Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (3): 731-743.doi: 10.3724/SP.J.1006.2023.12081

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Identification and pyramid analysis of QTLs for grain size based on rice long-large-grain chromosome segment substitution line Z66

XIANG Si-Qian(), LI Ru-Xiang, XU Guang-Yi, DENG Ke-Li, YU Jin-Jin, LI Miao-Miao, YANG Zheng-Lin, LING Ying-Hua, SANG Xian-Chun, HE Guang-Hua, ZHAO Fang-Ming()   

  1. Rice Research Institute, Southwest University / Academy of Agricultural Sciences, Southwest University / Transgenic Plants and Safety Control, Chongqing Key Laboratory, Chongqing 400715, China
  • Received:2021-11-30 Accepted:2022-06-07 Online:2023-03-12 Published:2022-07-07
  • Contact: ZHAO Fang-Ming E-mail:969937373@qq.com;zhaofangming2004@163.com
  • Supported by:
    National Natural Science Foundation of China(32072039);Germplasm Creation for Southwest University

Abstract:

Rice grain size is a complex agronomic trait, controlled by multiple genes. Chromosome segment substitution lines are an effective method for creating natural occurring variations and are as the ideal materials for exploring the complex traits. In this study, a novel rice long-large grain chromosome segment substitution line Z66 was developed. Z66 contained 12 substitution segments from R225 (average substitution length was 3.32 Mb) based on the genetic backgrounds of Nipponbare. Then, 12 QTLs for rice grain size were identified by the secondary F2 population from Nipponbare/Z66, and 5 novel single-segment substitution lines (SSSLs, S1-S5), and 4 novel double-segment substitution lines (DSSLs, D1-D4) harboring target QTL were developed. Among them, 9 QTLs (qGL3, qGL7, qGL10, qGW6, qGW10, qRLW3, qRLW10, qGWT3, and qGWT10) could be verified by the SSSLs, indicating that these QTLs were genetically stable. In addition, 6 novel QTLs (qGL9-2, qGW9-2, qRLW6, qRLW7, qRLW9-2, and qGWT7) were detected by the SSSLs. Among 18 QTLs, 5 QTLs (qGL9-2, qRLW9-1, qRLW9-2, qGW9-2, and qGWT9-2) might be novel. Target QTLs pyramiding showed that the pyramid of different QTLs had various epistasis effects. For example, the pyramids of qRLW3 (a=0.21) and qRLW9-2 (a=0.08) produced an epistasis effect of 0.10, which made the ratio of grain length to width in D2 significantly larger than that in Nipponbare, S1 (qRLW3), and S4 (qRLW9-2). The pyramid of qGWT3 (a=3.99) and qGWT10 (a=3.98) yielded an epistasis effect of -5.35, and its genetic effects in D3 (2.62 g) significantly increased 1000-grain weight of D3 than in Nipponbare, but significantly decreased than that in S1 (qGWT3) and S5 (qGWT10). Understanding the interaction effects between target QTLs can predict the phenotype of futural QTL pyramid genotypes, which is important for intelligent design breeding in rice.

Key words: rice, grain shape, QTLs, chromosome segment substitution line, additive effect, epistasis effect

Fig. 1

Process of development of CSSL including Z66 MAS: molecular marker assisted selection; CSSL: chromosome segment substitution lines."

Fig. 2

Epistasis of Q1 on the “i” substitution segment and Q2 on the “j” substitution segment of the double-segment substitution line DSSLij Dij represents the double-segment substitution line containing the “i” substitution segment and the “j” substitution segment. The additive effects of QTLs (Q1 and Q2) for a certain trait were detected by the according SSSLi (containing single “i” substitution segment) and SSSLj (containing single “j” substitution segment). The epistasis effect between Q1 and Q2 is detected by (Nipponbare+DSSLij) and (SSSLi+SSSLj). Chr. represents 2 rice chromosomes carrying Q1 and Q2, respectively. Black region represents the genetic background of the recipient Nipponbare, the genotypes of markers are represented by “(-1, -1)”, the red region represents the substitution region from the donor R225, the genotypes of marker are represented by “(1, 1)”, and if there is QTL for a trait in the substitution regions, they are showed as Q1 and Q2, respectively. The connecting between Q1 and Q2 shows existing epistasis effect at P < 0.05."

Fig. 3

Chromosomes substitution segments of Z66 Physical distances (Mb) and mapped QTL are marked at the left of each chromosome; substitution length (black arrow direction) are displayed at the right of each chromosome. GL: grain length; GW: grain width; RLW: ratio of grain length to width; GWT: 1000-grain weight."

Fig. 4

Statistical analysis of grain size of Nipponbare and Z66 A: plant type; B: grain length; C: grain width; D-G: the statistics analysis of grain length, grain width, ratio of length to width, and 1000-grain weight. ** indicate significant difference between the traits of Nipponbare and Z66 at P < 0.01, respectively."

Fig. 5

Frequency distribution of grain size related traits in F2 secondary population from Nipponbare/Z66 A-D: the frequency distribution of grain length, grain width, ratio of and length to width, and 1000-grain weight in F2 population in sequence, respectively."

Table 1

QTL for rice grain size detected in secondary F2 population from Nipponbare/Z66"

性状
Trait
QTL 染色体
Chr.
连锁标记
Linked marker
加性效应
Additive effect
贡献率
R2 (%)
P
P-value
粒长
Grain length
qGL3 3 RM5928 0.21 8.95 0.0028
qGL7 7 RM5481 0.10 2.61 0.0360
qGL10 10 RM6673 0.13 4.62 0.0210
粒宽
Grain width
qGW6 6 RM3183 -0.11 30.78 0.0005
qGW9-1 9 RM5657 -0.10 14.87 0.0018
qGW10 10 RM6673 0.12 39.18 0.0003
长宽比
Ratio of length to width
qRLW3 3 RM5928 0.09 14.78 0.0440
qRLW9-1 9 RM5657 0.25 44.93 0.0220
qRLW10 10 RM6673 0.049 6.40 0.0200
千粒重
1000-grain weight
qGWT3 3 RM5928 1.14 9.48 0.0250
qGWT9-2 9 RM2144 -0.79 6.05 0.0360
qGWT10 10 RM6673 0.73 5.14 0.0430

Fig. 6

Development of secondary single segment substitution lines and double segment substitution lines and analysis of additive and epistasis effects of QTLs for grain size A: sketch map of developed SSSLs (S1-S5), DSSLs (D1-D4). N: Nipponbare; S: SSSL; D: DSSL. B: grain length (GL); C: grain width (GW); D: ratio of length to width (RLW); E: 1000-grain weight (GWT). Different lowercase letters indicate significant difference at P < 0.05 as determined by Duncan’s multiple comparisons. μ is the mean value of each line, ai denotes the additive effect of QTLs, I denotes the additive × additive epistasis effect between QTLs. The P-value for a SSSL indicates the probability of a significant difference between the SSSL and Nipponbare, and the SSSL carried a QTL (Student’s t-test, P < 0.05). The P-value for a DSSL indicates the probability of an epitasis effect between QTLs in the DSSLij. (Nipponbare + DSSLij) and (SSSLi and SSSLj) (Student’s t-test, P < 0.05). S1: Chr3, RM3766-RM2917; S2: Chr6, RM3330-RM3567; S3: Chr7, RM1186-RM3826; S4: Chr9, RM1553-End of long arm; S5: Chr10, RM4477-End of long arm; D1: Chr3, RM3766-RM2917; Chr6, RM3330-RM3567; D2: Chr3, RM3766-RM2917; Chr9, RM1553-RM205; D3: Chr3, RM3766-RM2917; Chr10, RM4477-RM6673; D4: Chr6, RM3330-RM3567; Chr9, RM1553-RM205; Hyphenated internal tokens indicate alternative segments from the donor."

[1] Li G M, Tang J Y, Zheng J K, Chu C C. Exploration of rice yield potential: decoding agronomic and physiological traits. Crop J, 2021, 9: 577-589.
doi: 10.1016/j.cj.2021.03.014
[2] Xu J L, Xing Y Z, Xu Y B, Wan J M. Breeding by design for future rice: genes and genome technologies. Crop J, 2021, 9: 491-496.
doi: 10.1016/j.cj.2021.05.001
[3] Zhang G Q. Target chromosome-segment substitution: a way to breeding by design in rice. Crop J, 2021, 9: 658-668.
doi: 10.1016/j.cj.2021.03.001
[4] Alonso-Blanco C, Koornneef M. Naturally occurring variation in Arabidopsis: an underexploited resource for plant genetics. Trends Plant Sci, 2000, 5: 22-29.
pmid: 10637658
[5] Yano M. Genetic and molecular dissection of naturally occurring variations. Curr Opin Plant Biol, 2001, 4: 130-135.
pmid: 11228435
[6] Parry M A J, Madgwick P J, Bayon C, Tearall K, Hernandez-Lopez A, Baudo M, Rakszegi M, Hamada W, Al-Yassin A, Ouabbou H, Labhilili M, Phillips A L. Mutation discovery for crop improvement. J Exp Bot, 2009, 60: 2817-2825.
doi: 10.1093/jxb/erp189 pmid: 19516074
[7] Balakrishnan D, Surapaneni M, Mesapogu S, Neelamraju S. Development and use of chromosome segment substitution lines as a genetic resource for crop improvement. Theor Appl Genet, 2019, 132: 1-25.
doi: 10.1007/s00122-018-3219-y pmid: 30483819
[8] Yang T F, Zhang S H, Zhao J L, Liu Q, Huang Z H, Mao X X, Dong J F, Wang X F, Zhang G Q, Liu B. Identification and pyramiding of QTLs for cold tolerance at the bud bursting and the seedling stages by use of single segment substitution lines in rice (Oryza sativa L.). Mol Breed, 2016, 36: 96.
doi: 10.1007/s11032-016-0520-9
[9] Zhou Y L, Xie Y H, Cai J L, Liu C B, Zhu H T, Jiang R, Zhong Y Y, Zhang G L, Tan B, Liu G F, Fu X L, Liu Z Q, Wang S K, Zhang G Q, Zeng R Z. Substitution mapping of QTLs controlling seed dormancy using single segment substitution lines derived from multiple cultivated rice donors in seven cropping seasons. Theor Appl Genet, 2017, 130: 1191-1205.
doi: 10.1007/s00122-017-2881-9 pmid: 28283703
[10] Okpala N E, Duan L X, Shen G Q, Zhang G Q, Qi X Q. Comparisons of cooking and eating qualities of two indica rice cultivars. J Rice Res, 2017, 5: 1-5.
[11] Li Z H, Riaz A, Zhang Y X, Anis G B, Zhu A K, Cao L Y, Cheng S H. Quantitative trait loci mapping for rice yield-related traits using chromosomal segment substitution lines. Rice Sci, 2019, 26: 261-264.
doi: 10.1016/j.rsci.2019.02.001
[12] 张波, 裴瑞琴, 杨维丰, 朱海涛, 刘桂富, 张桂权, 王少奎. 利用单片段代换系鉴定巴西陆稻IAPAR9中的粒型基因. 作物学报, 2021, 47: 1472-1480.
doi: 10.3724/SP.J.1006.2021.02056
Zhang B, Pei R Q, Yang W F, Zhu H T, Liu G F, Zhang G Q, Wang S K. Identification of grain type genes in rice IAPAR9 by single segment substitution lines. Acta Agron Sin, 2021, 47: 1472-1480. (in Chinese with English abstract)
[13] 沈文强, 赵冰冰, 于国玲, 李凤菲, 朱小燕, 马福盈, 李云峰, 何光华, 赵芳明. 优良水稻染色体片段代换系Z746的鉴定及重要农艺性状QTL定位及其验证. 作物学报, 2021, 47: 451-461.
doi: 10.3724/SP.J.1006.2021.92002
Shen W Q, Zhao B B, Yu G L, Li F F, Zhu X Y, Ma F Y, Li Y F, He G H, Zhao F M. Identification and QTL mapping of important agronomic traits of an excellent rice chromosome fragment substitution line Z746. Acta Agron Sin, 2021, 47: 451-461. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2021.92002
[14] 王大川, 汪会, 马福盈, 杜婕, 张佳宇, 徐光益, 何光华, 李云峰, 凌英华, 赵芳明. 增加每穗粒数的水稻染色体代换系Z747鉴定及相关性状QTL定位. 作物学报, 2020, 46: 140-146.
doi: 10.3724/SP.J.1006.2020.92022
Wang D C, Wang H, Ma F Y, Du J, Zhang J Y, Xu G Y, He G H, Li Y F, Ling Y H, Zhao F M. Identification and QTL mapping of related traits of rice chromosome replacement line Z747 with increased grain number per panicle. Acta Agron Sin, 2020, 46: 140-146. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2020.92022
[15] Ma F Y, Zhu X Y, Wang H, Wang S M, Cui G Q, Zhang T, Yang Z L, He G H, Ling Y H, Wang N, Zhao F M. Identification of QTL for kernel number-related traits in a rice chromosome segment substitution line and fine mapping of qSP1. Crop J, 2019, 7: 494-503.
doi: 10.1016/j.cj.2018.12.009
[16] Ma F Y, Du J, Wang D C, Wang H, Zhao B B, He G H, Yang Z L, Zhang T, Wu R H, Zhao F M. Identification of long-grain chromosome segment substitution line Z744 and QTL analysis for agronomic traits in rice. J Integr Agric, 2020, 19: 1163-1169.
doi: 10.1016/S2095-3119(19)62751-6
[17] Teng B, Zeng R Z, Wang Y C, Liu Z Q, Zhang Z M, Zhu H T, Ding X H, Li W T, Zhang G Q. Detection of allelic variation at the Wx locus with single-segment substitution lines in rice (Oryza sativa L.). Mol Breed, 2012, 30: 583-595.
doi: 10.1007/s11032-011-9647-x
[18] Cai J, Liao Q, Dai Z, Zhu H, Zeng R, Zhang Z, Zhang G. Allelic differentiations and effects of the Rf3 and Rf4genes on fertility restoration in rice with wild abortive cytoplasmic male sterility. Biol Plant, 2013, 57: 274-280.
doi: 10.1007/s10535-012-0294-9
[19] Zhang T, Wang S M, Sun S F, Zhang Y, Li J, You J, Su T, Chen W B, Ling Y H, He G H, Zhao F M. Analysis of QTL for grain size in a rice chromosome segment substitution line Z1392 with long grains and fine mapping of qGL6. Rice, 2020, 13: 13-40.
doi: 10.1186/s12284-020-0373-z
[20] Wang H, Zhang J Y, Naz F, Li J, Sun S F, He G H, Zhang T, Ling Y H, Zhao F M. Identification of rice QTLs for important agronomic traits with long-kernel CSSL-Z741 and three SSSLs. Rice Sci, 2020, 27: 414-422.
doi: 10.1016/j.rsci.2020.04.008
[21] Chen J, Li X, Cheng C, Wang Y, Qin M, Zhu H, Zeng R, Fu X, Liu Z, Zhang G. Characterization of epistasis interaction of QTLs LH8 and EH3 controlling heading date in rice. Sci Rep, 2014, 4: 4263.
doi: 10.1038/srep04263
[22] Qin M, Zhao X, Ru J, Zhang G, Ye G Y. Bigenic epistasis between QTLs for heading date in rice analyzed using single segment substitution lines. Field Crops Res, 2015, 178: 16-25.
doi: 10.1016/j.fcr.2015.03.020
[23] Zhao F M, Zhu H T, Zeng R Z, Zhang G Q, Xu S Z. Detection of additive and additive × environment interaction effects of QTLs for yield-component traits of rice using single-segment substitution lines (SSSLs). Plant Breed, 2016, 135: 452-458.
doi: 10.1111/pbr.12385
[24] Wang S K, Wu K, Yuan Q B, Liu X Y, Liu Z B, Lin X Y, Zeng R Z, Zhu H T, Dong G J, Qian Q, Zhang G Q, Fu X D. Control of grain size, shape and quality by OsSPL16 in rice. Nat Genet, 2012, 44: 950-954.
doi: 10.1038/ng.2327
[25] Wang S K, Li S, Liu Q, Wu K, Zhang J Q, Wang S S, Wang Y, Chen X B, Zhang Y, Gao C, Wang F, Huang H X, Fu X D. The OsSPL16-GW7 regulatory module determines grain shape and simultaneously improves rice yield and grain quality. Nat Genet, 2015, 47: 949-954.
doi: 10.1038/ng.3352
[26] Fang C, Li L, He R, Wang D, Wang M, Hu Q, Ma Q, Qin K, Feng X, Zhang G, Fu X, Liu Z. Identification of S23 causing both interspecific hybrid male sterility and environment-conditioned male sterility in rice. Rice, 2019, 12: 10.
doi: 10.1186/s12284-019-0271-4 pmid: 30820693
[27] 张桂权. 基于SSSL文库的水稻设计育种平台. 遗传, 2019, 41: 754-760.
Zhang G Q. Rice design and breeding platform based on SSSL library. Genetics, 2019, 41: 754-760. (in Chinese with English abstract)
[28] 赵芳明, 郭超, 魏霞, 杨正林, 凌英华, 桑贤春, 王楠, 张长伟, 李云峰, 何光华. 日本晴与5个优良恢复系的多态性标记筛选及遗传差异分析. 西南大学学报(自然科学版), 2016, 38(11): 1-7.
Zhao F M, Guo C, Wei X, Yang Z L, Ling Y H, Sang X C, Wang N, Zhang C W, Li Y F, He G H. Polymorphic SSR markers screening and genetic difference analysis between Nipponbare and five excellent restorer lines. J Southwest Univ (Nat Sci Edn), 2016, 38(11): 1-7. (in Chinese with English abstract)
[29] 崔国庆, 王世明, 马福盈, 汪会, 向朝中, 李云峰, 何光华, 张长伟, 杨正林, 凌英华, 赵芳明. 水稻高秆染色体片段代换系Z1377的鉴定及重要农艺性状QTL定位. 作物学报, 2018, 44: 1477-1484.
Cui G Q, Wang S M, Ma F Y, Wang H, Xiang C Z, Li Y F, He G H, Zhang C W, Yang Z L, Ling Y H, Zhao F M. Identification and QTL mapping of important agronomic traits in rice Z1377. Acta Agron Sin, 2018, 44: 1477-1484 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2018.01477
[30] Paterson A H, Damon S, Hewitt J D, Zamir D, Rabinowitch H D, Lincoln S E, Lander E S, Tanksley S D. Mendelian factors underlying quantitative traits in tomato: comparison across species, generations, and environments. Genetics, 1991, 127: 181-197.
doi: 10.1093/genetics/127.1.181 pmid: 1673106
[31] McCouch S R, Kochert G, Yu Z H, Wang Z Y, Khush G S, Coffman W R, Tanksley S D. Molecular mapping of rice chromosomes. Theor Appl Genet, 1988, 76: 815-829.
doi: 10.1007/BF00273666 pmid: 24232389
[32] Zhao F M, Tan Y, Zheng L Y, Zhou K, He G H, Ling Y H, Zhang L H, Xu S Z. Identification of rice chromosome segment substitution line Z322-1-10 and mapping QTL for agronomic traits from the F3 population. Cereal Res Commun, 2016, 44: 370-380.
doi: 10.1556/0806.44.2016.022
[33] Liang P X, Wang H, Zhang Q L, Zhou K, Li M M, Li R X, Xiang S Q, Zhang Z, Ling Y H, Yang Z L, He G H, Zhao F M. Identification and pyramiding of QTLs for rice grain size based on short-wide grain CSSL-Z563 and fine-mapping of qGL3-2. Rice, 2021, 14: 35.
doi: 10.1186/s12284-021-00477-w
[34] Ma M Y, Gong W J, Duan H Y. Rice grain shape genes: research progress and application. J Agric, 2020, 10: 21-25.
[35] Bai X F, Luo L J, Yan W H, Kovi M R, Zhan W, Xing Y Z. Genetic dissection of rice grain shape using a recombinant inbred line population derived from two contrasting parents and fine mapping a pleiotropic quantitative trait locus qGL7. BMC Genet, 2010, 11: 16.
doi: 10.1186/1471-2156-11-16
[36] Xing Y, Zhang Q. Genetic and molecular bases of rice yield. Annu Rev Plant Biol, 2010, 61: 421-442.
doi: 10.1146/annurev-arplant-042809-112209 pmid: 20192739
[37] 张静, 李晨, 潘大建, 陈文丰, 孙炳蕊, 刘清, 吕树伟, 江立群, 毛兴学, 范芝兰. 水稻粒长遗传及其功能基因研究进展. 广东农业科学, 2021, 48(3): 1-10.
Zhang J, Li C, Pan D J, Chen W F, Sun B R, Liu Q, Lyu S W, Jiang L Q, Mao X X, Fan Z L. Research progress on genetic and functional genes of rice grain length. Guangdong Agric Sci, 2021, 48(3): 1-10. (in Chinese with English abstract)
[38] Wang D C, Zhou K, Xiang S Q, Zhang Q L, Li R X, Li M M, Liang P X, Farkhanda N, He G H, Ling Y H, Zhao F M. Identification, pyramid and candidate genes of QTLs for associated traits based on a dense erect panicle rice CSSL-Z749 and five SSSLs, three DSSLs and one TSSL. Rice, 2021, 14: 55.
doi: 10.1186/s12284-021-00496-7 pmid: 34132908
[39] Du Y W, He W, Deng C W, Chen X, Gou L M, Zhu F G, Guo W, Zhang J F, Wang T. Flowering-related RING protein 1 (FRRP1) regulates flowering time and yield potential by affecting histone H2B monoubiquitination in rice (Oryza sativa). PLoS One, 2016, 11: e0150458.
[40] Yang C, Ma B, He S J, Xiong Q, Duan X K, Yin C C, Chen H, Lu X, Chen S Y, Zhang J S. MAOHUZI6/ETHYLENE INSENSITIVE3-LIKE1 and ETHYLENE INSENSITIVE3-LIKE2 regulate ethylene response of roots and coleoptiles and negatively affect salt tolerance in rice. