Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (3): 719-730.doi: 10.3724/SP.J.1006.2023.14195

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

QTL mapping of seed size traits based on a high-density genetic map in castor

YANG Jun-Fang1,2(), WANG Zhou1(), QIAO Lin-Yi2, WANG Ya1, ZHAO Yi-Ting1, ZHANG Hong-Bin1, SHEN DengGao1, WANG HongWei3,*(), CAO Yue1,*()   

  1. 1Institute of Industrial Crops, Shanxi Agricultural University, Taiyuan 030031, Shanxi, China
    2College of Agriculture, Shanxi Agricultural University, Taiyuan 030031, Shanxi, China
    3Social Service Department of Shanxi Agricultural University, Taiyuan 030031, Shanxi, China
  • Received:2021-10-21 Accepted:2022-06-07 Online:2023-03-12 Published:2022-07-08
  • Contact: WANG HongWei,CAO Yue E-mail:sx1987yjf@126.com;419309976@qq.com;jzswhw@163.com;caoyue1001@163.com
  • About author:First author contact:**Contributed equally to this work
  • Supported by:
    Shanxi Academy of Agricultural Sciences for Cultivating the National Natural Science Foundation(YGJPY1904);Youth Scientific Research Project of Science and Technology Department of Shanxi Province(20210302124364);Biological Breeding Engineering of Shanxi Agricultural University(YZGC050)

Abstract:

The seed size of castor (Ricinus communis L.) directly affects the yield, and there is a great difference in seed size among different castor varieties. It is of great significance to further study the genetic mechanism of castor seed size traits for the development of castor seed industry. In this study, we used monoecious inbred lines SL1 as male parent, pistillate line HCH1 as female parent 1 (Combination 1), and pistillate line HCH3 as female parent 2 (Combination 2) to construct F2 and BC1 populations, respectively. Firstly, the correlations between seed size traits were analyzed by phenotypic statistics of the two genetic populations. Secondly, based on the phenotypic data of 150 individual plants in F2 population from Combination 1, a high-density genetic map was constructed using genotyping by whole genome sequencing technology (WGS), and QTL analysis was performed for the seed size traits. Finally, the KEGG pathway enrichment and BLAST comparison were performed to determine the candidate genes in the definite QTL region. The results showed that the correlation between seed traits was different among different combinations and populations, and the correlation between seed length and width was the most significant by the phenotypic analysis. And a total of 18 QTLs were detected for four traits including 2 QTLs for seed length, 5 QTLs for seed width, 4 QTLs for seed thickness, and 7 QTLs for hundred-grain weight, which were distributed on linkage groups 1, 4, 7, 8, 9, and 10, respectively. The LOD values ranged from 3.77 to 7.40, and the contribution of variation rate ranged from 0.71% to 86.20%. Based on these results, six candidate genes (28470.m000435, 29908.m006143, 29848.m004589, 27752.m000045, 29683.m000480, and 29848.m004611) for regulating seed size were screened. This study lays a theoretical foundation for further research on fine mapping and gene cloning, molecular marker-assisted breeding and gene function analysis of castor seed size traits.

Key words: castor, high-density genetic map, seed size, QTL mapping, KEGG, candidate gene

Table 1

Phenotypic statistical analysis of seed size traits in the two groups of parents and offspring"

群体
Population
性状
Trait
统计量
Number
极小值
Min.
极大值
Max.
均值
Mean
标准差
SD
双侧
Sig.
峰度
Kurtosis
偏度
Skewness
SL1, HCH1 种子长Seed length 2 13.00 16.04 14.52 2.15 0.07
种子宽Seed width 2 9.04 9.52 9.28 0.34 0.02
种子厚Seed thickness 2 6.40 6.62 6.51 0.16 0.01
百粒重100-grain weight 2 29.62 47.20 38.41 12.43 0.14
B 种子长Seed length 217 13.09 17.22 15.13 0.82 0.00 -0.18 -0.01
种子宽Seed width 217 8.30 10.04 9.16 0.36 0.00 -0.26 -0.24
种子厚Seed thickness 217 5.40 7.31 6.39 0.30 0.00 0.28 0.21
百粒重100-grain weight 217 15.77 52.64 40.13 5.89 0.00 1.42 -0.78
D 种子长Seed length 66 12.73 16.42 14.39 0.69 0.00 0.87 -0.05
种子宽Seed width 66 8.02 9.84 9.03 0.35 0.00 0.54 -0.57
种子厚Seed thickness 66 5.70 6.71 6.35 0.21 0.00 0.04 -0.43
百粒重100-grain weight 66 24.98 43.92 37.09 4.30 0.00 0.42 -0.76
SL1, HCH3 种子长Seed length 2 13.10 16.04 14.57 2.08 0.06
种子宽Seed width 2 8.80 9.52 9.16 0.51 0.02
群体
Population
性状
Trait
统计量
Number
极小值
Min.
极大值
Max.
均值
Mean
标准差
SD
双侧
Sig.
峰度
Kurtosis
偏度
Skewness
种子厚Seed thickness 2 6.40 6.62 6.51 0.16 0.01
百粒重100-grain weight 2 35.02 47.20 41.11 8.61 0.09
A 种子长Seed length 52 13.16 16.48 14.75 0.63 0.00 0.35 0.03
种子宽Seed width 52 8.62 10.10 9.31 0.31 0.00 -0.34 -0.15
种子厚Seed thickness 52 6.00 7.04 6.37 0.24 0.00 -0.06 0.66
百粒重100-grain weight 52 34.20 48.12 41.16 3.07 0.00 -0.45 -0.10
C 种子长Seed length 41 13.28 15.54 14.41 0.55 0.00 -0.18 -0.14
种子宽Seed width 41 8.60 9.80 9.15 0.29 0.00 -0.28 0.07
种子厚Seed thickness 41 5.02 6.60 6.27 0.27 0.00 11.96 2.81
百粒重100-grain weight 41 30.90 45.64 38.88 3.16 0.00 -0.33 -0.09

Fig. 1

Sequenced parents and some seeds of F2 population a: the parents of combination 1; SL1: the male parent; HCH1: the female parent. b: some seeds of F2 population of combination 1; the letter B stands for the F2 seeds which followed by the material number."

Fig. 2

Distribution of seed size traits for sequenced F2 population"

Table 2

Correlation analysis of seed size traits in two groups of BC1 and F2 populations"

性状
Trait
种子长
Seed length
种子宽
Seed width
种子厚
Seed thickness
百粒重
100-grain weight
种子长Seed length 0.621** B 0.610** B 0.583** B
0.650** D 0.521** D 0.297* D
种子宽Seed width 0.386* C 0.505** B 0.558** B
0.551** A 0.381** D 0.323** D
种子厚Seed thickness 0.127 C -0.028 C 0.445** B
0.359** A 0.465** A 0.117 D
百粒重100-grain weight 0.560** C 0.453** C 0.411* C
0.086 A 0.108 A 0.006 A

Table 3

Statistics of genetic linkage group information"

连锁群
Linkage
标记数目
Marker number
遗传距离
Length (cM)
平均距离
Average length (cM)
最大间隙
Maximum gap
LG1 1949 1171.78 0.60 61.01
LG2 970 458.32 0.47 9.05
LG3 659 397.43 0.60 20.54
LG4 626 349.77 0.56 9.40
LG5 497 281.76 0.57 6.46
LG6 246 134.67 0.55 23.25
LG7 243 196.25 0.81 24.37
LG8 182 120.87 0.66 25.15
LG9 242 170.22 0.70 12.33
LG10 99 73.96 0.75 4.53
平均Average 571 335.50 0.59
总计Total 5713 3355.03

Fig. 3

QTL mapping results a: map of seed length; b: map of seed width; c: map of seed thickness; d: map of 100-grain weight. SL: seed length; SW: seed width; ST: seed thickness; HGW: 100-grain weight."

