Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (1): 188-199.doi: 10.3724/SP.J.1006.2023.23004

• TILLAGE & CULTIVATION ·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Relationship between root architecture and root pulling force of summer maize

ZHANG Jing1(), WANG Hong-Zhang1, REN Hao1, YIN Fu-Wei2, WU Hong-Yan2, ZHAO Bin1, ZHANG Ji-Wang1, REN Bai-Zhao1, DAI Ai-Bin3, LIU Peng1,*()   

  1. 1State Key Laboratory of Crop Science / College of Agronomy, Shandong Agricultural University, Tai’an 271018, Shandong, China
    2Agricultural Technology Extension Center, Tai’an 271000, Shandong, China
    3Dongying District Bureau of Agriculture and Rural Affairs, Dongying 257091, Shandong, China
  • Received:2022-01-08 Accepted:2022-03-25 Online:2023-01-12 Published:2022-04-20
  • Contact: LIU Peng E-mail:zhangjing971209@163.com;liup@sdau.edu.cn
  • Supported by:
    Shandong Province Key Research and Development Project(LJNY202103);Shandong Agriculture Research System(Maize, SDAIT-02-08)

Abstract:

To screen out the summer maize varieties with high root-lodging resistance and provide theoretical basis for the breeding of root-toppling resistance maize varieties to achieve resistant to lodging and high and stable yields in summer maize, the relationship between root architecture and root-lodging resistance was studied. In this experiment, to analyze the relationship between root morphology and root lodging resistance, 104 summer maize varieties widely planted in Yellow-Huaihe-Haihe Rivers region were used as materials, and the root pulling force and root related characters of different maize varieties were measured at flowering stage, and were evaluated by principal component analysis and cluster analysis. The results showed that the root pulling force of 104 varieties conformed to normal distribution with a range of 862-1092 N. There was a significant positive correlation between root pulling force and root angle, root numbers, total root number, root length, root dry weight, and yields. Based on the comprehensive root traits of different maize varieties, the experimental varieties were group into six groups according to the root lodging resistance from strong to weak. Among them, the varieties with strong root resistance were as follows: Lianyan 155, Dika 517, Qiminyu 6, Jinhai 13, Laiyu 721, Fengle 365, Liangxing 579, Denghai 605, Denghai 518, and Dedan 179. This group of maize varieties had the characteristics of higher root dry weight, root number, total root number, root angle, root length, and grain yield.

Key words: maize, resistance to root lodging, root morphology, root pulling force

Table 1

Hybrid varieties used in this study"

