Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2022, Vol. 48 ›› Issue (8): 2041-2052.doi: 10.3724/SP.J.1006.2022.14142

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Effects of different intercropping systems on cotton yield, biomass accumulation, and allocation

LI Xin1(), WANG Jian2, LI Ya-Bing2,*(), HAN Ying-Chun2, WANG Zhan-Biao2, FENG Lu2, WANG Guo-Ping1,2, XIONG Shi-Wu2, LI Cun-Dong1,*(), LI Xiao-Fei2,*()   

  1. 1College of Agricultural, Hebei Agricultural University / Hebei Base of State Key Laboratory of Cotton Biology, Baoding 071001, Hebei, China
    2Institute of Cotton Research, Chinese Academy of Agricultural Science / State Key Laboratory of Cotton Biology, Anyang 455000, Henan, China
  • Received:2021-08-09 Accepted:2021-11-29 Online:2022-08-12 Published:2021-12-21
  • Contact: LI Ya-Bing,LI Cun-Dong,LI Xiao-Fei E-mail:lixinhbau2015@163.com;criliyabing1@163.com;nxylcd@hebau.edu.cn;lixiaofei01@caas.cn
  • Supported by:
    National Natural Science Foundation of China(31901127)

Abstract:

The development of cotton intercropping system is the main strategy to alleviate the conflict between cotton and other crops for land in the Yellow River Basin of China, but the mechanism of cotton yield increases in cotton intercropping system is still unclear. In this study, a two-year field experiment with cotton-based intercropping systems (wheat/cotton, garlic/cotton, and peanut/cotton) and three root partitions (no, mesh, and plastic partitions) to study the effects of different crops intercropped with cotton on yield, biomass accumulation and allocation. The study showed that: (1) The land equivalent ratios (LERs) of different crops intercropped with cotton were greater than 1, indicating that the cotton intercropping system in the experiment had intercropping advantage. The resource competitiveness of wheat and garlic relative to cotton was greater than 0, indicating that wheat and garlic were dominant species in the co-growth period of wheat/cotton intercropping and garlic/cotton intercropping systems, whereas the resource competitiveness of peanuts relative to cotton was less than 0, indicating that cotton was dominant species in peanut/cotton intercropping system. (2) Dry matter accumulation of the leaf and stem in sole cotton cropping system was more than that of intercropping systems at bud stage, while the dry matter accumulation in intercropping systems was more than that in sole cotton cropping after the flowering and boll stages. The reproductive organs dry matter accumulation in intercropping systems was also higher than that in sole cotton cropping system. (3) The distribution rate of the stem and leaf in sole cotton was significantly higher than that in cotton intercropped with wheat, garlic, and peanut at bud stage and initial flowering stage, but the difference was not significant at full-bloom and open boll stages. However, the opposite pattern was observed in dry matter distribution rate of reproductive organs. These results can provide theoretical support for the mechanisms of cotton intercropping advantage and scientific basis for the productivity improvement of intercropping systems.

Key words: intercropping, root partition, yield advantage, biomass allocation

Fig. 1

Daily air temperatures and precipitation in 2019 and 2020 The change of daily maximum and minimum temperature values is presented as continuous red and blue lines, respectively. Vertical bars depict the total amount of precipitation received each day for each year."

Fig. 2

Schematic diagram of different cropping systems (a) wheat/cotton intercropping; (b) garlic/cotton intercropping; (c) peanut/cotton intercropping; (d) sole cotton."

Table 1

Growth process of cotton"

种植方式
Cropping system
分隔方式
Root
partition
生育阶段天数 Growth period (d)
出苗期
Emergence stage
苗期
Seedling stage
蕾期
Squaring stage
花铃期
Flowering and boll formation stage
全生育期
Full growth period
2019 2020 2019 2020 2019 2020 2019 2020 2019 2020
SC N 19 Aa 12 Aa 32 Ba 39 Ba 26 Ba 28 Aa 53 Aa 52 Aa 129 BCa 131 Ba
M 19 Aa 12 Aa 33 Ba 39 Ba 26 Ba 28 Aa 51 Aa 54 Aab 128 BCa 133 Ba
S 19 Aa 12 Aa 32 Ba 38 Ba 26 Ba 29 Aa 53 Aa 49 Ab 131 BCa 129 Ba
IC(W) N 19 Aa 12 Aa 34 Aa 43 Aa 26 Aa 28 Aa 54 Aa 54 Aa 133 Aa 136 Aa
M 19 Aa 12 Aa 36 Aa 42 Aa 27 Aa 29 Aa 52 Aa 51 Aab 133 Aa 133 Aa
S 19 Aa 12 Aa 35 Aa 42 Aa 27 Aa 29 Aa 52 Aa 52 Ab 133 Aa 135 Aa
IC(G) N 19 Aa 12 Aa 33 Ba 39 Ba 25 Ba 29 Aa 54 Aa 54 Aa 130 ABa 134 ABa
M 19 Aa 12 Aa 32 Ba 38 Ba 25 Ba 30 Aa 56 Aa 53 Aab 132 ABa 133 ABa
S 19 Aa 12 Aa 32 Ba 39 Ba 26 Ba 30 Aa 53 Aa 52 Ab 131 ABa 132 ABa
IC(P) N 19 Aa 12 Aa 33 Ba 38 Ba 25 Ba 29 Aa 52 Aa 55 Aa 129 Ca 135 ABa
M 19 Aa 12 Aa 33 Ba 38 Ba 24 Ba 30 Aa 52 Aa 54 Aab 128 Ca 134 ABa
S 19 Aa 12 Aa 33 Ba 38 Ba 25 Ba 30 Aa 51 Aa 51 Ab 128 Ca 130 ABa

Table 2

Yield and yield advantages in intercropping systems"

年份
Year
处理
Treatment
配对作物
Paired crops (t hm-2)
棉花
Cotton (t hm-2)
土地当量比
LER
偏土地当量比
Partial LER
配对作物相对于棉花的资源竞争力
Aggressivity
种植方式
Cropping system
分隔方式
Root
partition
间作
Inter-
crop
单作
Sole
间作
Inter-
crop
单作
Sole
配对作物
Paired
crops
棉花
Cotton
2019 W/C N 22.20 Aa 17.63 Ab 4.70 Aa 3.87 Ab 1.23 A 0.42 A 0.81 A 0.04 A
M 20.29 Aa 17.81 Ab 5.29 Aa 4.07 Ab 1.25 A 0.38 A 0.87 A -0.16 A
S 23.73 Aa 19.25 Ab 4.51 Aa 4.58 AB 1.07 A 0.41 A 0.66 A 0.24 A
平均值 Mean 22.07 a 18.23 b 4.83 a 4.17 b 1.18 A 0.40 A 0.78 A 0.04 A
G/C N 14.37 Aa 9.72 Aa 4.80 Aa 3.87 Ab 1.38 A 0.53 A 0.86 A 0.30 A
M 15.75 Aa 11.91 Aa 5.17 Aa 4.07 Ab 1.32 A 0.47 A 0.86 A 0.12 A
S 13.77 Aa 12.37 Aa 5.38 Aa 4.58 AB 1.17 A 0.38 A 0.79 A -0.03 A
平均值 Mean 14.63 a 11.33 b 5.11 a 4.17 b 1.29 A 0.46 A 0.83 A 0.13 A
P/C N 4.06 Aa 6.40 Aa 5.75 Aa 3.87 Ab 1.21 A 0.22 A 0.99 A -0.82 A
M 4.41 Aa 5.51 Aa 5.07 Aa 4.07 Ab 1.11 A 0.27 A 0.84 A -0.47 A
S 4.03 Aa 5.71 Aa 5.93 Aa 4.58 Aa 1.10 A 0.23 A 0.87 A -0.59 A
平均值 Mean 4.17 b 5.87 a 5.58 a 4.17 b 1.14 A 0.24 A 0.90 A -0.63 A
2020 W/C N 16.73 Aa 12.78 Ab 4.08 Aa 3.01 Ab 1.35 A 0.44 A 0.91 A -0.03 A
M 16.10 Aa 11.06 Ab 3.99 Aa 3.08 Ab 1.35 A 0.49 A 0.87 A 0.16 A
S 15.05 Aa 12.70 Ab 3.82 Aa 3.15 Ab 1.22 A 0.41 A 0.81 A 0.05 A
平均值 Mean 15.96 a 12.18 b 3.97 a 3.08 b 1.31 A 0.45 A 0.86 A 0.04 A
G/C N 28.12 Aa 22.83 Ab 3.71 Aa 3.01 Ab 1.24 A 0.41 A 0.83 A -0.01A
M 28.71 Aa 22.23 Ab 3.85 Aa 3.08 Ab 1.28 A 0.44 A 0.84 A 0.05 A
S 30.04 Aa 24.69 Ab 3.87 Aa 3.15 Ab 1.24 A 0.42 A 0.82 A 0.02 A
平均值 Mean 28.96 a 23.25 b 3.81 a 3.08 b 1.25 A 0.42 A 0.83 A 0.02 A
P/C N 1.67 Bb 2.20 Ba 3.72 Aa 3.01 Ab 1.09 A 0.27 A 0.83 A -0.44 A
M 1.93 ABb 2.88 ABa 4.23 Aa 3.08 Ab 1.14 A 0.22 A 0.92 A -0.71 A
S 1.96 Ab 3.10 Aa 3.84 Aa 3.15 Ab 1.03 A 0.21 A 0.82 A -0.58 A
平均值 Mean 1.85 b 2.73 a 3.93 a 3.08 b 1.09 A 0.23 A 0.85 A -0.58 A

Table 3

Analysis of variance for the effects of different factors on yields of cotton and paired crops"

变异来源
Source of variance
小麦/棉花Wheat/cotton 大蒜/棉花Garlic/cotton 花生/棉花Peanut/cotton
小麦 Wheat 棉花 Cotton 大蒜 Garlic 棉花 Cotton 花生 Peanut 棉花 Cotton
F P F P F P F P F P F P
年份
Year
76.71 < 0.01 37.97 < 0.01 273.64 < 0.01 65.74 < 0.01 119.43 < 0.01 81.77 < 0.01
种植方式
Cropping systems
30.16 < 0.01 23.78 < 0.01 32.28 < 0.01 32.16 < 0.01 26.81 < 0.01 55.68 < 0.01
分隔方式
Root partitions
1.40 0.27 0.48 0.63 1.14 0.34 2.41 0.11 0.09 0.92 1.49 0.25
年份 × 种植方式
Year × Cropping systems
< 0.01 0.97 0.50 0.49 2.31 0.14 0.51 0.48 2.74 0.11 3.42 0.08
年份 × 分隔方式
Year × Root partitions
1.24 0.31 0.59 0.56 0.97 0.39 0.94 0.41 1.33 0.29 2.65 0.09
种植方式 × 分隔方式
Cropping systems × Root partitions
0.13 0.88 2.26 0.13 0.51 0.61 0.13 0.88 0.28 0.76 0.30 0.75
年份 × 种植方式 × 分隔方式
Year × Cropping systems × Root partitions
0.99 0.39 0.92 0.41 0.37 0.70 0.06 0.95 1.01 0.38 1.62 0.22

Table 4

Differences of cotton yield components under different treatments"

变量
Variate
种植方式
Cropping system
2019 2020
N M S 平均值Mean N M S 平均值Mean
铃重
Boll weight
(g)
SC 5.24 Aa 5.42 Aa 5.64 Aa 5.43 A 5.46 Ba 5.31 Ba 5.25 Ba 5.34 B
IC(W) 5.70 Aa 5.74 Aa 5.76 Aa 5.73 A 5.59 Aa 5.61 Aa 5.77 Aa 5.65 A
IC(G) 5.59 Aa 5.61 Aa 5.69 Aa 5.63 A 5.38 Ba 5.52 Ba 5.39 Ba 5.43 B
IC(P) 5.62 Aa 5.76 Aa 5.76 Aa 5.71 A 5.72 Aa 5.73 Aa 5.61 Aa 5.68 A
平均值 Mean 5.54 a 5.63 a 5.71 a 5.54 a 5.54 a 5.51 a
衣分
Lint percentage
(%)
SC 38.19 Aa 38.04 Aa 37.65 Aa 37.96 A 39.80 Aa 39.69 Aa 40.11 Aa 39.87 A
IC(W) 38.08 Aa 38.29 Aa 37.58 Aa 37.98 A 39.80 Aa 39.92 Aa 39.63 Aa 39.78 A
IC(G) 37.54 Aa 37.96 Aa 38.16 Aa 37.88 A 38.86 Aa 39.88 Aa 39.96 Aa 39.57 A
IC(P) 38.11 Aa 38.33 Aa 38.01 Aa 38.15 A 39.41 Aa 39.79 Aa 39.68 Aa 39.63 A
平均值 Mean 37.98 a 38.155 a 37.85 a 39.47 a 39.82 a 39.85 a
铃数
No. of bolls
(×104 bolls hm-2)
SC 73.54 Ca 74.73 Ca 79.89 Ca 76.06 C 55.07 Ba 57.93 Ba 60.13 Ba 57.71 B
IC(W) 82.33 BCa 92.49 BCa 78.72 BCa 84.51 BC 73.11 Aa 71.39 Aa 66.29 Aa 70.26 A
IC(G) 86.45 ABa 92.15 ABa 96.05 ABa 91.55 AB 68.85 Aa 69.86 Aa 71.81 Aa 70.17 A
IC(P) 101.94 Aa 87.54 Aa 103.15 Aa 97.54 A 65.17 Aa 73.90 Aa 68.32 Aa 69.13 A
平均值 Mean 86.07 a 86.73 a 89.45 a 65.55 a 68.27 a 66.64 a
变异来源
Source of variance
铃重
Boll weight
衣分
Lint
percentage
铃数
No. of bolls
铃重
Boll weight
衣分
Lint
percentage
铃数
No. of bolls
种植方式Cropping system (C) ns ns * * ns *
分隔方式Root partition (R) ns ns ns ns ns ns
种植方式×分隔方式 C × R ns ns ns ns ns ns

Table 5

Effects of different treatments on the accumulation characteristic values of cotton above-ground biomass"

年份
Year
种植方式
Cropping system
分隔方式
Root partition
R2 Wm
(×103 kg hm-2)
T1
(DAP)
T2
(DAP)
∆T
(d)
Tm
(d)
Vm
(kg hm-2 d-1)
2019 SC N 0.9300 16.22 63 112 49 87 217.98
M 0.9625 16.33 56 100 44 78 246.36
S 0.9975 17.06 63 107 44 85 255.33
IC(W) N 0.9939 14.92 55 94 38 75 256.82
M 0.9961 14.24 54 83 30 68 315.97
S 0.9958 16.69 55 91 36 73 307.66
IC(G) N 0.9975 14.21 61 101 40 81 235.14
M 0.9840 21.38 66 123 57 94 247.58
S 0.9826 19.01 68 112 43 90 288.07
IC(P) N 0.9586 16.23 65 98 33 82 322.57
M 0.9081 17.59 67 99 32 83 362.38
S 0.9831 16.83 61 110 50 85 223.06
年份
Year
种植方式
Cropping system
分隔方式
Root partition
R2 Wm
(×103 kg hm-2)
T1
(DAP)
T2
(DAP)
∆T
(d)
Tm
(d)
Vm
(kg hm-2 d-1)
2020 SC N 0.9988 11.02 66 104 38 85 189.38
M 0.9978 13.95 72 108 36 90 258.18
S 0.9976 12.36 68 101 33 85 249.06
IC(W) N 1.0000 12.85 75 110 35 92 239.92
M 0.9828 15.92 74 126 52 100 201.13
S 0.9913 17.65 79 134 55 107 210.92
IC(G) N 0.9901 13.40 68 110 42 89 208.14
M 0.9937 15.50 72 123 51 97 198.79
S 0.9999 15.32 74 111 37 93 274.08
IC(P) N 0.9939 12.55 70 102 32 86 258.46
M 0.9943 14.13 67 104 37 86 249.90
S 0.9960 16.19 71 116 45 94 235.09

Fig. 3

Above-ground biomass accumulation of cotton under different treatments (a): squaring stage (57 days after emergence in 2019, 58 days after emergence in 2020); (b): initial bloom stage (86 days after emergence in 2019, 88 days after emergence in 2020); (c): full-bloom stage (117 days after emergence in 2019, 115 days after emergence in 2020); (d): open boll stage (143 days after emergence in 2019, 134 days after emergence in 2020). Abbreviations are the same as those given in Table 1. "

Fig. 4

Distribution of dry matter at different growth stages (a): squaring stage (57 days after emergence in 2019, 58 days after emergence in 2020); (b): initial bloom stage (86 days after emergence in 2019, 88 days after emergence in 2020); (c): full-bloom stage (117 days after emergence in 2019, 115 days after emergence in 2020); (d): open boll stage (143 days after emergence in 2019, 134 days after emergence in 2020). Abbreviations are the same as those given in Table 1. "

[1] 李小飞, 韩迎春, 王国平, 王占彪, 冯璐, 杨北方, 范正义, 雷亚平, 熊世武, 邢芳芳, 李亚兵. 棉田间套复合体系提升生态系统服务功能研究进展. 棉花学报, 2020, 32: 472-482.
Li X F, Han Y C, Wang G P, Wang Z B, Feng L, Yang B F, Fan Z Y, Lei Y P, Xiong S W, Xing F F, Li Y B. Recent advances in the enhancement of agroecosystem services and functioning by cotton-based intercropping systems. Cotton Sci, 2020, 32: 472-482. (in Chinese with English abstract)
[2] 中国农业科学院棉花研究. 中国棉花栽培学. 上海: 上海科学技术出版社, 2019. pp 346-350.
Institute of Cotton Research of CAAS. Cotton Cultivation in China. Shanghai: Shanghai Scientific and Technical Publishers, 2019. pp 346-350. (in Chinese)
[3] Brooker R W, Karley A J, Newton A C, Pakeman R J, Schöb C. Facilitation and sustainable agriculture: a mechanistic approach to reconciling crop production and conservation. Funct Ecol, 2016, 30: 98-107.
doi: 10.1111/1365-2435.12496
[4] Li L, Tilman D, Lambers H, Zhang F S. Plant diversity and overyielding: insights from belowground facilitation of intercropping in agriculture. New Phytol, 2014, 203: 63-69.
doi: 10.1111/nph.12778
[5] Ren W, Hu L, Zhang J, Sun C, Tang J, Yuan Y, Chen X. Can positive interactions between cultivated species help to sustain modern agriculture? Front Ecol Environ, 2014, 12: 507-514.
doi: 10.1890/130162
[6] 罗华, 王杰, 宋勇, 欧小球, 赵志坚, 唐玲玲, 罗琳. 玉米-大豆间套作模式研究现状及其展望. 作物研究, 2020, 34: 502-506.
Luo H, Wang J, Song Y, Ou X Q, Zhao Z J, Tang L L, Luo L. Research status and prospect of maize and soybean intercropping model. Crop Res, 2020, 34: 502-506. (in Chinese with English abstract)
[7] 党小燕, 刘建国, 帕尼古丽, 王江丽, 危常州, 李隆. 棉花间作模式中作物养分竞争吸收和积累动态的研究. 植物营养与肥料学报, 2013, 19: 166-173.
Dang X Y, Liu J G, Paniguli, Wang J L, Wei C Z, Li L. Accumulation and competition of nitrogen, phosphorus and potassium in cotton-based intercropping systems in Xinjiang, China. J Plant Nutr Fert, 2013, 19: 166-173. (in Chinese with English abstract)
[8] Zhang L, Vander W W, Zhang S, Li B, Spiertz J H J. Growth, yield and quality of wheat and cotton in relay strip intercropping systems. Field Crops Res, 2007, 103: 178-188.
doi: 10.1016/j.fcr.2007.06.002
[9] 张恩和, 黄高宝. 间套种植复合群体根系时空分布特征. 应用生态学报, 2003, 8: 1301-1304.
Zhang E H, Huang G B. Temporal and spatial distribution characteristics of the crop root in intercropping system. Chin J Appl Ecol, 2003, 8: 1301-1304. (in Chinese with English abstract)
[10] 刘广才, 杨祁峰, 李隆, 孙建好. 小麦/玉米间作优势及地上部与地下部因素的相对贡献. 植物生态学报, 2008, 32: 477-484.
doi: 10.3773/j.issn.1005-264x.2008.02.027
Liu G C, Yang Q F, Li L, Sun J H. Intercropping advantage and contribution of above- and below-ground interactions in wheat-maize intercropping. J Plant Ecol, 2008, 32: 477-484. (in Chinese with English abstract)
[11] 李隆, 杨思存, 孙建好, 李晓林, 张福锁. 小麦/大豆间作中作物种间的竞争作用和促进作用. 应用生态学报, 1999, 10: 197-200.
Li L, Yang S C, Sun J H, Li X L, Zhang F S. Interspecific competition and facilitation in wheat/soybean intercropping system. Chin J Appl Ecol, 1999, 10: 197-200. (in Chinese with English abstract)
[12] Li L, Sun J H, Zhang F S, Li X L, Hengel Z R, Yang S C. Wheat/maize or wheat/soybean strip intercropping: I. Yield advantage and interspecific interactions on nutrients. Field Crops Res, 2001, 71: 123-137.
doi: 10.1016/S0378-4290(01)00156-3
[13] 肖焱波, 李隆, 张福锁. 小麦/蚕豆间作体系中的种间相互作用及氮转移研究. 中国农业科学, 2005, 38: 965-973.
Xiao Y B, Li L, Zhang F S. The interspecific nitrogen facilitation and the subsequent nitrogen transfer between the intercropped wheat and faba bean. Sci Agric Sin, 2005, 38: 965-973 (in Chinese with English abstract).
[14] 沈荔花, 李娜, 阮妙鸿, 林文雄. 间作隔根对玉米/大豆光合、产量及土壤理化性质的影响. 福建农业学报, 2020, 35: 1280-1288.
Shen L H, Li N, Ruan M H, Lin W X. Effects of interactions between roots of intercropped maize and soybean on plant photosynthesis, crop yield, and soil physiochemical properties. Fujian J Agric Sci, 2020, 35: 1280-1288. (in Chinese with English abstract)
[15] Willey R. Intercropping: its importance and research needs: Part I. Competition and yield advantages. Field Crops Abstr, 1979, 32: 1-10.
[16] 薛晓萍, 王建国, 郭文琦, 陈兵林, 尤军, 周治国. 氮素水平对初花后棉株生物量、氮素累积特征及氮素利用率动态变化的影响. 生态学报, 2006, 26: 3631-3640.
Xue X P, Wang J G, Guo W Q, Chen B L, You J, Zhou Z G. Effects of nitrogen levels on the dynamic changes of cotton plant biomass, nitrogen accumulation characteristics and nitrogen use efficiency after initial flowering. Acta Ecol Sin, 2006, 26: 3631-3640. (in Chinese with English abstract)
[17] Hauggaard N H, Ambus P, Jensen E S. Temporal and spatial distribution of roots and competition for nitrogen in pea-barley intercrops-a field study employing 32P technique. Plant Soil, 2001, 236: 63-74.
doi: 10.1023/A:1011909414400
[18] Zhang F S, Li L. Using competitive and facilitative interactions in intercropping systems enhances crop productivity and nutrient-use efficiency. Plant Soil, 2003, 248: 305-312.
doi: 10.1023/A:1022352229863
[19] Zhu J, Werf W V D, Anten N P R, Vos J, Evers J B. The contribution of phenotypic plasticity to complementary light capture in plant mixtures. New Phytol, 2015, 207: 1213-1222.
doi: 10.1111/nph.13416
[20] Cong W F, Hoffland E, Li L, Six J, Sun J H, Bao X G, Zhang F S, Werf W V D. Intercropping enhances soil carbon and nitrogen. Global Change Biol, 2015, 21: 1715-1726.
doi: 10.1111/gcb.12738
[21] 王自奎, 吴普特, 赵西宁, 李正中, 付小军. 作物间套作群体光能截获和利用机理研究进展. 自然资源学报, 2015, 30: 1057-1066.
Wang Z K, Wu P T, Zhao X N, Li Z Z, Fu X J. A review of light interception and utilization by intercropped canopies. J Nat Res, 2015, 30: 1057-1066. (in Chinese with English abstract)
[22] Li Q S, Wu L K, Chen J, Khan M A, Luo X M, Lin W X. Biochemical and microbial properties of rhizospheres under maize/peanut intercropping. J Integr Agric, 2016, 15: 101-110.
doi: 10.1016/S2095-3119(15)61089-9
[23] 吕越, 吴普特, 陈小莉, 王玉宝, 赵西宁. 地上部与地下部作用对玉米/大豆间作优势的影响. 农业机械学报, 2014, 45(1): 129-136.
Lyu Y, Wu P T, Chen X L, Wang Y B, Zhao X N. Effect of above- and below-ground interactions on maize/soybean intercropping advantage. Trans CSAM, 2014, 45(1): 129-136. (in Chinese with English abstract)
[24] Li B, Li Y Y, Wu H M, Zhang F F, Li C J, Li X X, Lambers H, Li L. Root exudates drive interspecific facilitation by enhancing nodulation and N2 fixation. Proc Natl Acad Sci USA, 2016, 113: 6496-6501.
doi: 10.1073/pnas.1523580113
[25] Liang J P, He Z J. Cotton/mung bean intercropping improves crop productivity, water use efficiency, nitrogen uptake, and economic benefits in the arid area of Northwest China. Agric Water Manage, 2020, 240: 106277.
doi: 10.1016/j.agwat.2020.106277
[26] 李伶俐, 阮元, 刘伟, 马宗斌, 朱伟. 间套紫花苜蓿对棉花生长发育、产量及棉田土壤微生物和酶活性的影响. 河南农业科学, 2019, 48(6): 52-59.
Li L L, Ruan Y, Liu W, Ma Z B, Zhu W. Effects of intercropping alfalfa on growth and yield of cotton, microorganism and enzyme activities of cotton field soil. J Henan Agric Sci, 2019, 48(6): 52-59. (in Chinese with English abstract)
[27] Li L, Sun J J, Zhang F S, Li X L, Yang S C, Rengel Z. Wheat/maize or wheat/soybean strip intercropping: I. Yield advantage and interspecific interactions on nutrients. Field Crops Res, 2001, 71: 123-137.
doi: 10.1016/S0378-4290(01)00156-3
[28] Li L, Sun J H, Zhang F S, Li X L, Rengel Z, Yang S C. Wheat/maize or wheat/soybean strip intercropping: II. Recovery or compensation of maize and soybean after wheat harvesting. Field Crops Res, 2001, 71: 173-183.
doi: 10.1016/S0378-4290(01)00157-5
[29] 魏红国. 杏棉间作对棉花冠层结构、光合生产及养分运移特征的影响研究. 新疆农业大学硕士学位论文,新疆乌鲁木齐, 2011.
Wei H G. Study on Canopy Structure, Photosynthesis Production and Nutrients Transfer Characteristics of Cotton in Apricot-cotton Intercropping System. MS Thesis of Xinjiang Agricultural University, Urumqi, Xinjiang, China, 2011. (in Chinese with English abstract)
[30] Huang C D, Liu Q Q, Gou F, Li X L, Zhang C C, van der Werf W, Zhang F S. Plant growth patterns in a tripartite strip relay intercrop are shaped by asymmetric aboveground competition. Field Crops Res, 2017, 201: 41-51.
doi: 10.1016/j.fcr.2016.10.021
[31] 齐万海, 柴强. 不同隔根方式下间作小麦玉米的竞争力及产量响应. 中国生态农业学报, 2010, 18: 31-34.
Qi W H, Chai Q. Yield response to wheat/maize competitiveness in wheat/maize intercropping system under different root partition patterns. Chin J Eco-Agric, 2010, 18: 31-34. (in Chinese with English abstract)
doi: 10.3724/SP.J.1011.2010.00031
[32] Li L, Sun J H, Zhang F S, Guo T W, Bao X G, Smith F A, Smith S E. Root distribution and interactions between intercropped species. Oecologia, 2006, 147: 280-290.
doi: 10.1007/s00442-005-0256-4
[1] LIN Zhi-Min, QIN Xian-Jin, WU Hong-Miao, PANG Zi-Qin, LIN Wen-Xiong. Differential response of different Radix pseudostellariae cultivars to continuous cropping stress and its intraspecific intercropping effects [J]. Acta Agronomica Sinica, 2022, 48(9): 2351-2365.
[2] YANG Huan, ZHOU Ying, CHEN Ping, DU Qing, ZHENG Ben-Chuan, PU Tian, WEN Jing, YANG Wen-Yu, YONG Tai-Wen. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system [J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487.
[3] PENG Xi-Hong, CHEN Ping, DU Qing, YANG Xue-Li, REN Jun-Bo, ZHENG Ben-Chuan, LUO Kai, XIE Chen, LEI Lu, YONG Tai-Wen, YANG Wen-Yu. Effects of reduced nitrogen application on soil aeration and root nodule growth of relay strip intercropping soybean [J]. Acta Agronomica Sinica, 2022, 48(5): 1199-1209.
[4] SONG Li-Jun, NIE Xiao-Yu, HE Lei-Lei, KUAI Jie, YANG Hua, GUO An-Guo, HUANG Jun-Sheng, FU Ting-Dong, WANG Bo, ZHOU Guang-Sheng. Screening and comprehensive evaluation of shade tolerance of forage soybean varieties [J]. Acta Agronomica Sinica, 2021, 47(9): 1741-1752.
[5] DANG Ke, GONG Xiang-Wei, LYU Si-Ming, ZHAO Guan, TIAN Li-Xin, JIN Fei, YANG Pu, FENG Bai-Li, GAO Xiao-Li. Effects of nitrogen application rate on photosynthetic characteristics and yield of mung bean under the proso millet and mung bean intercropping [J]. Acta Agronomica Sinica, 2021, 47(6): 1175-1187.
[6] WANG Yi-Fan, YIN Wen, HU Fa-Long, FAN Hong, FAN Zhi-Long, ZHAO Cai, YU Ai-Zhong, CHAI Qiang. Response of photosynthetic performance of intercropped wheat to interaction intensity between above- and below-ground [J]. Acta Agronomica Sinica, 2021, 47(5): 929-941.
[7] LUO Kai, XIE Chen, WANG Jin, WANG Tian, HE Shun, YONG Tai-Wen, YANG Wen-Yu. Effect of exogenous plant growth regulators on carbon-nitrogen metabolism and flower-pod abscission of relay strip intercropping soybean [J]. Acta Agronomica Sinica, 2021, 47(4): 752-760.
[8] ZHANG Jin-Dan, FAN Hong, DU Jin-Yong, YIN Wen, FAN Zhi-Long, HU Fa-Long, CHAI Qiang. Synchronously higher planting density can increase yield via optimizing interspecific interaction of intercropped wheat and maize [J]. Acta Agronomica Sinica, 2021, 47(12): 2481-2489.
[9] WANG Fei, GUO Bin-Bin, SUN Zeng-Guang, YIN Fei, LIU Ling, JIAO Nian-Yuan, FU Guo-Zhan. Effects of elevated temperature and CO2 concentration on growth and yield of maize under intercropping with peanut [J]. Acta Agronomica Sinica, 2021, 47(11): 2220-2231.
[10] QIN Xiao-Min, PAN Hao-Nan, XIAO Jing-Xiu, TANG Li, ZHENG Yi. Effects of maize and soybean intercropping on nodule growth, nitrogen fixation of soybean under low phosphorus condition [J]. Acta Agronomica Sinica, 2021, 47(11): 2268-2277.
[11] REN Yuan-Yuan, ZHANG Li, YU Yao-Chuang, ZHANG Yan-Jun, ZHANG Sui-Qi. Competitive effect of soybean density on yield formation in maize/soybean intercropping systems [J]. Acta Agronomica Sinica, 2021, 47(10): 1978-1987.
[12] DU Jin-Yong,CHAI Qiang,WANG Yi-Fan,FAN Hong,HU Fa-Long,YIN Wen,LI Deng-Ye. Effect of above- and below-ground interaction intensity on photosynthetic characteristics of wheat-maize intercropping [J]. Acta Agronomica Sinica, 2019, 45(9): 1398-1406.
[13] Yong-Fu REN,Guo-Peng CHEN,Tian PU,Cheng CHEN,Jin-Xi ZENG,Xiao PENG,Yan-Wei MA,Wen-Yu YANG,Xiao-Chun WANG. Responses of photosynthetic characteristics to low light stress in ear leaves of high photosynthetic efficiency maize at narrow row of maize-soybean strip intercropping system [J]. Acta Agronomica Sinica, 2019, 45(5): 728-739.
[14] Ke DANG,Xiang-Wei GONG,Guang-Hua CHEN,Guan ZHAO,Long LIU,Hong-Lu WANG,Pu YANG,Bai-Li FENG. Nitrogen accumulation, metabolism, and yield of proso millet in proso millet- mung bean intercropping systems [J]. Acta Agronomica Sinica, 2019, 45(12): 1880-1890.
[15] Tai-Wen YONG,Ping CHEN,Xiao-Ming LIU,Li ZHOU,Chun SONG,Xiao-Chun WANG,Feng YANG,Wei-Guo LIU,Wen-Yu YANG. Effects of Reduced Nitrogen on Soil Ammonification, Nitrification, and Nitrogen Fixation in Maize-soybean Relay Intercropping Systems [J]. Acta Agronomica Sinica, 2018, 44(10): 1485-1495.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[2] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[3] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[4] Wang Yiqun. Infection of Rhizobia to Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 32 -35 .
[5] KE Li-Ping;ZHENG Tao;WU Xue-Long;HE Hai-Yan;CHEN Jin-Qing. Analysis of Self-Incompatibility Locus Gene in Brassica napus[J]. Acta Agron Sin, 2008, 34(05): 764 -769 .
[6] CUI Xiu-Hui. Male Sterility Induced by Chemical Hybridizing Agent SQ-1 in Common Millet[J]. Acta Agron Sin, 2008, 34(01): 106 -110 .
[7] A JIA La-Tie;ZENG Long-Jun;XUE Da-Wei;HU Jiang;ZENG Da-Li;GAO Zhen-Yu;GUO Long-Biao;LI Shi-Gui;QIAN Qian
. QTL Analysis for Chlorophyll Content in Four Grain-Filling Stage in Rice[J]. Acta Agron Sin, 2008, 34(01): 61 -66 .
[8] YANG Wen-Xiong;YANG Fang-Ping;LIANG Dan;HE Zhong-Hu;SHANG Xun-Wu;XIA Xian-Chun. Molecular Characterization of Slow-Rusting Genes Lr34/Yr18 in Chinese Wheat Cultivars[J]. Acta Agron Sin, 2008, 34(07): 1109 -1113 .
[9] WANG Ying;WU Cun-Xiang;ZHANG Xue-Ming;WANG Yun-Peng;HAN Tian-Fu. Effects of Soybean Major Maturity Genes under Different Photoperiods[J]. Acta Agron Sin, 2008, 34(07): 1160 -1168 .
[10] WANG Guo-Li;GUO Zhen-Fei. Effects of Phosphorus Nutrient on the Photosynthetic Characteristics in Rice Cultivars with Different Cold-Sensitivity[J]. Acta Agron Sin, 2007, 33(08): 1385 -1389 .