Table 4

QTL analysis results"

性状
Trait
染色体
Chr.
QTL 位置
Position (cM)
LOD值
LOD value
加性效应Additive effect 显性效应Dominant effect 贡献率
R2 (%)
99%置信区间
99% confidence interval
SL 1 qSL1 11.21 4.06 0.06 0.00 3.67 7.8-12.9
SL 7 qSL7 97.81 7.40 -0.02 0.00 22.16 91.2-98.9
SW 4 qSW4 169.31 3.87 0.10 -0.03 77.60 163.2-170.1
SW 7 qSW7-1 10.91 4.82 -0.05 -0.02 8.74 3.6-13.9
SW 7 qSW7-2 115.51 3.77 -0.04 0.01 11.59 107.0-119.6
SW 8 qSW8-1 96.01 4.60 -0.13 0.04 80.40 92.2-96.7
SW 8 qSW8-2 107.01 3.90 0.13 0.04 70.21 106.1-107.7
ST 4 qST4 85.51 3.87 -0.04 -0.01 23.75 83.9-88.3
ST 8 qST8-1 93.21 4.67 -0.05 0.01 86.20 90.9-96.0
ST 8 qST8-2 107.51 3.94 0.09 0.01 80.55 106.7-108.7
ST 10 qST10 71.11 5.26 -0.01 -0.01 0.71 67.5-73.0
HGW 1 qHGW1-1 3.31 4.11 -1.57 0.20 75.55 3.0-5.2
HGW 1 qHGW1-2 223.21 5.34 -1.70 0.08 30.79 223.1-236.5
HGW 1 qHGW1-3 397.91 4.30 -1.88 0.15 75.55 396.9-398.7
HGW 7 qHGW7-1 29.41 4.21 -0.27 -0.04 9.44 26.7-36.0
HGW 7 qHGW7-2 84.51 4.35 -0.26 0.13 16.60 84.1-86.2
HGW 7 qHGW7-3 97.81 4.88 -0.27 0.16 19.68 92.1-98.9
HGW 9 qHGW9 149.41 4.76 -0.23 0.26 20.05 138.2-157.3

Fig. 4

KEGG pathway of QTLs for seed width"

Table 5

Candidate genes for seed size traits"