序号
Number
品种名称
Hybrid name
序号
Number
品种名称
Hybrid name
1 博信212 Boxin 212 53 迪卡517 Dika 517
2 道吉158 Daoji 158 54 农华5号 Nonghua 5
3 鑫研156 Xinyan 156 55 桓丰601 Huanfeng 601
4 中天303 Zhongtian 303 56 道吉1+1 Daoji 1+1
5 九圣禾2468 Jiushenghe 2468 57 好日子738 Haorizi 738
6 鲍玉3号 Baoyu 3 58 宁研519 Ningyan 519
7 鲁单9169 Ludan 9169 59 连胜253 Liansheng 253
8 京农科736 Jinnongke 736 60 中农大688 Zhongnongda 688
9 登海1717 Denghai 1717 61 天泰619 Tiantai 619
10 强盛339 Qiangsheng 339 62 鲁单9088 Ludan 9088
11 裕丰620 Yufeng 620 63 鑫瑞57 Xinrui 57
12 郑单958 Zhengdan 958 64 天泰366 Tiantai 366
13 登海371 Denghai 371 65 大京九4703 Dajingjiu 4703
14 中天308 Zhongtian 308 66 中天301 Zhongtian 301
15 邦玉519 Bangyu 519 67 登海6188 Denghai 6188
16 鑫瑞76 Xinrui 76 68 鑫瑞37 Xinrui 37
17 莱农14 Lainong 14 69 登海606 Denghai 606
18 德单179 Dedan 179 70 京科999 Jingke 999
19 丰乐37 Fengle 37 71 NK815
20 登海518 Denghai 518 72 C1210
21 金海2010 Jinhai 2010 73 C9256
22 胶玉1号 Jiaoyu 1 74 登海682 Denghai 682
23 九玉Y02 Jiuyu Y02 75 宇玉268 Yuyu 268
24 齐单805 Qidan 805 76 来玉1819 Laiyu 1819
25 NK818 77 齐民玉6号 Qimingyu 6
26 安玉706 Anyu 706 78 德发718 Defa718
27 金海13 Jinhai 13 79 登海511Denghai 511
28 济玉519 Jiyu 519 80 鑫玉518 Xinyu 518
29 鑫星321 Xinxing 321 81 登海533 Denghai 533
30 MC121 82 登海653 Denghai 653
31 郑原玉432 Zhengyuanyu 432 83 丰乐235 Fengle 235
32 MC278 84 豫禾269 Yuhe 269
33 源丰008 Yuanfeng 008 85 登海605 Denghai 605
34 来玉317 Laiyu 317 86 鲁单1号 Ludan 1
35 强盛198 Qiangsheng 198 87 宁研503 Ningyan 503
36 鑫瑞25 Xinrui 25 88 德发705 Defa 705
37 京农玉658 Jinnongyu 658 89 金来705 Jinlai 705
38 丰度191 Fengdu 191 90 德单5号Dedan 5
39 金海1911 Jinhai 1911 91 万盛69 Wansheng 69
40 金海1908 Jinhai 1908 92 农华221 Nonghua 221
41 丰乐365 Fengle 365 93 德瑞88 Derui 88
42 登海710 Denghai 710 94 齐单109 Qidan 109
43 来玉721 Laiyu 721 95 京科927 Jingke 927
44 来玉238 Laiyu 238 96 联研155 Lianyan 155
45 新单68 Xindan 68 97 宁研678 Ningyan 678
46 MC812 98 桓丰107 Huanfeng 107
47 德发106 Defa 106 99 登海1996 Denghai 1996
48 胜风1号 Shengfeng 1 100 立原296 Liyuan 296
49 金海188 Jinhai 188 101 硕秋702 Shuoqiu 702
50 德单123 Dedan 123 102 良星579 Liangxing 579
51 明天695 Mingtian 695 103 鑫研218 Xinyan 218
52 登海111 Denghai 111 104 禾硕818 Heshuo 818

Fig. 1

Frequency distribution and normal distribution curve of root pulling force of various varieties"

Fig. 2

Box diagram of root traits 1st: the first floor; 2nd: the second floor; 3rd: the third floor; 4th: the fourth floor; 5th: the fifth floor; 6th: the sixth floor; 7th: the seventh floor; 8th: the eighth floor."

Table 2

Correlation coefficient between pulling force and root angle"

指标
Index
根拔力
RPF
第1层
1st floor
第2层
2nd floor
第3层
3rd floor
第4层
4th floor
第5层
5th floor
第6层
6th floor
第7层
7th floor
第8层
8th floor
根拔力 RPF 1 0.071 0.185 0.092 0.367** 0.345** 0.249** 0.299** 0.658**
第1层 1st floor 1 0.525** 0.352** 0.323* 0.239 0.139 0.115 0.055
第2层 2nd floor 1 0.378** 0.437** 0.265** 0.128 0.184 0.217*
第3层 3rd floor 1 0.417** 0.475** 0.216* 0.233* 0.261**
第4层 4th floor 1 0.416** 0.215* 0.231* 0.367**
第5层 5th floor 1 0.413** 0.558** 0.379**
第6层 6th floor 1 0.413** 0.207*
第7层 7th floor 1 0.442**
第8层 8th floor 1

Table 3

Correlation coefficient between root pulling force and number of roots"

指标
Index
根拔力
RPF
第1层
1st floor
第2层
2nd floor
第3层
3rd floor
第4层
4th floor
第5层
5th floor
第6层
6th floor
第7层
7th floor
第8层
8th floor
根拔力 RPF 1 0.376** 0.234* 0.201** 0.422** 0.454** 0.624** 0.609** 0.207*
第1层 1st floor 1 0.438** 0.147 0.172** -0.033 0.023** 0.113** 0.158**
第2层 2nd floor 1 0.252* 0.045** -0.162** 0.067** 0.079 0.132**
第3层 3rd floor 1 0.083** -0.085 0.002 -0.05 0.078**
第4层 4th floor 1 0.256** 0.243* 0.262 0.097
第5层 5th floor 1 0.386** 0.352** 0.169
第6层 6th floor 1 0.731** 0.163
第7层 7th floor 1 0.128
第8层 8th floor 1

Fig. 3

Relationship between root pulling force and total number of root"

Table 4

Correlation between root pulling force and nodal root length"

指标
Index
根拔力
RPF
第1层
1st floor
第2层
2nd floor
第3层
3rd floor
第4层
4th floor
第5层
5th floor
第6层
6th floor
第7层
7th floor
第8层
8th floor
根拔力 RPF 1 0.115 0.240* 0.383** 0.365** 0.454** 0.495** 0.568** 0.666**
第1层 1st floor 1 0.231 0.457** 0.634** 0.623** 0.765** 0.780** 0.795**
第2层 2nd floor 1 0.272 0.501** 0.691** 0.710** 0.807** 0.855**
第3层 3rd floor 1 0.167 0.481** 0.669** 0.640* 0.873**
第4层 4th floor 1 0.256 0.474** 0.689** 0.718**
第5层 5th floor 1 0.268 0.591** 0.763**
第6层 6th floor 1 0.227 0.661**
第7层 7th floor 1 0.357
第8层 8th floor 1

Fig. 4

Relationship between root pulling force and dry matter of nodal roots"

Table 5

Correlation between root pulling force and root characters"

指标
Index
植株根拔力
RPF
根干重
RDM
节根条数
RN
节根总条数
TRN
节根着生角度
RA
节根长度
RL
植株根拔力RPF 1
根干重RDM 0.671** 1
节根条数RN 0.609** 0.379** 1
节根总条数TRN 0.870** 0.585** 0.717** 1
节根着生角度RA 0.299** 0.173 0.302** 0.279** 1
节根长度RL 0.568** 0.394** 0.313** 0.511** 0.077 1

Fig. 5

Tree diagram of correlation between root pulling force and root traits ** indicates that the correlation is significant at the 0.01 probability level (two-tailed). * indicates that the correlation is significant at the 0.05 probability level (two-tailed)."

Table 6

Principal component characteristic values and cumulative contribution rates of different maize related root traits"

成分
Ingredient
初始特征值
Initial eigen value
方差百分比
Percentage of variances (%)
累积
Accumulation (%)
PC1 2.607 31.012 31.012
PC2 1.701 28.156 59.168
PC3 1.283 24.015 83.183
PC4 0.819 9.013 92.196
PC5 0.232 7.804 100.000

Table 7

Principal component characteristic values of different root traits in maize"

指标
Index
第1主成分
PC1
第2主成分
PC2
第3主成分
PC3
根干重RDM -0.201 0.535 -0.249
每层节根条数RN 0.878 0.012 -0.198
节根总条数TRN 0.806 0.776 0.187
节根着生角度RA 0.615 0.769 0.601
节根长度RL -0.014 0.370 0.721

Fig. 6

Cluster analysis of comprehensive factor score based on root traits in summer maize"

