:1281-1295.
doi: 10.1534/genetics.111.133967 |
[11] |
Mertz E T, Bates L S, Nelson O E. Mutant gene that changes protein composition and increases lysine content of maize endosperm. Science, 1964, 145:279-280.
doi: 10.1126/science.145.3629.279 |
[12] |
Yao D, Qi W, Li X, Yang Q, Song R. Maize opaque10 encodes a cereal-specific protein that is essential for the proper distribution of zeins in endosperm protein bodies. PLoS Genet, 2016, 12:e1006270.
doi: 10.1371/journal.pgen.1006270 |
[13] |
Feng F, Qi W, Lyu Y. Opaque 11 is a central hub of the regulatory network for maize endosperm development and nutrient metabolism. Plant Cell, 2018, 30:375-396.
doi: 10.1105/tpc.17.00616 |
[14] |
Holding D R, Otegui M S, Li B, Meeley R B, Dam T, Hunter B G, Jung R, Larkins B A. The maize Floury1 gene encodes a novel endoplasmic reticulum protein involved in zein protein body formation. Plant Cell, 2007, 19:2569-2582.
pmid: 17693529 |
[15] |
Coleman C E, Clore A M, Ranch J P. floury2 phenotype in transgenic maize floury2 phenotype in transgenic maize. Proc Natl Acad Sci USA, 1997, 94:7094-7097.
doi: 10.1073/pnas.94.13.7094 |
[16] |
Qi L, Wang J, Ye J, Zheng X, Xiang X, Li C, Wang Q, Zhang Z, Wu Y. The maize imprinted gene Floury3 encodes a PLATZ protein required for tRNAs and 5S rRNA transcription through interaction with RNA polymerase III. Plant Cell, 2017, 29:2661-2675.
doi: 10.1105/tpc.17.00576 |
[17] |
Wang G, Qi W, Wu Q, Yao D, Song R. floury4 as a novel semidominant opaque mutant that disrupts protein body assembly floury4 as a novel semidominant opaque mutant that disrupts protein body assembly. Plant Physiol, 2014, 165:582-594.
doi: 10.1104/pp.114.238030 |
[18] |
Fedoroff N V, Furtek D B, Nelson O E. Cloning of the bronze locus in maize by a simple and generalizable procedure using the transposable controlling element Activator (Ac). Proc Natl Acad Sci USA, 1984, 81:3825-3829.
doi: 10.1073/pnas.81.12.3825 |
[19] | Theres N, Scheele T, Starlinger P. Bz2 locus of Zea mays using the transposable element Ds as a gene tag Bz2 locus of Zea mays using the transposable element Ds as a gene tag. Mol Gene Genet, 1987, 209:193. |
[20] |
Chourey P S, Nelson O E. The enzymatic deficiency conditioned by the shrunken-1 mutations in maize. Biochem Genet, 1976, 14:1041-1055.
pmid: 1016220 |
[21] |
Hannah L C, Tuschall D M, Mans R J. Multiple forms of maize endosperm ADP-glucose pyrophosphorylase and their control by shrunken-2 and brittle-2. Genetics, 1980, 95:961-970.
pmid: 17249055 |
[22] |
Laughnan J R. sh2 factor on carbohydrate reserves in the mature endosperm of maize sh2 factor on carbohydrate reserves in the mature endosperm of maize. Genetics, 1953, 38:485-499.
pmid: 17247452 |
[23] |
James M G, Myers R A M. sugary1, a determinant of starch composition in kernels sugary1, a determinant of starch composition in kernels. Plant Cell, 1995, 7:417-429.
pmid: 7773016 |
[24] |
Shure M, Wessler S, Fedoroff N. Waxy locus in maize Waxy locus in maize. Cell, 1983, 35:225-233.
pmid: 6313224 |
[25] |
Kim K N, Fisher D K, Gao M, Guiltinan M J. Molecular cloning and characterization of the Amylose-Extender gene encoding starch branching enzyme IIB in maize. Plant Mol Biol, 1998, 38:945-956.
pmid: 9869401 |
[26] | Correns C. Bastarde zwischen Maisrassen, mit besonderer Berücksichtigung der Xenien. Nature, 1901, 65:126. |
[27] |
Ferguson J E, Rhodes A M, Dickinson D B. The genetics of sugary enhancer (se), an independent modifier of sweet corn (su). Heredity, 1978, 6:377-380.
doi: 10.1038/hdy.1952.46 |
[28] |
Gonzales J W, Rhodes A M, Dickinson D B. Carbohydrate and enzymic characterization of a high sucrose sugary inbred line of sweet corn. Plant Physiol, 1976, 58:28-32.
pmid: 16659614 |
[29] |
Preiss J, Danner S, Summers P S, Morell M, Barton C R, Yang L, Nieder M. Molecular characterization of the Brittle-2 gene effect on maize endosperm ADP glucose pyrophosphorylase subunits. Plant Physiol, 1990, 92:881-885.
pmid: 16667400 |
[30] | Bae J M, Giroux M, Hannah L C. Cloning and characterization of the brittle-2 gene of maize. Maydica, 1990, 35:317-322. |
[31] |
Bhave M R, Lawrence S, Barton C, Hannah L C. Identification and molecular characterization of shrunken-2 cDNA clones of maize. Plant Cell, 1990, 2:581-588.
pmid: 1967077 |
[32] |
Dickinson D B, Preiss J. Presence of ADP-glucose pyrophosphorylase in Shrunken-2 and Brittle-2 mutants of maize endosperm. Plant Physiol, 1969, 44:1058-1062.
pmid: 16657157 |
[33] | 李晓旭, 李家政. 优化蒽酮比色法测定甜玉米中可溶性糖的含量. 保鲜与加工, 2013, 13(4):24-27. |
Li X X, Li J Z. Determination of the content of soluble sugar in sweet corn with optimized anthrone colorimetric method. Stor Proc, 2013, 13(4):24-27 (in Chinese with English abstract). | |
[34] |
Murray M G, Thompson W F. Rapid isolation of high molecular weight plant DNA. Nucl Acids Res, 1980, 8:4321-4325.
doi: 10.1093/nar/8.19.4321 |
[35] |
Smith-White B J, Preiss J. Comparison of proteins of ADP- glucose pyrophosphorylase from diverse sources. J Mol Evol, 1992, 34:449-464.
pmid: 1318389 |
[36] | Greene T W, Hannah L C. Maize endosperm ADP-glucose pyrophosphorylase SHRUNKEN2 and BRITTLE2 subunit interactions. Plant Cell, 1998, 10:1295-1306. |
[37] |
Greene T W, Hannah L C. Enhanced stability of maize endosperm ADP-glucose pyrophosphorylase is gained through mutants that alter subunit interactions. Proc Natl Acad Sci USA, 1998, 95:13342-13347.
doi: 10.1073/pnas.95.22.13342 |
[38] |
Wilson L M, Whitt S R, Ibáñez A M, Rocheford T R, Goodman M M, Buckler E S. Dissection of maize kernel composition and starch production by candidate gene association. Plant Cell, 2004, 16:2719-2733.
doi: 10.1105/tpc.104.025700 |
[39] |
Cossegal M, Chambrier P, Mbelo S, Balzergue S, Martin-Magniette M L, Moing A, Deborde C, Guyon V, Perez P, Rogowsky P. bt2 maize kernels bt2 maize kernels. Plant Physiol, 2008, 146:1553-1570.
doi: 10.1104/pp.107.112698 pmid: 18287491 |
[40] |
Gustafson J P, Shin J H, Kwon S J, Lee J K, Min H K, Kim N S. Genetic diversity of maize kernel starch-synthesis genes with SNAPs. Genome, 2006, 49:1287-1296.
doi: 10.1139/g06-116 |
[41] |
Tenaillon M I, Sawkins M C, Long A D, Gaut R L, Doebley J F, Gaut B S. Zea mays ssp. mays L.) Zea mays ssp. mays L.). Proc Natl Acad Sci USA, 2001, 98:9161-9166.
doi: 10.1073/pnas.151244298 |
[42] | 乐素菊, 刘鹏飞, 曾慕衡, 王伟权, 王晓明. 超甜玉米bt2基因SNP位点的分析及分子标记辅助筛选. 西北农林科技大学学报(自然科学版), 2012, 40(11):73-78. |
Yue S J, Liu P F, Zeng M H, Wang W Q, Wang X M. Analysis of SNP locus of bt2 gene in super sweet maize and molecular marker assisted screening. J Northwest Agric For Univ (Nat Sci Edn), 2012, 40(11):73-78 (in Chinese with English abstract). | |
[43] | 单明珠, 周余庆, 李发民, 刘萌娟. 甜玉米籽粒含糖量性状的研究. 西北农林科技大学学报(自然科学版), 2006, 34(6):111-114. |
Shan M Z, Zhou Y Q, Li F M, Liu M J. Study on the traits of sugar content in sweet corn. J Northwest Agric For Univ (Nat Sci Edn), 2006, 34(6):111-114 (in Chinese with English abstract). | |
[44] | 于惠琳, 吴玉群, 胡宝忱, 尤丹, 王延波. 超甜玉米系与其野生型玉米系籽粒发育过程中糖分积累规律. 辽宁农业科学, 2019, (3):77-79. |
Yu H L, Wu Y Q, Hu B Z, Yu D, Wang Y B. Sugar accumulation regularity of super sweet maize and its wild type maize during kernel development. Liaoning Agric Sci, 2019, (3):77-79 (in Chinese with English abstract). |
[1] | DUAN Can-Xing, CUI Li-Na, XIA Yu-Sheng, DONG Huai-Yu, YANG Zhi-Huan, HU Qing-Yu, SUN Su-Li, LI Xiao, ZHU Zhen-Dong, WANG Xiao-Ming. Precise characterization and analysis of maize germplasm resources for resistance to Fusarium ear rot and Gibberella ear rot [J]. Acta Agronomica Sinica, 2022, 48(9): 2155-2167. |
[2] | ZHANG Zhen-Bo, QU Xin-Yue, YU Ning-Ning, REN Bai-Zhao, LIU Peng, ZHAO Bin, ZHANG Ji-Wang. Effects of nitrogen application rate on grain filling characteristics and endogenous hormones in summer maize [J]. Acta Agronomica Sinica, 2022, 48(9): 2366-2376. |
[3] | GUO Yao, CHAI Qiang, YIN Wen, FAN Hong. Research progress of photosynthetic physiological mechanism and approaches to application in dense planting maize [J]. Acta Agronomica Sinica, 2022, 48(8): 1871-1883. |
[4] | WANG Tian-Bo, HE Wen-Xue, ZHANG Jun-Ming, LYU Wei-Zeng, LIANG Yu-Huan, LU Yang, WANG Yu-Lu, GU Feng-Xu, SONG Ci, CHEN Jun-Ying. ROS production and ATP synthase subunit mRNAs integrity in artificially aged maize embryos [J]. Acta Agronomica Sinica, 2022, 48(8): 1996-2006. |
[5] | PEI Li-Zhen, CHEN Yuan-Xue, ZHANG Wen-Wen, XIAO Hua, ZHANG Sen, ZHOU Yuan, XU Kai-Wei. Effects of organic material returned on photosynthetic performance and nitrogen metabolism of ear leaf in summer maize [J]. Acta Agronomica Sinica, 2022, 48(8): 2115-2124. |
[6] | WEI Gang, CHEN Dan-Yang, REN De-Yong, YANG Hong-Xia, WU Jing-Wen, FENG Ping, WANG Nan. Identification and gene mapping of slender stem mutant sr10 in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2022, 48(8): 2125-2133. |
[7] | DU Qi-Di, GUO Hui-Jun, XIONG Hong-Chun, XIE Yong-Dun, ZHAO Lin-Shu, GU Jia-Yu, ZHAO Shi-Rong, DING Yu-Ping, SONG Xi-Yun, LIU Lu-Xiang. Gene mapping of apical spikelet degeneration mutant asd1 in wheat [J]. Acta Agronomica Sinica, 2022, 48(8): 1905-1913. |
[8] | HUANG Fu-Deng, HUANG Yan, JIN Ze-Yan, HE Huan-Huan, LI Chun-Shou, CHENG Fang-Min, PAN Gang. Physiological characters and gene mapping of a precocious leaf senescence mutant ospls7 in rice (Orzo sativa L.) [J]. Acta Agronomica Sinica, 2022, 48(7): 1832-1842. |
[9] | YANG Ying-Xia, ZHANG Guan, WANG Meng-Meng, LU Guo-Qing, WANG Qian, CHEN Rui. Molecular characterization of transgenic maize GM11061 based on high-throughput sequencing technology [J]. Acta Agronomica Sinica, 2022, 48(7): 1843-1850. |
[10] | ZHENG Chong-Ke, ZHOU Guan-Hua, NIU Shu-Lin, HE Ya-Nan, SUN wei, XIE Xian-Zhi. Phenotypic characterization and gene mapping of an early senescence leaf H5(esl-H5) mutant in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2022, 48(6): 1389-1400. |
[11] | WANG Dan, ZHOU Bao-Yuan, MA Wei, GE Jun-Zhu, DING Zai-Song, LI Cong-Feng, ZHAO Ming. Characteristics of the annual distribution and utilization of climate resource for double maize cropping system in the middle reaches of Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(6): 1437-1450. |
[12] | YANG Huan, ZHOU Ying, CHEN Ping, DU Qing, ZHENG Ben-Chuan, PU Tian, WEN Jing, YANG Wen-Yu, YONG Tai-Wen. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system [J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487. |
[13] | CHEN Jing, REN Bai-Zhao, ZHAO Bin, LIU Peng, ZHANG Ji-Wang. Regulation of leaf-spraying glycine betaine on yield formation and antioxidation of summer maize sowed in different dates [J]. Acta Agronomica Sinica, 2022, 48(6): 1502-1515. |
[14] | SHAN Lu-Ying, LI Jun, LI Liang, ZHANG Li, WANG Hao-Qian, GAO Jia-Qi, WU Gang, WU Yu-Hua, ZHANG Xiu-Jie. Development of genetically modified maize (Zea mays L.) NK603 matrix reference materials [J]. Acta Agronomica Sinica, 2022, 48(5): 1059-1070. |
[15] | XU Jing, GAO Jing-Yang, LI Cheng-Cheng, SONG Yun-Xia, DONG Chao-Pei, WANG Zhao, LI Yun-Meng, LUAN Yi-Fan, CHEN Jia-Fa, ZHOU Zi-Jian, WU Jian-Yu. Overexpression of ZmCIPKHT enhances heat tolerance in plant [J]. Acta Agronomica Sinica, 2022, 48(4): 851-859. |
|