Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (3): 719-730.doi: 10.3724/SP.J.1006.2023.14195
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
YANG Jun-Fang1,2(), WANG Zhou1(), QIAO Lin-Yi2, WANG Ya1, ZHAO Yi-Ting1, ZHANG Hong-Bin1, SHEN DengGao1, WANG HongWei3,*(), CAO Yue1,*()
[1] |
Alexandrov O S, Karlov G I. Molecular cytogenetic analysis and genomic organizations of major DNA repeats in castor bean (Ricinus communis L.). Mol Genet Genomics, 2016, 291: 775-778.
doi: 10.1007/s00438-015-1145-0 pmid: 26589420 |
[2] | 包春光, 黄凤兰, 朱国立, 何智彪, 彭木, 陈晓凤, 罗蕊, 赵永. 蓖麻种子性状的研究进展. 内蒙古农业科技, 2014, (6): 102-104. |
Bao C G, Huang F L, Zhu G L, He Z B, Peng M, Chen X F, Luo R, Zhao Y. The research progress of seed character in castor. Inner Mongolia Agric Sci Technol, 2014, (6): 102-104. (in Chinese with English abstract) | |
[3] |
Sun X, Ouyang M, Guo J, Ma J, Lu C, Adam Z, Zhang L. The thylakoid protease Deg1 is involved in photosystem-II assembly in Arabidopsis thaliana. Plant J Cell Mol Biol, 2010, 62: 240-249.
doi: 10.1111/j.1365-313X.2010.04140.x |
[4] |
Duan P, Rao Y, Zeng D, Yang Y, Xu R, Zhang B, Dong G, Qian Q, Li Y. SMALL GRAIN 1, which encodes a mitogen-activated protein kinase 4, influences grain size in rice. Plant J Cell Mol Biol, 2014, 77: 547-557.
doi: 10.1111/tpj.12405 |
[5] |
Schruff M C, Spielman M, Tiwari S, Adams S, Fenby N, Scott R J. The AUXIN RESPONSE FACTOR 2 gene of Arabidopsis links auxin signal, cell division, and the size of seeds and other organs. Development, 2006, 133: 251-261.
doi: 10.1242/dev.02194 pmid: 16339187 |
[6] |
Si L, Chen J, Huang X, Gong H, Luo J, Hou Q, Zhou T, Lu T, Zhu J, Shang-Guan Y, Chen E, Gong C, Zhao Q, Jing Y, Zhao Y, Li Y, Cui L, Fan D, Lu Y, Weng Q, Wang Y, Zhan Q, Liu K, Wei X, An K, An G, Han B. OsSPL13 controls grain size in cultivated rice. Nat Genet, 2016, 48: 447-456.
doi: 10.1038/ng.3518 |
[7] |
Shomura A, Izawa T, Ebana K, Ebitani T, Kanegae H, Konishi S, Yano M. Deletion in a gene associated with grain size increased yields during rice domestication. Nat Genet, 2008, 40: 1023-1028.
doi: 10.1038/ng.169 pmid: 18604208 |
[8] |
Qiu L J, Yang C, Tian B, Yang J B, Liu A Z. Exploiting EST databases for the development and characterization of EST-SSR markers in castor bean (Ricinus communis L.). BMC Plant Biol, 2010, 10: 278.
doi: 10.1186/1471-2229-10-278 |
[9] |
Gerard A, Amber W, Pablo D R, Agenes P C, Jacques R, Paul K. Worldwide genotyping of castor bean germplasm (Ricinus communis L.) using AFLPs and SSRs. Genet Resour Crop Evol, 2008, 55: 365-378.
doi: 10.1007/s10722-007-9244-3 |
[10] |
包春光, 黄凤兰, 朱国立, 刘浩, 杜娟, 彭木, 陈晓凤, 赵永. 与蓖麻种子大小性状连锁的RAPD分析. 华北农学报, 2015, 30(5): 108-114.
doi: 10.7668/hbnxb.2015.05.018 |
Bao C G, Huang F L, Zhu G L, Liu H, Du J, Peng M, Chen X F, Zhao Y. RAPD analysis of castor seed size traits linkage. Acta Agric Boreali-Sin, 2015, 30(5): 108-114. (in Chinese with English abstract) | |
[11] |
Kim H C, Lei P, Wang A Z, Liu S, Zhao Y, Huang F L, Yu Z L, Zhu G L, He Z B, Tan D Y, Wang H W, Meng F J. Genetic diversity of castor bean (Ricinus communis L.) revealed by ISSR and RAPD markers. Agronomy, 2021, 11: 457.
doi: 10.3390/agronomy11030457 |
[12] |
Yu A M, Li F, Xu W, Wang Z, Sun C, Han B, Wang Y, Wang B, Cheng X, Liu A. Application of a high-resolution genetic map for chromosome-scale genome assembly and fine QTLs mapping of seed size and weight traits in castor bean. Sci Rep, 2019, 9: 11950.
doi: 10.1038/s41598-019-48492-8 pmid: 31420567 |
[13] |
Fan W, Lu J, Pan C, Tan M, Lin Q, Liu W, Li D, Wang L, Hu L, Wang L, Chen C, Wu A, Yu X, Ruan J, Yu J, Hu S, Yan X, Lyu S, Cui P. Sequencing of Chinese castor lines reveals genetic signatures of selection and yield-associated loci. Nat Commun, 2019, 10: 3418.
doi: 10.1038/s41467-019-11228-3 pmid: 31366935 |
[14] | 陆建军. 蓖麻重要农艺性状关联分析及野生种基因组组装. 中国科学院大学(中国科学院武汉植物园)博士学位论文, 湖北武汉, 2021. |
Lu J J. Genome-wide Association Analysis of Important Agronomic Traits in Castor and Wild Castor Genome Assembly. PhD Dissertation of Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, China, 2021. (in Chinese with English abstract) | |
[15] | 杨俊芳, 曹越, 王宙, 王亚, 张宏斌, 赵宜婷, 王宏伟. 蓖麻高密度遗传图谱构建亲本SNP多态性分析. 江苏农业科学, 2021, 49(9): 53-57. |
Yang J F, Cao Y, Wang Z, Wang Y, Zhang H B, Zhao Y T, Wang H W. Polymorphism analysis of SNP molecular markers between parents for a high-density genetic map in castor bean. Jiangsu Agric Sci, 2021, 49(9): 53-57. (in Chinese with English abstract) | |
[16] |
李慧慧, 张鲁燕, 王建康. 数量性状基因定位研究中若干常见问题的分析与解答. 作物学报, 2010, 36: 918-931.
doi: 10.3724/SP.J.1006.2010.00918 |
Li H H, Zhang L Y, Wang J K. Analysis and answers to frequently asked questions in quantitative trait locus mapping. Acta Agron Sin, 2010, 36: 918-931. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2010.00918 |
|
[17] |
Chen J, Wang N, Fang L C, Liang Z C, Li S H, Wu B H. Construction of a high-density genetic map and QTLs mapping for sugars and acids in grape berries. BMC Plant Biol, 2015, 15: 28.
doi: 10.1186/s12870-015-0428-2 pmid: 25644551 |
[18] |
Jiang N, Shi S, Shi H, Khanzada H, Wassan G M, Zhu C, Peng X, Yu Q, Chen X, He X, Fu J, Hu L, Xu J, Ou-Yang L, Sun X, Zhou D, He H, Bian J. Mapping QTL for seed germinability under low temperature using a new high density genetic map of rice. Front Plant Sci, 2017, 8: 1223.
doi: 10.3389/fpls.2017.01223 |
[19] |
Zhao Y, Su K, Wang G, Zhang L, Zhang J, Li J, Guo Y. High-density genetic linkage map construction and quantitative trait locus mapping for hawthorn (Crataegus pinnatififida Bunge). Sci Rep, 2017, 7: 5492.
doi: 10.1038/s41598-017-05756-5 |
[20] |
Liu S, Yin X G, Lu J N, Liu C, Bi C, Zhu H B, Shi Y Z, Zhang D, Wen D Y, Zheng J, Cui Y, Li W J. The first genetic linkage map of Ricinus communis L. based on genome-SSR markers. Ind Crops Prod, 2016, 89: 103-108.
doi: 10.1016/j.indcrop.2016.04.063 |
[21] |
Lu J N, Shi Y Z, Yin X G, Liu S, Liu C, Wen D Y, Li W J, He X L, Yang T. The genetic mechanism of sex type, a complex quantitative trait, in Ricinus communis L. Ind Crops Prod, 2019, 128: 590-598.
doi: 10.1016/j.indcrop.2018.11.023 |
[22] | Tomar R S, Parakhia M V, Rathod V M, Thakkar J R, Padhiyar S M, Thummar V D, Dalal H, Kothari V V, Jasminkumar K, Dhingani R M, Golakiya B A. Development of linkage map and identification of QTLs responsible for fusarium wilt resistance in castor (Ricinus communis L.). Res J Biotechnol, 2016, 11: 67-73. |
[23] |
Tomar R S, Parakhia M V, Rathod V M, Thakkar J R, Padhiyar S M, Thummar V D, Dalal H, Kothari V V, Jasminkumar K, Dhingani R M, Pritesh S, Golakiya B A. Molecular mapping and identification of QTLs responsible for charcoal rot resistance in castor (Ricinus communis L.). Ind Crops Prod, 2017, 95: 184-190.
doi: 10.1016/j.indcrop.2016.10.026 |
[24] |
Garcia D, Saingery V, Chambrier P, Mayer U, Jürgens G, Berger F. Arabidopsis haiku mutants reveal new controls of seed size by endosperm. Plant Physiol, 2003, 131: 1661-1670.
doi: 10.1104/pp.102.018762 |
[25] |
Wang A, Garcia D, Zhang H, Feng K, Chaudhury A, Berger F, Peacock W J, Dennis E S, Luo M. The VQ motif protein IKU1 regulates endosperm growth and seed size in Arabidopsis. Plant J Cell Mol Biol, 2010, 63: 670-679.
doi: 10.1111/j.1365-313X.2010.04271.x |
[26] |
Xu R, Yu H, Wang J, Duan P, Zhang B, Li J, Li Y, Xu J, Lu J, Li N, Chai T, Li Y. A mitogen-activated protein kinase phosphatase influences grain size and weight in rice. Plant J Cell Mol Biol, 2018, 95: 937-946.
doi: 10.1111/tpj.13971 |
[27] |
Matsuta S, Nishiyama A, Chaya G, Itoh T, Miura K, Iwasaki Y. Characterization of heterotrimeric G protein γ4 subunit in rice. Int J Mol Sci, 2018, 19: 3596.
doi: 10.3390/ijms19113596 |
[28] |
Ge L, Yu J, Wang H, Luth D, Bai G, Wang K, Chen R. Increasing seed size and quality by manipulating BIG SEEDS1 in legume species. Proc Natl Acad Sci USA, 2016, 113: 12414-12419.
pmid: 27791139 |
[29] |
Wang S, Wu K, Yuan Q, Liu X, Liu Z, Lin X, Zeng R, Zhu H, Dong G, Qian Q, Zhang G, Fu X. Control of grain size, shape and quality by OsSPL16 in rice. Nat Genetics, 2012, 44: 950-954.
doi: 10.1038/ng.2327 |
[30] |
Achard P, Gusti A, Cheminant S, Alioua M, Dhondt S, Coppens F, Beemster G T, Genschik P. Gibberellin signaling controls cell proliferation rate in Arabidopsis. Curr Biol, 2009, 19: 1188-1193.
doi: 10.1016/j.cub.2009.05.059 |
[31] |
Silverstone A L, Jung H S, Dill A, Kawaide H, Kamiya Y, Sun T P. Repressing a repressor: gibberellin-induced rapid reduction of the RGA protein in Arabidopsis. Plant Cell, 2001, 13: 1555-1565.
doi: 10.1105/tpc.010047 pmid: 11449051 |
[32] |
Jensen M K, Hagedorn P H, Torres-Zabala M D, Grant M R, Rung J H, Collinge D B, Lyngkjaer M F. Transcriptional regulation by an NAC (NAM-ATAF1, 2-CUC2) transcription factor attenuates ABA signalling for efficient basal defence towards Blumeria graminis f. sp. hordei in Arabidopsis. Plant J Cell Mol Biol, 2008, 56: 867-880.
doi: 10.1111/j.1365-313X.2008.03646.x |
[33] | 李志永. 水稻种子特异表达基因SCP46 的克隆及功能鉴定. 中国农业科学院博士学位论文, 北京, 2017. |
Li Z Y. Cloning and Functional Identification of a Seed-specific Gene SCP46 in Rice. PhD Dissertation of Chinese Academy of Agricultural Sciences,Beijing, China, 2017. (in Chinese with English abstract) | |
[34] |
Ulmasov T, Hagen G, Guilfoyle T J. ARF1, a transcription factor that binds to auxin response elements. Science, 1997, 276: 1865-1868.
doi: 10.1126/science.276.5320.1865 pmid: 9188533 |
[35] |
Okushima Y, Mitina I, Quach H I, Theologis A. AUXIN RESPONSE FACTOR 2 (ARF2): a pleiotropic developmental regulator. Plant J Cell Mol Biol, 2005, 43: 29-46.
doi: 10.1111/j.1365-313X.2005.02426.x |
[36] | Sun Y, Wang C, Wang N, Jiang X, Mao H, Zhu C, Wen F, Wang X, Lu Z, Yue G, Xu Z, Ye J. Manipulation of auxin response factor 19 affects seed size in the woody perennial Jatropha curcas. Sci Rep, 2017, 19: 40844. |
[37] |
Song X J, Huang W, Shi M, Zhu M Z, Lin H X. A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nat Genet, 2007, 39: 623-630.
doi: 10.1038/ng2014 |
[38] | Li Y, Zheng L, Corke F, Smith C, Bevan M W. Control of final seed and organ size by the DA1 gene family in Arabidopsis thaliana. Genes Dev, 2008, 15: 1331-1336. |
[39] |
Du L, Li N, Chen L, Xu Y, Li Y, Zhang Y, Li C, Li Y. The ubiquitin receptor DA1 regulates seed and organ size by modulating the stability of the ubiquitin-specific protease UBP15/ SOD2 in Arabidopsis. Plant Cell, 2014, 26: 665-677.
doi: 10.1105/tpc.114.122663 |
[40] |
Xia T, Li N, Dumenil J, Li J, Kamenski A, Bevan M W, Gao F, Li Y H. The ubiquitin receptor DA1 interacts with the E3 ubiquitin ligase DA2 to regulate seed and organ size in Arabidopsis. Plant Cell, 2013, 25: 3347-3359.
doi: 10.1105/tpc.113.115063 |
[41] |
Wang Z B, Li N, Shan J, Gonzalez N, Huang X H, Wang Y C, Li Y H. SCF(SAP) controls organ size by targeting PPD proteins for degradation in Arabidopsis thaliana. Nat Commun, 2016, 7: 11192.
doi: 10.1038/ncomms11192 pmid: 27048938 |
[42] | Li N, Liu Z, Wang Z, Ru L, Gonzalez N, Baekelandt A, Pauwels L, Goossens A, Xu R, Zhu Z, Inzé D, Li Y. STERILE APETALA modulates the stability of a repressor protein complex to control organ size in Arabidopsis thaliana. PLoS Genet, 2018, 14: e1007218. |
[43] |
Baute J, Polyn S, De Block J, Blomme J, Van Lijsebettens M, Inzé D. F-box protein FBX92 affects leaf size in Arabidopsis thaliana. Plant Cell Physiol, 2017, 58: 962-975.
doi: 10.1093/pcp/pcx035 pmid: 28340173 |
[44] |
Hong J P, Adams E, Yanagawa Y, Matsui M, Shin R. AtSKIP18 and AtSKIP31, F-box subunits of the SCF E3 ubiquitin ligase complex, mediate the degradation of 14-3-3 proteins in Arabidopsis. Biochem Biophys Res Commun, 2017, 485: 174-180.
doi: 10.1016/j.bbrc.2017.02.046 |
[45] |
Vandromme C, Spriet C, Dauvillée D, Courseaux A, Putaux J, Wychowski A, Krzewinski F, Facon M, D’hulst C, Wattebled F. PII1: a protein involved in starch initiation that determines granule number and size in Arabidopsis chloroplast. New Phytol, 2019, 221: 356-370.
doi: 10.1111/nph.15356 pmid: 30055112 |
[1] | YANG Bin, QIAO Ling, ZHAO Jia-Jia, WU Bang-Bang, WEN Hong-Wei, ZHANG Shu-Wei, ZHENG Xing-Wei, ZHENG Jun. QTL mapping and validation of chlorophyll content of flag leaves in wheat (Triticum aestivum L.) [J]. Acta Agronomica Sinica, 2023, 49(3): 744-754. |
[2] | MA Ya-Jie, BAO Jian-Xi, GAO Yue-Xin, LI Ya-Nan, QIN Wen-Xuan, WANG Yan-Bo, LONG Yan, LI Jin-Ping, DONG Zhen-Ying, WAN Xiang-Yuan. Genome-wide association analysis of plant height and ear height related traits in maize [J]. Acta Agronomica Sinica, 2023, 49(3): 647-661. |
[3] | YANG Shuo, WU Yang-Chun, LIU Xin-Lei, TANG Xiao-Fei, XUE Yong-Guo, CAO Dan, WANG Wan, LIU Ting-Xuan, QI Hang, LUAN Xiao-Yan, QIU Li-Juan. Fine mapping of qPRO-20-1 related to high protein content in soybean [J]. Acta Agronomica Sinica, 2023, 49(2): 310-320. |
[4] | YIN Fang-Bing, LI Ya-Nan, BAO Jian-Xi, MA Ya-Jie, QIN Wen-Xuan, WANG Rui-Pu, LONG Yan, LI Jin-Ping, DONG Zhen-Ying, WAN Xiang-Yuan. Genome-wide association study and candidate genes predication of yield related ear traits in maize [J]. Acta Agronomica Sinica, 2023, 49(2): 377-391. |
[5] | WANG Rui-Pu, DONG Zhen-Ying, GAO Yue-Xin, BAO Jian-Xi, YIN Fang-Bing, LI Jin-Ping, LONG Yan, WAN Xiang-Yuan. Genome-wide association study and candidate gene prediction of kernel starch content in maize [J]. Acta Agronomica Sinica, 2023, 49(1): 140-152. |
[6] | KE Hui-Feng, ZHANG Zhen, GU Qi-Shen, ZHAO Yan, LI Pei-Yu, ZHANG Dong-Mei, CUI Yan-Ru, WANG Xing-Fen, WU Li-Qiang, ZHANG Gui-Yin, MA Zhi-Ying, SUN Zheng-Wen. Genome-wide association study of root biomass related traits at seeding stage under low phosphorus stress in cotton (Gossypium hirsutum L.) [J]. Acta Agronomica Sinica, 2022, 48(9): 2168-2179. |
[7] | ZHANG Chao, YANG Bo, ZHANG Li-Yuan, XIAO Zhong-Chun, LIU Jing-Sen, MA Jin-Qi, LU Kun, LI Jia-Na. Mining harvest index loci based on QTL mapping and genome-wide association study in rapessed (Brassica napus L.) [J]. Acta Agronomica Sinica, 2022, 48(9): 2180-2195. |
[8] | YANG Fei, ZHANG Zheng-Feng, NAN Bo, XIAO Ben-Ze. Genome-wide association analysis and candidate gene selection of yield related traits in rice [J]. Acta Agronomica Sinica, 2022, 48(7): 1813-1821. |
[9] | TIAN Tian, CHEN Li-Juan, HE Hua-Qin. Identification of rice blast resistance candidate genes based on integrating Meta-QTL and RNA-seq analysis [J]. Acta Agronomica Sinica, 2022, 48(6): 1372-1388. |
[10] | YU Chun-Miao, ZHANG Yong, WANG Hao-Rang, YANG Xing-Yong, DONG Quan-Zhong, XUE Hong, ZHANG Ming-Ming, LI Wei-Wei, WANG Lei, HU Kai-Feng, GU Yong-Zhe, QIU Li-Juan. Construction of a high density genetic map between cultivated and semi-wild soybeans and identification of QTLs for plant height [J]. Acta Agronomica Sinica, 2022, 48(5): 1091-1102. |
[11] | HUANG Li, CHEN Yu-Ning, LUO Huai-Yong, ZHOU Xiao-Jing, LIU Nian, CHEN Wei-Gang, LEI Yong, LIAO Bo-Shou, JIANG Hui-Fang. Advances of QTL mapping for seed size related traits in peanut [J]. Acta Agronomica Sinica, 2022, 48(2): 280-291. |
[12] | GE Tian-Li, TIAN Yu, ZHANG Hao, LIU Zhang-Xiong, LI Ying-Hui, QIU Li-Juan. QTL mapping and candidate gene prediction of soybean 100-seed weight based on high-density bin map [J]. Acta Agronomica Sinica, 2022, 48(12): 2978-2986. |
[13] | QIN Wen-Xuan, BAO Jian-Xi, WANG Yan-Bo, MA Ya-Jie, LONG Yan, LI Jin-Ping, DONG Zhen-Ying, WAN Xiang-Yuan. Genome-wide association study of leaf angle traits and mining of elite alleles from the major loci in maize [J]. Acta Agronomica Sinica, 2022, 48(11): 2691-2705. |
[14] | WU Jia-Yi, YUAN Fang, MENG Li-Jiao, LI Chen-Yang, SHI Hong-Song, BAI Yan-Song, WU Xiao-Ru, LI Jia-Na, ZHOU Qing-Yuan, CUI Cui. QTL mapping and candidate genes screening of photosynthesis-related traits in Brassica napus L. during seedling stage under aluminum stress [J]. Acta Agronomica Sinica, 2022, 48(11): 2749-2764. |
[15] | SONG Bo-Wen, WANG Chao-Huan, ZHAO Zhe, CHEN Chun, HUANG Ming, CHEN Wei-Xiong, LIANG Ke-Qin, XIAO Wu-Ming. Mapping and analysis of QTLs for grain size in rice based on high density genetic map [J]. Acta Agronomica Sinica, 2022, 48(11): 2813-2825. |
|