性状位点
Trait locus
染色体
位置Scaffords
物理位置
Physical position (bp)
所在基因ID
Gene ID
拟南芥基因
Arabidopsis gene
描述
Description
qSL7, qHGW7-3,
qHGW7-2
29,848 962,738, 961,557,
961,387
29848.t000167: 29848.m004611 AT4G32190.1 参与淀粉起始的蛋白质
Protein involved in starch initiation
qST4 29,908 169,970 29908.t000194: 29908.m006143 AT1G01720.1 具有NAC结构域的转录激活家族
Belongs to a large family of putative transcriptional activators with NAC domain.
qST8-1 29,683 197,190 29683.t000018: 29683.m000480 AT2G17030.1 编码SKP1/ASK互作蛋白
Encodes a SKP1/ASK-interacting protein
qHGW1-2 27,752 2,960 27752.t000001:
27752.m000045
AT3G07870.1 F-BOX 92蛋白
F-BOX protein 92
qHGW7-3, qSL7 29,848 849,320 29848.t000145:
29848.m004589
AT1G80490.2 与在胚胎发生过程中介导生长素依赖的转录抑制密切相关
It is closely related to Topless (TPL), which mediates auxin-dependent transcriptional repression during embryogenesis
qHGW9 28,470 118,469 28470.t000014:
28470.m000435
AT5G04010 F-box家族蛋白
F-box family protein
[1] Alexandrov O S, Karlov G I. Molecular cytogenetic analysis and genomic organizations of major DNA repeats in castor bean (Ricinus communis L.). Mol Genet Genomics, 2016, 291: 775-778.
doi: 10.1007/s00438-015-1145-0 pmid: 26589420
[2] 包春光, 黄凤兰, 朱国立, 何智彪, 彭木, 陈晓凤, 罗蕊, 赵永. 蓖麻种子性状的研究进展. 内蒙古农业科技, 2014, (6): 102-104.
Bao C G, Huang F L, Zhu G L, He Z B, Peng M, Chen X F, Luo R, Zhao Y. The research progress of seed character in castor. Inner Mongolia Agric Sci Technol, 2014, (6): 102-104. (in Chinese with English abstract)
[3] Sun X, Ouyang M, Guo J, Ma J, Lu C, Adam Z, Zhang L. The thylakoid protease Deg1 is involved in photosystem-II assembly in Arabidopsis thaliana. Plant J Cell Mol Biol, 2010, 62: 240-249.
doi: 10.1111/j.1365-313X.2010.04140.x
[4] Duan P, Rao Y, Zeng D, Yang Y, Xu R, Zhang B, Dong G, Qian Q, Li Y. SMALL GRAIN 1, which encodes a mitogen-activated protein kinase 4, influences grain size in rice. Plant J Cell Mol Biol, 2014, 77: 547-557.
doi: 10.1111/tpj.12405
[5] Schruff M C, Spielman M, Tiwari S, Adams S, Fenby N, Scott R J. The AUXIN RESPONSE FACTOR 2 gene of Arabidopsis links auxin signal, cell division, and the size of seeds and other organs. Development, 2006, 133: 251-261.
doi: 10.1242/dev.02194 pmid: 16339187
[6] Si L, Chen J, Huang X, Gong H, Luo J, Hou Q, Zhou T, Lu T, Zhu J, Shang-Guan Y, Chen E, Gong C, Zhao Q, Jing Y, Zhao Y, Li Y, Cui L, Fan D, Lu Y, Weng Q, Wang Y, Zhan Q, Liu K, Wei X, An K, An G, Han B. OsSPL13 controls grain size in cultivated rice. Nat Genet, 2016, 48: 447-456.
doi: 10.1038/ng.3518
[7] Shomura A, Izawa T, Ebana K, Ebitani T, Kanegae H, Konishi S, Yano M. Deletion in a gene associated with grain size increased yields during rice domestication. Nat Genet, 2008, 40: 1023-1028.
doi: 10.1038/ng.169 pmid: 18604208
[8] Qiu L J, Yang C, Tian B, Yang J B, Liu A Z. Exploiting EST databases for the development and characterization of EST-SSR markers in castor bean (Ricinus communis L.). BMC Plant Biol, 2010, 10: 278.
doi: 10.1186/1471-2229-10-278
[9] Gerard A, Amber W, Pablo D R, Agenes P C, Jacques R, Paul K. Worldwide genotyping of castor bean germplasm (Ricinus communis L.) using AFLPs and SSRs. Genet Resour Crop Evol, 2008, 55: 365-378.
doi: 10.1007/s10722-007-9244-3
[10] 包春光, 黄凤兰, 朱国立, 刘浩, 杜娟, 彭木, 陈晓凤, 赵永. 与蓖麻种子大小性状连锁的RAPD分析. 华北农学报, 2015, 30(5): 108-114.
doi: 10.7668/hbnxb.2015.05.018