[1] Ranum P, Juan Pablo Pea-Rosas, MN Garcia-Casal. Global maize production, utilization, and consumption. Ann New York Acad Sci, 2014, 1312: 105-112.
[2] 杨红旗, 路凤银, 郝仰坤, 董兵. 中国玉米产业现状与发展问题探讨. 中国农学通报, 2011, 27(6): 368-373.
Yang H Q, Lu F Y, Hao Y K, Dong B. Discussion on current situation and development of corn industry in China. Chin Agric Sci Bull, 2011, 27(6): 368-373 (in Chinese with English abstract).
[3] Bailey-Serres J, Parker J E, Ainsworth E A, Oldroyd G, Schroeder J I. Genetic strategies for improving crop yields. Nature, 2011, 575: 109-118.
doi: 10.1038/s41586-019-1679-0
[4] 李少昆, 赵久然, 董树亭, 赵明, 李潮海, 崔彦宏, 刘永红, 高聚林, 薛吉全, 王立春, 王璞, 陆卫平, 王俊河, 杨祁峰, 王子明. 中国玉米栽培研究进展与展望. 中国农业科学, 2017, 50: 1941-1959.
Li S K, Zhao J R, Dong S T, Zhao M, Li C H, Cui Y H, Liu Y H, Gao J L, Xue J Q, Wang L C, Wang P, Lu W P, Wang J H, Yang Q F, Wang Z M. Research progress and prospect of maize cultivation in China. Sci Agric Sin, 2017, 50: 1941-1959. (in Chinese with English abstract)
[5] 王杰, 刘实, 兰玉彬, 陈立文, 郭永青, 王颖. 基于HJ-1A/BCCD数据的玉米倒伏识别方法. 中国农业气象, 2020, 41: 121-128.
Wang J, Liu S, Lan Y B, Chen L W, Guo Y Q, Wang Y. Identification method of corn lodging based on HJ-1A/BCCD data. Chin J Agrom, 2020, 41: 121-128. (in Chinese with English abstract)
[6] 薛军, 李璐璐, 谢瑞芝, 王克如, 侯鹏, 明博, 张万旭, 张国强, 高尚, 白氏杰, 初振东, 李少昆. 倒伏对玉米机械粒收田间损失和收获效率的影响. 作物学报, 2018, 44: 1774-1781.
Xue J, Li L L, Xie R Z, Wang K R, Hou P, Ming B, Zhang W X, Zhang G Q, Gao S, Bai S J, Chu Z D, Li S K. Effects of lodging on field loss and harvest efficiency in mechanical grain harvesting of maize. Acta Agron Sin, 2018, 44: 1774-1781. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2018.01774
[7] He C, Poysa V, Yu K. Development and characterization of simple sequence repeat (SSR) markers and their use in determining relationships among Lycopersicon esculentum cultivars. Theor Appl Gene, 2003, 106: 363-373.
doi: 10.1007/s00122-002-1076-0
[8] 薛军, 王克如, 谢瑞芝, 勾玲, 张旺锋, 明博, 侯鹏, 李少昆. 玉米生长后期倒伏研究进展. 中国农业科学, 2018, 51: 1845-1854.
Xue J, Wang K, Xie R Z, Gou L, Zhang W F, Ming B, Hou P, Li S K. Advances in studies on lodging of maize at late growth stage. Sci Agric Sin, 2018, 51: 1845-1854. (in Chinese with English abstract)
[9] Sekhon R S, Joyner C N. Ackerman A J, McMahan C S, Cook D D, Robertson D J. Stalk bending strength is strongly associated with maize stalk lodging incidence across multiple environments. Field Crops Res, 2020, 249: 107737.
doi: 10.1016/j.fcr.2020.107737
[10] 杨扬, 杨建宇, 李绍明, 张晓东, 朱德海, 刘哲, 米春桥, 肖开能. 玉米倒伏胁迫影响因子的空间回归分析. 农业工程学报, 2011, 27(6): 244-249.
Yang Y, Yang J Y, Li S M, Zhang X D, Zhu D H, Liu Z, Mi C Q, Xiao K N. Spatial regression analysis of influence factors of maize lodging stress. Trans CSAE, 2011, 27(6): 244-249. (in Chinese with English abstract)
[11] 赵雪, 周顺利. 玉米抗茎倒伏能力相关性状与评价研究进展. 作物学报, 2022, 48: 15-26.
Zhao X, Zhou S L. Research progress on traits and evaluation of stem lodging resistance in maize. Acta Agron Sin, 2022, 48: 15-26. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2022.03055
[12] 田伯红. 禾谷类作物抗倒伏性的研究方法与谷子抗倒性评价. 植物遗传资源学报, 2013, 14: 265-269.
Tian B H. Study method of lodging resistance of cereal and evaluation of lodging resistance in millet. J Plant Gen Res, 2013, 14: 265-269. (in Chinese with English abstract)
[13] 曹亚娟, 沙莎, 何闻静, 韩霜, 罗红兵, 陈平平, 易镇邪. 玉米籽粒机收影响因素及其栽培调控研究进展. 中国农学通报, 2020, 36(1): 19-23.
Cao Y J, Sha S, He W J, Han S, Luo H B, Chen P P, Yi Z X. Research progress on influencing factors of corn grain harvesting and its cultivation regulation. Chin Agric Sci Bull, 2020, 36(1): 19-23. (in Chinese with English abstract)
[14] Berry P M, Baker C J, Hatley D, Dong R, Wang X, Blackburn G A, Miao Y, Sterling M, Whyatt J D. Development and application of a model for calculating the risk of stem and root lodging in maize. Field Crops Res, 2021, 262: 108037.
doi: 10.1016/j.fcr.2020.108037
[15] Bian D H, Jia G P, Cai L J, Ma Z Y, Egrinya Eneji A, Cui Y H. Effects of tillage practices on root characteristics and root lodging resistance of maize. Field Crops Res, 2016, 185: 89-96.
doi: 10.1016/j.fcr.2015.10.008
[16] 谷娇娇, 胡博文, 贾琰, 沙汉景, 李经纬, 马超, 赵宏伟. 盐胁迫对水稻根系相关性状及产量的影响. 作物杂志, 2019, (4): 176-182.
Gu J J, Hu B W, Jia Y, Sha H J, Li J W, Ma C, Zhao H W. Effects of salt stress on root traits and yield of rice. Crops, 2019, (4): 176-182. (in Chinese with English abstract)
[17] 宋朝玉, 张继余, 张清霞, 陈希群, 李祥云, 王圣健. 玉米倒伏的类型、原因及预防、治理措施. 作物杂志, 2006, (1): 36-38.
Song C Y, Zhang J Y, Zhang Q X, Chen X Q, Li X Y, Wang S J. Types, causes, prevention and control measures of maize lodging. Crops, 2006, (1): 36-38. (in Chinese with English abstract)
[18] 薛军, 王克如, 谢瑞芝, 勾玲, 张旺锋, 明博, 侯鹏, 李少昆. 玉米生长后期倒伏研究进展. 中国农业科学, 2018, 51: 1845-1854.
Xue J, Wang K, Xie R Z, Gou L, Zhang W F, Ming B, Hou P, Li S K. Advances in studies on lodging of maize at late growth stage. Sci Agric Sin, 2018, 51: 1845-1854. (in Chinese with English abstract)
[19] 黎裕, 李英慧, 杨庆文, 张锦鹏, 张金梅, 邱丽娟, 王天宇. 基于基因组学的作物种质资源研究: 现状与展望. 中国农业科学, 2015, 48: 3333-3353.
Li Y, Li Y H, Yang Q W, Zhang J P, Zhang J M, Qiu L J, Wang T Y. Crop germplasm resources based on genomics: present situation and prospect. Sci Agric Sin, 2015, 48: 3333-3353. (in Chinese with English abstract)
[20] Kuai J, Yang Y, Sun Y Y, Zhou G S, Zuo Q S, Wu J S, Ling X X. Paclobutrazol increases canola seed yield by enhancing lodging and pod shatter resistance in Brassica napus L. Field Crops Res, 2015, 180: 10-20.
doi: 10.1016/j.fcr.2015.05.004
[21] Piera-Chavez F J. Genotypic variation for lodging tolerance in spring wheat: wider and deeper root plates, a feature of low lodging, high yielding germplasm. Field Crops Res, 2020, 258: 107942.
doi: 10.1016/j.fcr.2020.107942
[22] 丰光, 景希强, 李妍妍, 王亮, 黄长玲. 玉米茎秆性状与倒伏性的相关和通径分析. 华北农学报, 2010, 25: 72-74.
doi: 10.7668/hbnxb.2010.S1.017
Feng G, Jing X Q, Li Y Y, Wang L, Huang C L. Correlation and path analysis of stalk traits and lodging property in maize. Acta Agric Sin, 2010, 25: 72-74. (in Chinese with English abstract)
[23] Xue J, Gao S, Fan Y H, Li L L, Ming B, Wang K R, Xie R Z, Hou P, Li S K. Traits of plant morphology, stalk mechanical strength, and biomass accumulation in the selection of lodging-resistant maize cultivars. Eur J Agron, 2020, 117: 126073.
doi: 10.1016/j.eja.2020.126073
[24] 杨丽雯, 张永清. 4种旱作谷类作物根系发育规律的研究. 中国农业科学, 2011, 44: 2244-2251.
Yang L W, Zhang Y Q. Study on root development of four upland cereal crops. Sci Agric Sin, 2011, 44: 2244-2251. (in Chinese with English abstract)
[25] Zhang P, YanY, Gu S C, Wang Y Y, Xu C L, Sheng D C, Li Y B, Wang P, Huang S B. Lodging resistance in maize: a function of root-shoot interactions. Eur J Agron, 2022, 132: 126393.
doi: 10.1016/j.eja.2021.126393
[26] Wang Q, Xue J, Chen J L, Fan Y H, Zhang G Q, Xie R Z, Ming B, Hou P, Wang K R, Li S K. Key indicators affecting maize stalk lodging resistance of different growth periods under different sowing dates. J Integr Agric, 2020, 19: 2419-2428.
doi: 10.1016/S2095-3119(20)63259-2
[27] Singh V, Oosterom E, Jordan D R. Morphological and architectural development of root systems in sorghum and maize. Plant Soil, 2010, 333: 287-299.
doi: 10.1007/s11104-010-0343-0
[28] 春亮, 陈范骏, 张福锁, 米国华. 不同氮效率玉米杂交种的根系生长、氮素吸收与产量形成. 植物营养与肥料学报, 2005, 11: 615-619.
Chun L, Chen F J, Zhang F S, Mi G H. Root growth, nitrogen uptake and yield formation of hybrid maize with different N efficiency. Plant Nutr Fert Sci, 2005, 11: 615-619. (in Chinese with English abstract)
[29] 易镇邪, 王璞, 屠乃美. 夏播玉米根系分布与含氮量对氮肥类型与施氮量的响应. 植物营养与肥料学报, 2009, 15(1): 91-98.
Yi Z X, Wang P, Tu N M. Responses of roots distribution and nitrogen content of summer maize to nitrogen fertilization types and amounts. Plant Nutr Fert Sci, 2009, 15(1): 91-98. (in Chinese with English abstract)
[30] Bahn M, Lattanzi F A, Hasibeder R, Wild B, Koranda M, Danese V, Brüggemann N, Schmitt M, Siegwolf R, Richter A. Responses of belowground carbon allocation dynamics to extended shading in mountain grassland. New Phytol, 2013, 198: 116-126.
doi: 10.1111/nph.12138 pmid: 23383758
[31] Poorter H, Niklas K J, Reich P B, Oleksyn J, Poot P, Mommer L. Biomass allocation to leaves, stems and roots: meta-analyses of interspecific variation and environmental control. New Phytol, 2012, 193: 30-50.
doi: 10.1111/j.1469-8137.2011.03952.x pmid: 22085245
[1] YIN Fang-Bing, LI Ya-Nan, BAO Jian-Xi, MA Ya-Jie, QIN Wen-Xuan, WANG Rui-Pu, LONG Yan, LI Jin-Ping, DONG Zhen-Ying, WAN Xiang-Yuan. Genome-wide association study and candidate genes predication of yield related ear traits in maize [J]. Acta Agronomica Sinica, 2023, 49(2): 377-391.
[2] SONG Jie, WANG Shao-Xiang, LI Liang, HUANG Jin-Ling, ZHAO Bin, ZHANG Ji-Wang, REN Bai-Zhao, LIU Peng. Effects of potassium application rate on NPK uptake and utilization and grain yield in summer maize (Zea mays L.) [J]. Acta Agronomica Sinica, 2023, 49(2): 539-551.
[3] LIU Meng, ZHANG Yao, GE Jun-Zhu, ZHOU Bao-Yuan, WU Xi-Dong, YANG Yong-An, HOU Hai-Peng. Effects of nitrogen application and harvest time on grain yield and nitrogen use efficiency of summer maize under different rainfall years [J]. Acta Agronomica Sinica, 2023, 49(2): 497-510.
[4] XU Tong, LYU Yan-Jie, SHAO Xi-Wen, GENG Yan-Qiu, WANG Yong-Jun. Effect of different times of spraying chemical regulator on the canopy structure and grain filling characteristics of high planting densities [J]. Acta Agronomica Sinica, 2023, 49(2): 472-484.
[5] SUN Zhi-Chao, ZHANG Ji-Wang. Physiological mechanism and regulation effect of low light on maize yield formation [J]. Acta Agronomica Sinica, 2023, 49(1): 12-23.
[6] CHEN Bing-Jie, ZHANG Fu-Liang, YANG Shuo, LI Xiao-Li, HE Tang-Qing, ZHANG Chen-Xi, TIAN Ming-Hui, WU Mei, HAO Xiao-Feng, ZHANG Xue-Lin. Effects of arbuscular mycorrhizae fungi on maize physiological characteristics during grain filling stage, yield, and grain quality under different nitrogen fertilizer forms [J]. Acta Agronomica Sinica, 2023, 49(1): 249-261.
[7] WANG Rui-Pu, DONG Zhen-Ying, GAO Yue-Xin, BAO Jian-Xi, YIN Fang-Bing, LI Jin-Ping, LONG Yan, WAN Xiang-Yuan. Genome-wide association study and candidate gene prediction of kernel starch content in maize [J]. Acta Agronomica Sinica, 2023, 49(1): 140-152.
[8] SHANG Meng-Fei, SHI Xiao-Yu, ZHAO Jiong-Chao, LI Shuo, CHU Qing-Quan. Spatiotemporal variation of high temperature stress in different regions of China under climate change [J]. Acta Agronomica Sinica, 2023, 49(1): 167-176.
[9] DUAN Can-Xing, CUI Li-Na, XIA Yu-Sheng, DONG Huai-Yu, YANG Zhi-Huan, HU Qing-Yu, SUN Su-Li, LI Xiao, ZHU Zhen-Dong, WANG Xiao-Ming. Precise characterization and analysis of maize germplasm resources for resistance to Fusarium ear rot and Gibberella ear rot [J]. Acta Agronomica Sinica, 2022, 48(9): 2155-2167.
[10] ZHANG Zhen-Bo, QU Xin-Yue, YU Ning-Ning, REN Bai-Zhao, LIU Peng, ZHAO Bin, ZHANG Ji-Wang. Effects of nitrogen application rate on grain filling characteristics and endogenous hormones in summer maize [J]. Acta Agronomica Sinica, 2022, 48(9): 2366-2376.
[11] GUO Yao, CHAI Qiang, YIN Wen, FAN Hong. Research progress of photosynthetic physiological mechanism and approaches to application in dense planting maize [J]. Acta Agronomica Sinica, 2022, 48(8): 1871-1883.
[12] WANG Tian-Bo, HE Wen-Xue, ZHANG Jun-Ming, LYU Wei-Zeng, LIANG Yu-Huan, LU Yang, WANG Yu-Lu, GU Feng-Xu, SONG Ci, CHEN Jun-Ying. ROS production and ATP synthase subunit mRNAs integrity in artificially aged maize embryos [J]. Acta Agronomica Sinica, 2022, 48(8): 1996-2006.
[13] PEI Li-Zhen, CHEN Yuan-Xue, ZHANG Wen-Wen, XIAO Hua, ZHANG Sen, ZHOU Yuan, XU Kai-Wei. Effects of organic material returned on photosynthetic performance and nitrogen metabolism of ear leaf in summer maize [J]. Acta Agronomica Sinica, 2022, 48(8): 2115-2124.
[14] YANG Ying-Xia, ZHANG Guan, WANG Meng-Meng, LU Guo-Qing, WANG Qian, CHEN Rui. Molecular characterization of transgenic maize GM11061 based on high-throughput sequencing technology [J]. Acta Agronomica Sinica, 2022, 48(7): 1843-1850.
[15] WANG Dan, ZHOU Bao-Yuan, MA Wei, GE Jun-Zhu, DING Zai-Song, LI Cong-Feng, ZHAO Ming. Characteristics of the annual distribution and utilization of climate resource for double maize cropping system in the middle reaches of Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(6): 1437-1450.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .