Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2022, Vol. 48 ›› Issue (3): 590-596.doi: 10.3724/SP.J.1006.2022.14016

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Cloning and functional analysis of the promoter of purple acid phosphatase gene GmPAP14 in soybean

ZHOU Yue(), ZHAO Zhi-Hua, ZHANG Hong-Ning, KONG You-Bin*()   

  1. North China Key Laboratory for Germplasm Resources of Education Ministry/College of Agronomy, Hebei Agricultural University, Baoding 071001, Hebei, China
  • Received:2021-01-26 Accepted:2021-06-16 Online:2022-03-12 Published:2021-07-24
  • Contact: KONG You-Bin E-mail:1584868048@qq.com;kong_1985@163.com
  • Supported by:
    Natural Science Foundation of Hebei Province(C2018204090);Modern Agricultural Science and Technology Award Post-subsidy Fund Project(17927670H)

Abstract:

The expression of GmPAP14 was induced under low phosphorus condition, and its overexpression could significantly improve the utilization efficiency of organic phosphorus in Arabidopsis. In order to further explore its regulatory mechanism, the promoter sequence of GmPAP14 was cloned according to the sequence of soybean reference genome. The regulatory elements of GmPAP14 promoter were predicted by the database PLACE and PlantCARE, which showed that it contained enhancer regulatory elements, tissue-specific expression elements, root-specific expression elements, and P1BS elements (transcription factor PHR1 binding sites). PGmPAP14-2568-GUS, PGmPAP14-2238-GUS, and PGmPAP14-1635-GUS were constructed and transferred into Arabidopsis thaliana via Floral dip method. The expressional activities of three fragments of GmPAP14 promoter were analyzed through GUS staining and activity measurement. The results revealed that GmPAP14 promoter was mainly expressed in root tip under Pi condition, and GUS staining was extended to the elongation area, mature area, and root hair after low phosphorus treatment. Additionally, Arabidopsis plants with PGmPAP14-2238-GUS had the highest activity among them. These results lay an important foundation for the further study of gene regulation.

Key words: soybean, GmPAP14, promoter, induced expression, low phosphorus

Table 1

Primers used in this study"

引物名称
Primer name
引物序列
Primer sequence (5°-3°)
用途
Function
PGmPAP14-F/R F: AGTCGAAGATGGGGATGT
R: TTTGCTCAAAACCCGTG
GmPAP14启动子克隆
Cloning of GmPAP14 promoter
PGmPAP14-2568-F/R F: AAGCTTAGTCGAAGATGGGGATGT
R: GGATCCTTTGCTCAAAACCCGTG
PGmPAP14-2568克隆
Cloning of PGmPAP14-2568
PGmPAP14-2238-F/R F: AAGCTTTAACAACACAAGTTGTGAATTTC
R: GGATCCTTTGCTCAAAACCCGTG
PGmPAP14-2238克隆
Cloning of PGmPAP14-2238
PGmPAP14-1635-F/R F: AAGCTTCTGAGGAAAGACTACAGTATAC
R: GGATCCTTTGCTCAAAACCCGTG
PGmPAP14-1635克隆
Cloning of PGmPAP14-1635
PGmPAP14-Gus-F/R F: GGATCACTAGAATCACGGGTTTTG
R: ACACTTTTCCCGGCAATAACATAC
转基因植株检测
Detection of transgenic plants

Fig. 1

Cloning of GmPAP14 promoter M: DNA marker DL2000; 1: amplified production of GmPAP14 promoter."

Table 2

Analysis of the cis-elements of GmPAP14 promoter"

调控元件
Regulation element
功能注释
Functional annotation
数目
Number
W box 诱导应答元件 Induced response element 2
P1BS PHR1转录因子结合位点 PHR1-binding site 1
RHERPATEXPA7 根尖特异表达元件 Root hair-specific cis-elemen 2
OSE1ROOTNODULE 组织特异元件 Organ-specific element 5
OSE2ROOTNODULE 组织特异元件 Organ-specific element 8
ROOTMOTIFTAPOX1 组织特异元件 Organ-specific element 20
A/T rich element 增强子元件 Enhancer element 1
ABRELATERD1 脱落酸响应元件 Cis-acting element involved in the abscisic acid responsiveness 1
GAREAT 赤霉素响应元件 GA-responsive element 2
TGACG-motif 茉莉酸甲酯响应元件 Cis-acting regulatory element involved in MeJA response 2
CAAT-box 启动子和增强子区的一般顺式作用元件
Common cis-acting element in promoter and enhancer regions
40
TATA-box 转录起始位点-30核心启动子元件Core promoter element around -30 of transcription start 26

Fig. 2

Amplified fragment in 5° terminal deletion fragments of GmPAP14 promoter A: amplification of 5° terminal deletion fragments. B: the diagram of 5° terminal deletion fragments of GmPAP14 promoter. M: DNA marker DL5000; 1: amplification of PGmPAP14-2568 with Hind III/BamH I; 2: amplification of PGmPAP14-2238 with Hind III/BamH I; 3: amplification of PGmPAP14-1635 with Hind III/BamH I. B: Schematic show of 5° terminal deletion fragments of GmPAP14 promoter."

Fig. 3

Detection of transgenic Arabidopsis plants with GmPAP14 promoter M: DNA marker DL2000; 1: water control; 2: wild type control; 3: plasmid control; 4-6: transgenic Arabidopsis with PGmPAP14-2568-GUS; 7-9: transgenic Arabidopsis with PGmPAP14-2238-GUS; 10-12: transgenic Arabidopsis with PGmPAP14-1635-GUS."

Fig. 4

Chemical staining in different tissues of transgenic Arabidopsis with PGmPAP14-GUS A: root; B: leaf; C: stem; D: flower."

Fig. 5

GUS staining of transgenic Arabidopsis with 5° terminal deletion fragments of GmPAP14 promoter under different P conditions PGmPAP14-2568-GUS, PGmPAP14-2238-GUS, and PGmPAP14-1635-GUS represent transgenic Arabidopsis with 5° terminal deletion fragments of GmPAP14 promoter, respectively. +Pi: KH2PO4; +Po: phytate-P."

Fig. 6

GUS activities of transgenic Arabidopsis with 5° terminal deletion fragments of GmPAP14 promoter under different P condition PGmPAP14-2568-GUS, PGmPAP14-2238-GUS, and PGmPAP14-1635-GUS represent transgenic Arabidopsis with 5° terminal deletion fragments of GmPAP14 promoter, respectively. +Pi: KH2PO4; +Po: phytate-P. Different lowercase letters mean significant difference at the 0.05 probability level."

[1] Chiou T J, Lin S I. Signaling network in sensing phosphate availability in plants. Annu Rev Plant Biol, 2011, 62:185-206.
doi: 10.1146/arplant.2011.62.issue-1
[2] Wang L S, Li Z, Qian W Q, Guo W L, Gao X, Huang L L, Wang H, Zhu H F, Wu J W, Wang D W, Liu D. Arabidopsis purple acid phosphatase AtPAP10 is predominantly associated with the root surface and plays an important role in plant tolerance to phosphate limitation Arabidopsis purple acid phosphatase AtPAP10 is predominantly associated with the root surface and plays an important role in plant tolerance to phosphate limitation. Plant Physiol, 2011, 157:1283-1299.
doi: 10.1104/pp.111.183723
[3] Robinson W D, Carson I, Ying S, Ellis K, Plaxton W C. Arabidopsis thaliana delays leaf senescence and impairs phosphorus remobilization Arabidopsis thaliana delays leaf senescence and impairs phosphorus remobilization. New Phytol, 2012, 196:1024-1029.
doi: 10.1111/nph.12006 pmid: 23072540
[4] Deng S R, Lu L H, Li J Y, Du Z Z, Liu T T, Li W J, Xu F S, Shi L, Shou H X, Wang C. Purple acid phosphatase 10c encodes a major acid phosphatase and regulates the plant growth under phosphate deficient condition in rice. J Exp Bot, 2020, 71:4321-4332.
doi: 10.1093/jxb/eraa179
[5] Robinson W D, Park J, Tran H T, Del Vecchio H A, Ying S, Zins J L, Patel K, McKnight T D, Plaxton W C. Arabidopsis thaliana Arabidopsis thaliana. J Exp Bot, 2012, 63:6531-6542.
doi: 10.1093/jxb/ers309 pmid: 23125358
[6] Lu L H, Qiu W M, Gao W W, Tyerman S D, Shou H X, Wang C. OsPAP10c, a novel secreted acid phosphatase in rice, plays an important role in the utilization of external organic phosphorus. Plant Cell Environ, 2016, 39:2247-2259.
doi: 10.1111/pce.v39.10
[7] Kong Y B, Li X H, Wang B, Li W L, Du H, Zhang C Y. GmPAP14 predominantly enhances external phytate utilization in plants GmPAP14 predominantly enhances external phytate utilization in plants. Front Plant Sci, 2018, 9:292.
doi: 10.3389/fpls.2018.00292
[8] 晁毛妮, 胡海燕, 王润豪, 陈煜, 付丽娜, 刘庆庆, 王清连. 陆地棉钾转运体基因GhHAK5启动子的克隆与功能分析. 作物学报, 2020, 46:40-51.
Chao M N, Hu H Y, Wang R H, Chen Y, Fu L N, Liu Q Q, Wang Q L. Cloning and functional analysis of promoter of potassium transporter gene GhHAK5 in upland cotton(Gossypium hirsutum L.). Acta Agron Sin, 2020, 46:40-51 (in Chinese with English abstract).
[9] 李娜娜, 刘莹, 张豪杰, 王璐, 郝心愿, 张伟富, 王玉春, 熊飞, 杨亚军, 王新超. 茶树己糖激酶基因CsHXK2的启动子克隆及表达特性分析. 作物学报, 2020, 46:1628-1638.
Li N N, Liu Y, Zhang H J, Wang L, Hao X Y, Zhang W F, Wang Y C, Xiong F, Yang Y J, Wang X C. Promoter cloning and expression analysis of the hexokinase gene CsHXK2 in tea plant(Camellia sinensis). Acta Agron Sin, 2020, 46:1628-1638 (in Chinese with English abstract).
[10] Pang J, Ryan M H, Lambers H, Siddique K H. Phosphorus acquisition and utilization in crop legumes under global change. Curr Opin Plant Biol, 2018, 45:248-254.
doi: 10.1016/j.pbi.2018.05.012
[11] Li D P, Zhu H F, Liu K F, Liu X, Leggewie G, Udvardi M, Wang D W. Arabidopsis thaliana comparative analysis and differential regulation by phosphate deprivation Arabidopsis thaliana comparative analysis and differential regulation by phosphate deprivation. J Biol Chem, 2002, 277:27772-27781.
doi: 10.1074/jbc.M204183200
[12] Hur Y J, Jin B R, Nam J, Chung Y S, Lee J H, Choi H K, Yun D J, Yi G, Kim Y H, Kim D H. OsPAP2: transgenic expression of a purple acid phosphatase up-regulated in phosphate-deprived rice suspension cells OsPAP2: transgenic expression of a purple acid phosphatase up-regulated in phosphate-deprived rice suspension cells. Biotechnol Lett, 2010, 32:163-170.
doi: 10.1007/s10529-009-0131-1
[13] Wang X R, Wang Y X, Tian J, Lim B L, Yan X L, Liao H. AtPAP15 enhances phosphorus efficiency in soybean AtPAP15 enhances phosphorus efficiency in soybean. Plant Physiol, 2009, 151:233-240.
doi: 10.1104/pp.109.138891
[14] Bozzo G G, Raghothama K G, Plaxton W C. Lycopersicon esculentum) cell cultures Lycopersicon esculentum) cell cultures. Eur J Biochem, 2002, 269:6278-6287.
pmid: 12473124
[15] Mehra P, Pandey B K, Giri J. Improvement of phosphate acquisition and utilization by a secretory purple acid phosphatase (OsPAP21b) in rice. Plant Biotechnol J, 2017, 15:1054-1067.
doi: 10.1111/pbi.2017.15.issue-8
[16] Zhang Y, Wang X Y, Lu S, Liu D. Arabidopsis, AtPAP10, is regulated by both local and systemic signals under phosphate starvation Arabidopsis, AtPAP10, is regulated by both local and systemic signals under phosphate starvation. J Exp Bot, 2014, 65:6577-6588.
doi: 10.1093/jxb/eru377 pmid: 25246445
[17] Zhang W Y, Gruszewski H A, Chevone B I, Nessler C L. Arabidopsis purple acid phosphatase with phytase activity increases foliar ascorbate Arabidopsis purple acid phosphatase with phytase activity increases foliar ascorbate. Plant Physiol, 2008, 146:431-440.
doi: 10.1104/pp.107.109934
[18] Kaida R, Hayashi T, Kaneko T S. Purple acid phosphatase in the walls of tobacco cells. Phytochemistry, 2008, 69:2546-2551.
doi: 10.1016/j.phytochem.2008.07.008 pmid: 18762304
[19] Kaida R, Satoh Y, Bulone V, Yamada Y, Kaku T, Hayashi T, Kaneko T S. Activation of β-glucan synthases by wall-bound purple acid phosphatase in tobacco cells. Plant Physiol, 2009, 150:1822-1830.
doi: 10.1104/pp.109.139287 pmid: 19493971
[20] Zhu H F, Qian W Q, Lu X Z, Li D Q, Liu X, Liu K F, Wang D W. Arabidopsis organs and functional analysis of AtPAP23 predominantly transcribed in flower Arabidopsis organs and functional analysis of AtPAP23 predominantly transcribed in flower. Plant Mol Biol, 2005, 59:581-594.
doi: 10.1007/s11103-005-0183-0
[21] Gutierrez-Alanis D, Ojeda-Rivera J O, Yong-Villalobos L, Cardenas-Torres L, Herrera-Estrella L. Adaptation to phosphate scarcity: tips from Arabidopsis roots. Trends Plant Sci, 2018, 23:721-730.
doi: 10.1016/j.tplants.2018.04.006
[22] Rubio V, Linhares F, Solano R, Martin A C, Iglesias J, Leyva A, Paz-Ares J. A conserved MYB transcription factor involved in phosphate starvation signaling both in vascular plants and in unicellular algae. Gene Dev, 2001, 15:2122-2133.
pmid: 11511543
[23] Lambers H, Hayes P E, Laliberte E, Oliveira R S, Turner B L. Leaf manganese accumulation and phosphorus-acquisition efficiency. Trends Plant Sci, 2015, 20:83-90.
doi: 10.1016/j.tplants.2014.10.007 pmid: 25466977
[24] Zhang Q, Wang C, Tian J, Li K, Shou H. Identification of rice purple acid phosphatases related to phosphate starvation signaling. Plant Biol, 2011, 13:7-15.
[25] Liu F, Wang Z Y, Ren H Y, Shen C J, Li Y, Ling H Q, Wu C Y, Lian X M, Wu P. OsPT2 and phosphate homeostasis in shoots of rice OsPT2 and phosphate homeostasis in shoots of rice. Plant J, 2010, 62:508-517.
doi: 10.1111/tpj.2010.62.issue-3
[26] Hu B, Jiang Z, Wang W, Qiu Y, Zhang Z, Liu Y, Li A, Xie J, Cao S, Zhang L, Wang Y, Xie Q, Kopriva S, Chu C. Nitrate-NRT1.1B-SPX4 cascade integrates nitrogen and phosphorus signalling networks in plants. Nat Plants, 2019, 5:401-413.
doi: 10.1038/s41477-019-0384-1
[1] KE Hui-Feng, ZHANG Zhen, GU Qi-Shen, ZHAO Yan, LI Pei-Yu, ZHANG Dong-Mei, CUI Yan-Ru, WANG Xing-Fen, WU Li-Qiang, ZHANG Gui-Yin, MA Zhi-Ying, SUN Zheng-Wen. Genome-wide association study of root biomass related traits at seeding stage under low phosphorus stress in cotton (Gossypium hirsutum L.) [J]. Acta Agronomica Sinica, 2022, 48(9): 2168-2179.
[2] LIU Cheng, ZHANG Ya-Xuan, CHEN Xian-Lian, HAN Wei, XING Guang-Nan, HE Jian-Bo, ZHANG Jiao-Ping, ZHANG Feng-Kai, SUN Lei, LI Ning, WANG Wu-Bin, GAI Jun-Yi. Wild segments associated with 100-seed weight and their candidate genes in a wild chromosome segment substitution line population [J]. Acta Agronomica Sinica, 2022, 48(8): 1884-1893.
[3] HUAI Yuan-Yuan, ZHANG Sheng-Rui, WU Ting-Ting, AZAM Muhammad, LI Jing, SUN Shi, HAN Tian-Fu, LI Bin, SUN Jun-Ming. Potential evaluation of molecular markers related to major nutritional quality traits in soybean breeding [J]. Acta Agronomica Sinica, 2022, 48(8): 1957-1976.
[4] KE Dan-Xia, HUO Ya-Ya, LIU Yi, LI Jin-Ying, LIU Xiao-Xue. Functional analysis of GmTGA26 gene under salt stress in soybean [J]. Acta Agronomica Sinica, 2022, 48(7): 1697-1708.
[5] YANG Huan, ZHOU Ying, CHEN Ping, DU Qing, ZHENG Ben-Chuan, PU Tian, WEN Jing, YANG Wen-Yu, YONG Tai-Wen. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system [J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487.
[6] CHEN Ling-Ling, LI Zhan, LIU Ting-Xuan, GU Yong-Zhe, SONG Jian, WANG Jun, QIU Li-Juan. Genome wide association analysis of petiole angle based on 783 soybean resources (Glycine max L.) [J]. Acta Agronomica Sinica, 2022, 48(6): 1333-1345.
[7] YU Chun-Miao, ZHANG Yong, WANG Hao-Rang, YANG Xing-Yong, DONG Quan-Zhong, XUE Hong, ZHANG Ming-Ming, LI Wei-Wei, WANG Lei, HU Kai-Feng, GU Yong-Zhe, QIU Li-Juan. Construction of a high density genetic map between cultivated and semi-wild soybeans and identification of QTLs for plant height [J]. Acta Agronomica Sinica, 2022, 48(5): 1091-1102.
[8] LI A-Li, FENG Ya-Nan, LI Ping, ZHANG Dong-Sheng, ZONG Yu-Zheng, LIN Wen, HAO Xing-Yu. Transcriptome analysis of leaves responses to elevated CO2 concentration, drought and interaction conditions in soybean [Glycine max (Linn.) Merr.] [J]. Acta Agronomica Sinica, 2022, 48(5): 1103-1118.
[9] PENG Xi-Hong, CHEN Ping, DU Qing, YANG Xue-Li, REN Jun-Bo, ZHENG Ben-Chuan, LUO Kai, XIE Chen, LEI Lu, YONG Tai-Wen, YANG Wen-Yu. Effects of reduced nitrogen application on soil aeration and root nodule growth of relay strip intercropping soybean [J]. Acta Agronomica Sinica, 2022, 48(5): 1199-1209.
[10] WANG Hao-Rang, ZHANG Yong, YU Chun-Miao, DONG Quan-Zhong, LI Wei-Wei, HU Kai-Feng, ZHANG Ming-Ming, XUE Hong, YANG Meng-Ping, SONG Ji-Ling, WANG Lei, YANG Xing-Yong, QIU Li-Juan. Fine mapping of yellow-green leaf gene (ygl2) in soybean (Glycine max L.) [J]. Acta Agronomica Sinica, 2022, 48(4): 791-800.
[11] LI Rui-Dong, YIN Yang-Yang, SONG Wen-Wen, WU Ting-Ting, SUN Shi, HAN Tian-Fu, XU Cai-Long, WU Cun-Xiang, HU Shui-Xiu. Effects of close planting densities on assimilate accumulation and yield of soybean with different plant branching types [J]. Acta Agronomica Sinica, 2022, 48(4): 942-951.
[12] DU Hao, CHENG Yu-Han, LI Tai, HOU Zhi-Hong, LI Yong-Li, NAN Hai-Yang, DONG Li-Dong, LIU Bao-Hui, CHENG Qun. Improving seed number per pod of soybean by molecular breeding based on Ln locus [J]. Acta Agronomica Sinica, 2022, 48(3): 565-571.
[13] WANG Juan, ZHANG Yan-Wei, JIAO Zhu-Jin, LIU Pan-Pan, CHANG Wei. Identification of QTLs and candidate genes for 100-seed weight trait using PyBSASeq algorithm in soybean [J]. Acta Agronomica Sinica, 2022, 48(3): 635-643.
[14] ZHANG Guo-Wei, LI Kai, LI Si-Jia, WANG Xiao-Jing, YANG Chang-Qin, LIU Rui-Xian. Effects of sink-limiting treatments on leaf carbon metabolism in soybean [J]. Acta Agronomica Sinica, 2022, 48(2): 529-537.
[15] LIAN Yun, WEI He, WANG Jin-She, ZHANG Hui, LEI Chen-Fang, LI Jin-Ying, LU Wei-Guo. Identification highly virulent population of soybean cyst nematode using China germplasms [J]. Acta Agronomica Sinica, 2022, 48(10): 2443-2450.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[2] Qi Zhixiang;Yang Youming;Zhang Cunhua;Xu Chunian;Zhai Zhixi. Cloning and Analysis of cDNA Related to the Genes of Secondary Wall Thickening of Cotton (Gossypium hirsutum L.) Fiber[J]. Acta Agron Sin, 2003, 29(06): 860 -866 .
[3] NI Da-Hu;YI Cheng-Xin;LI Li;WANG Xiu-Feng;ZHANG Yi;ZHAO Kai-Jun;WANG Chun-Lian;ZHANG Qi;WANG Wen-Xiang;YANG Jian-Bo. Developing Rice Lines Resistant to Bacterial Blight and Blast with Molecular Marker-Assisted Selection[J]. Acta Agron Sin, 2008, 34(01): 100 -105 .
[4] DAI Xiao-Jun;LIANG Man-Zhong;CHEN Liang-Bi. Comparison of rDNA Internal Transcribed Spacer Sequences in Oryza sativa L.[J]. Acta Agron Sin, 2007, 33(11): 1874 -1878 .
[5] WANG Bao-Hua;WU Yao-Ting;HUANG Nai-Tai;GUO Wang-Zhen;ZHU Xie-Fei;ZHANG Tian-Zhen. QTL Analysis of Epistatic Effects on Yield and Yield Component Traits for Elite Hybrid Derived-RILs in Upland Cotton[J]. Acta Agron Sin, 2007, 33(11): 1755 -1762 .
[6] WANG Chun-Mei;FENG Yi-Gao;ZHUANG Li-Fang;CAO Ya-Ping;QI Zeng-Jun;BIE Tong-De;CAO Ai-Zhong;CHEN Pei-Du. Screening of Chromosome-Specific Markers for Chromosome 1R of Secale cereale, 1V of Haynaldia villosa and 1Rk#1 of Roegneria kamoji[J]. Acta Agron Sin, 2007, 33(11): 1741 -1747 .
[7] Zhao Qinghua;Huang Jianhua;Yan Changjing. A STUDY ON THE POLLEN GERMINATION OF BRASSICA NAPUS L.[J]. Acta Agron Sin, 1986, (01): 15 -20 .
[8] ZHOU Lu-Ying;LI Xiang-Dong;WANG Li-Li;TANG Xiao;LIN Ying-Jie. Effects of Different Ca Applications on Physiological Characteristics, Yield and Quality in Peanut[J]. Acta Agron Sin, 2008, 34(05): 879 -885 .
[9] WANG Li-Xin; LI Yun-Fu; CHANG Li-Fang; HUANG Lan ;; LI Hong-Bo ; GE Ling-Ling; Liu Li-Hua ;; YAO Ji ;; ZHAO Chang-Ping ;. Method of ID Constitution for Wheat Cultivars[J]. Acta Agron Sin, 2007, 33(10): 1738 -1740 .
[10] ZHENG Tian-Qing;XU Jian-Long;FU Bing-Ying;GAO Yong-Ming;Satish VERUKA;Renee LAFITTE;ZHAI Hu-Qu;WAN Jian-Min;ZHU Ling-Hua;LI Zhi-Kang. Preliminary Identification of Genetic Overlaps between Sheath Blight Resistance and Drought Tolerance in the Introgression Lines from Directional Selection[J]. Acta Agron Sin, 2007, 33(08): 1380 -1384 .