Bao C G, Huang F L, Zhu G L, Liu H, Du J, Peng M, Chen X F, Zhao Y. RAPD analysis of castor seed size traits linkage. Acta Agric Boreali-Sin, 2015, 30(5): 108-114. (in Chinese with English abstract)
[11] Kim H C, Lei P, Wang A Z, Liu S, Zhao Y, Huang F L, Yu Z L, Zhu G L, He Z B, Tan D Y, Wang H W, Meng F J. Genetic diversity of castor bean (Ricinus communis L.) revealed by ISSR and RAPD markers. Agronomy, 2021, 11: 457.
doi: 10.3390/agronomy11030457
[12] Yu A M, Li F, Xu W, Wang Z, Sun C, Han B, Wang Y, Wang B, Cheng X, Liu A. Application of a high-resolution genetic map for chromosome-scale genome assembly and fine QTLs mapping of seed size and weight traits in castor bean. Sci Rep, 2019, 9: 11950.
doi: 10.1038/s41598-019-48492-8 pmid: 31420567
[13] Fan W, Lu J, Pan C, Tan M, Lin Q, Liu W, Li D, Wang L, Hu L, Wang L, Chen C, Wu A, Yu X, Ruan J, Yu J, Hu S, Yan X, Lyu S, Cui P. Sequencing of Chinese castor lines reveals genetic signatures of selection and yield-associated loci. Nat Commun, 2019, 10: 3418.
doi: 10.1038/s41467-019-11228-3 pmid: 31366935
[14] 陆建军. 蓖麻重要农艺性状关联分析及野生种基因组组装. 中国科学院大学(中国科学院武汉植物园)博士学位论文, 湖北武汉, 2021.
Lu J J. Genome-wide Association Analysis of Important Agronomic Traits in Castor and Wild Castor Genome Assembly. PhD Dissertation of Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, China, 2021. (in Chinese with English abstract)
[15] 杨俊芳, 曹越, 王宙, 王亚, 张宏斌, 赵宜婷, 王宏伟. 蓖麻高密度遗传图谱构建亲本SNP多态性分析. 江苏农业科学, 2021, 49(9): 53-57.
Yang J F, Cao Y, Wang Z, Wang Y, Zhang H B, Zhao Y T, Wang H W. Polymorphism analysis of SNP molecular markers between parents for a high-density genetic map in castor bean. Jiangsu Agric Sci, 2021, 49(9): 53-57. (in Chinese with English abstract)
[16] 李慧慧, 张鲁燕, 王建康. 数量性状基因定位研究中若干常见问题的分析与解答. 作物学报, 2010, 36: 918-931.
doi: 10.3724/SP.J.1006.2010.00918
Li H H, Zhang L Y, Wang J K. Analysis and answers to frequently asked questions in quantitative trait locus mapping. Acta Agron Sin, 2010, 36: 918-931. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2010.00918
[17] Chen J, Wang N, Fang L C, Liang Z C, Li S H, Wu B H. Construction of a high-density genetic map and QTLs mapping for sugars and acids in grape berries. BMC Plant Biol, 2015, 15: 28.
doi: 10.1186/s12870-015-0428-2 pmid: 25644551
[18] Jiang N, Shi S, Shi H, Khanzada H, Wassan G M, Zhu C, Peng X, Yu Q, Chen X, He X, Fu J, Hu L, Xu J, Ou-Yang L, Sun X, Zhou D, He H, Bian J. Mapping QTL for seed germinability under low temperature using a new high density genetic map of rice. Front Plant Sci, 2017, 8: 1223.
doi: 10.3389/fpls.2017.01223
[19] Zhao Y, Su K, Wang G, Zhang L, Zhang J, Li J, Guo Y. High-density genetic linkage map construction and quantitative trait locus mapping for hawthorn (Crataegus pinnatififida Bunge). Sci Rep, 2017, 7: 5492.
doi: 10.1038/s41598-017-05756-5
[20] Liu S, Yin X G, Lu J N, Liu C, Bi C, Zhu H B, Shi Y Z, Zhang D, Wen D Y, Zheng J, Cui Y, Li W J. The first genetic linkage map of Ricinus communis L. based on genome-SSR markers. Ind Crops Prod, 2016, 89: 103-108.
doi: 10.1016/j.indcrop.2016.04.063
[21] Lu J N, Shi Y Z, Yin X G, Liu S, Liu C, Wen D Y, Li W J, He X L, Yang T. The genetic mechanism of sex type, a complex quantitative trait, in Ricinus communis L. Ind Crops Prod, 2019, 128: 590-598.
doi: 10.1016/j.indcrop.2018.11.023
[22] Tomar R S, Parakhia M V, Rathod V M, Thakkar J R, Padhiyar S M, Thummar V D, Dalal H, Kothari V V, Jasminkumar K, Dhingani R M, Golakiya B A. Development of linkage map and identification of QTLs responsible for fusarium wilt resistance in castor (Ricinus communis L.). Res J Biotechnol, 2016, 11: 67-73.
[23] Tomar R S, Parakhia M V, Rathod V M, Thakkar J R, Padhiyar S M, Thummar V D, Dalal H, Kothari V V, Jasminkumar K, Dhingani R M, Pritesh S, Golakiya B A. Molecular mapping and identification of QTLs responsible for charcoal rot resistance in castor (Ricinus communis L.). Ind Crops Prod, 2017, 95: 184-190.
doi: 10.1016/j.indcrop.2016.10.026
[24] Garcia D, Saingery V, Chambrier P, Mayer U, Jürgens G, Berger F. Arabidopsis haiku mutants reveal new controls of seed size by endosperm. Plant Physiol, 2003, 131: 1661-1670.
doi: 10.1104/pp.102.018762
[25] Wang A, Garcia D, Zhang H, Feng K, Chaudhury A, Berger F, Peacock W J, Dennis E S, Luo M. The VQ motif protein IKU1 regulates endosperm growth and seed size in Arabidopsis. Plant J Cell Mol Biol, 2010, 63: 670-679.
doi: 10.1111/j.1365-313X.2010.04271.x
[26] Xu R, Yu H, Wang J, Duan P, Zhang B, Li J, Li Y, Xu J, Lu J, Li N, Chai T, Li Y. A mitogen-activated protein kinase phosphatase influences grain size and weight in rice. Plant J Cell Mol Biol, 2018, 95: 937-946.
doi: 10.1111/tpj.13971
[27] Matsuta S, Nishiyama A, Chaya G, Itoh T, Miura K, Iwasaki Y. Characterization of heterotrimeric G protein γ4 subunit in rice. Int J Mol Sci, 2018, 19: 3596.
doi: 10.3390/ijms19113596
[28] Ge L, Yu J, Wang H, Luth D, Bai G, Wang K, Chen R. Increasing seed size and quality by manipulating BIG SEEDS1 in legume species. Proc Natl Acad Sci USA, 2016, 113: 12414-12419.
pmid: 27791139
[29] Wang S, Wu K, Yuan Q, Liu X, Liu Z, Lin X, Zeng R, Zhu H, Dong G, Qian Q, Zhang G, Fu X. Control of grain size, shape and quality by OsSPL16 in rice. Nat Genetics, 2012, 44: 950-954.
doi: 10.1038/ng.2327
[30] Achard P, Gusti A, Cheminant S, Alioua M, Dhondt S, Coppens F, Beemster G T, Genschik P. Gibberellin signaling controls cell proliferation rate in Arabidopsis. Curr Biol, 2009, 19: 1188-1193.
doi: 10.1016/j.cub.2009.05.059
[31] Silverstone A L, Jung H S, Dill A, Kawaide H, Kamiya Y, Sun T P. Repressing a repressor: gibberellin-induced rapid reduction of the RGA protein in Arabidopsis. Plant Cell, 2001, 13: 1555-1565.
doi: 10.1105/tpc.010047 pmid: 11449051
[32] Jensen M K, Hagedorn P H, Torres-Zabala M D, Grant M R, Rung J H, Collinge D B, Lyngkjaer M F. Transcriptional regulation by an NAC (NAM-ATAF1, 2-CUC2) transcription factor attenuates ABA signalling for efficient basal defence towards Blumeria graminis f. sp. hordei in Arabidopsis. Plant J Cell Mol Biol, 2008, 56: 867-880.
doi: 10.1111/j.1365-313X.2008.03646.x
[33] 李志永. 水稻种子特异表达基因SCP46 的克隆及功能鉴定. 中国农业科学院博士学位论文, 北京, 2017.
Li Z Y. Cloning and Functional Identification of a Seed-specific Gene SCP46 in Rice. PhD Dissertation of Chinese Academy of Agricultural Sciences,Beijing, China, 2017. (in Chinese with English abstract)
[34] Ulmasov T, Hagen G, Guilfoyle T J. ARF1, a transcription factor that binds to auxin response elements. Science, 1997, 276: 1865-1868.
doi: 10.1126/science.276.5320.1865 pmid: 9188533
[35] Okushima Y, Mitina I, Quach H I, Theologis A. AUXIN RESPONSE FACTOR 2 (ARF2): a pleiotropic developmental regulator. Plant J Cell Mol Biol, 2005, 43: 29-46.
doi: 10.1111/j.1365-313X.2005.02426.x
[36] Sun Y, Wang C, Wang N, Jiang X, Mao H, Zhu C, Wen F, Wang X, Lu Z, Yue G, Xu Z, Ye J. Manipulation of auxin response factor 19 affects seed size in the woody perennial Jatropha curcas. Sci Rep, 2017, 19: 40844.
[37] Song X J, Huang W, Shi M, Zhu M Z, Lin H X. A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nat Genet, 2007, 39: 623-630.
doi: 10.1038/ng2014
[38] Li Y, Zheng L, Corke F, Smith C, Bevan M W. Control of final seed and organ size by the DA1 gene family in Arabidopsis thaliana. Genes Dev, 2008, 15: 1331-1336.
[39] Du L, Li N, Chen L, Xu Y, Li Y, Zhang Y, Li C, Li Y. The ubiquitin receptor DA1 regulates seed and organ size by modulating the stability of the ubiquitin-specific protease UBP15/ SOD2 in Arabidopsis. Plant Cell, 2014, 26: 665-677.
doi: 10.1105/tpc.114.122663
[40] Xia T, Li N, Dumenil J, Li J, Kamenski A, Bevan M W, Gao F, Li Y H. The ubiquitin receptor DA1 interacts with the E3 ubiquitin ligase DA2 to regulate seed and organ size in Arabidopsis. Plant Cell, 2013, 25: 3347-3359.
doi: 10.1105/tpc.113.115063
[41] Wang Z B, Li N, Shan J, Gonzalez N, Huang X H, Wang Y C, Li Y H. SCF(SAP) controls organ size by targeting PPD proteins for degradation in Arabidopsis thaliana. Nat Commun, 2016, 7: 11192.
doi: 10.1038/ncomms11192 pmid: 27048938
[42] Li N, Liu Z, Wang Z, Ru L, Gonzalez N, Baekelandt A, Pauwels L, Goossens A, Xu R, Zhu Z, Inzé D, Li Y. STERILE APETALA modulates the stability of a repressor protein complex to control organ size in Arabidopsis thaliana. PLoS Genet, 2018, 14: e1007218.
[43] Baute J, Polyn S, De Block J, Blomme J, Van Lijsebettens M, Inzé D. F-box protein FBX92 affects leaf size in Arabidopsis thaliana. Plant Cell Physiol, 2017, 58: 962-975.
doi: 10.1093/pcp/pcx035 pmid: 28340173
[44] Hong J P, Adams E, Yanagawa Y, Matsui M, Shin R. AtSKIP18 and AtSKIP31, F-box subunits of the SCF E3 ubiquitin ligase complex, mediate the degradation of 14-3-3 proteins in Arabidopsis. Biochem Biophys Res Commun, 2017, 485: 174-180.
doi: 10.1016/j.bbrc.2017.02.046
[45] Vandromme C, Spriet C, Dauvillée D, Courseaux A, Putaux J, Wychowski A, Krzewinski F, Facon M, D’hulst C, Wattebled F. PII1: a protein involved in starch initiation that determines granule number and size in Arabidopsis chloroplast. New Phytol, 2019, 221: 356-370.
doi: 10.1111/nph.15356 pmid: 30055112
[1] YANG Bin, QIAO Ling, ZHAO Jia-Jia, WU Bang-Bang, WEN Hong-Wei, ZHANG Shu-Wei, ZHENG Xing-Wei, ZHENG Jun. QTL mapping and validation of chlorophyll content of flag leaves in wheat (Triticum aestivum L.) [J]. Acta Agronomica Sinica, 2023, 49(3): 744-754.
[2] MA Ya-Jie, BAO Jian-Xi, GAO Yue-Xin, LI Ya-Nan, QIN Wen-Xuan, WANG Yan-Bo, LONG Yan, LI Jin-Ping, DONG Zhen-Ying, WAN Xiang-Yuan. Genome-wide association analysis of plant height and ear height related traits in maize [J]. Acta Agronomica Sinica, 2023, 49(3): 647-661.
[3] YANG Shuo, WU Yang-Chun, LIU Xin-Lei, TANG Xiao-Fei, XUE Yong-Guo, CAO Dan, WANG Wan, LIU Ting-Xuan, QI Hang, LUAN Xiao-Yan, QIU Li-Juan. Fine mapping of qPRO-20-1 related to high protein content in soybean [J]. Acta Agronomica Sinica, 2023, 49(2): 310-320.
[4] YIN Fang-Bing, LI Ya-Nan, BAO Jian-Xi, MA Ya-Jie, QIN Wen-Xuan, WANG Rui-Pu, LONG Yan, LI Jin-Ping, DONG Zhen-Ying, WAN Xiang-Yuan. Genome-wide association study and candidate genes predication of yield related ear traits in maize [J]. Acta Agronomica Sinica, 2023, 49(2): 377-391.
[5] WANG Rui-Pu, DONG Zhen-Ying, GAO Yue-Xin, BAO Jian-Xi, YIN Fang-Bing, LI Jin-Ping, LONG Yan, WAN Xiang-Yuan. Genome-wide association study and candidate gene prediction of kernel starch content in maize [J]. Acta Agronomica Sinica, 2023, 49(1): 140-152.
[6] KE Hui-Feng, ZHANG Zhen, GU Qi-Shen, ZHAO Yan, LI Pei-Yu, ZHANG Dong-Mei, CUI Yan-Ru, WANG Xing-Fen, WU Li-Qiang, ZHANG Gui-Yin, MA Zhi-Ying, SUN Zheng-Wen. Genome-wide association study of root biomass related traits at seeding stage under low phosphorus stress in cotton (Gossypium hirsutum L.) [J]. Acta Agronomica Sinica, 2022, 48(9): 2168-2179.
[7] ZHANG Chao, YANG Bo, ZHANG Li-Yuan, XIAO Zhong-Chun, LIU Jing-Sen, MA Jin-Qi, LU Kun, LI Jia-Na. Mining harvest index loci based on QTL mapping and genome-wide association study in rapessed (Brassica napus L.) [J]. Acta Agronomica Sinica, 2022, 48(9): 2180-2195.
[8] YANG Fei, ZHANG Zheng-Feng, NAN Bo, XIAO Ben-Ze. Genome-wide association analysis and candidate gene selection of yield related traits in rice [J]. Acta Agronomica Sinica, 2022, 48(7): 1813-1821.
[9] TIAN Tian, CHEN Li-Juan, HE Hua-Qin. Identification of rice blast resistance candidate genes based on integrating Meta-QTL and RNA-seq analysis [J]. Acta Agronomica Sinica, 2022, 48(6): 1372-1388.
[10] YU Chun-Miao, ZHANG Yong, WANG Hao-Rang, YANG Xing-Yong, DONG Quan-Zhong, XUE Hong, ZHANG Ming-Ming, LI Wei-Wei, WANG Lei, HU Kai-Feng, GU Yong-Zhe, QIU Li-Juan. Construction of a high density genetic map between cultivated and semi-wild soybeans and identification of QTLs for plant height [J]. Acta Agronomica Sinica, 2022, 48(5): 1091-1102.
[11] HUANG Li, CHEN Yu-Ning, LUO Huai-Yong, ZHOU Xiao-Jing, LIU Nian, CHEN Wei-Gang, LEI Yong, LIAO Bo-Shou, JIANG Hui-Fang. Advances of QTL mapping for seed size related traits in peanut [J]. Acta Agronomica Sinica, 2022, 48(2): 280-291.
[12] GE Tian-Li, TIAN Yu, ZHANG Hao, LIU Zhang-Xiong, LI Ying-Hui, QIU Li-Juan. QTL mapping and candidate gene prediction of soybean 100-seed weight based on high-density bin map [J]. Acta Agronomica Sinica, 2022, 48(12): 2978-2986.
[13] QIN Wen-Xuan, BAO Jian-Xi, WANG Yan-Bo, MA Ya-Jie, LONG Yan, LI Jin-Ping, DONG Zhen-Ying, WAN Xiang-Yuan. Genome-wide association study of leaf angle traits and mining of elite alleles from the major loci in maize [J]. Acta Agronomica Sinica, 2022, 48(11): 2691-2705.
[14] WU Jia-Yi, YUAN Fang, MENG Li-Jiao, LI Chen-Yang, SHI Hong-Song, BAI Yan-Song, WU Xiao-Ru, LI Jia-Na, ZHOU Qing-Yuan, CUI Cui. QTL mapping and candidate genes screening of photosynthesis-related traits in Brassica napus L. during seedling stage under aluminum stress [J]. Acta Agronomica Sinica, 2022, 48(11): 2749-2764.
[15] SONG Bo-Wen, WANG Chao-Huan, ZHAO Zhe, CHEN Chun, HUANG Ming, CHEN Wei-Xiong, LIANG Ke-Qin, XIAO Wu-Ming. Mapping and analysis of QTLs for grain size in rice based on high density genetic map [J]. Acta Agronomica Sinica, 2022, 48(11): 2813-2825.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .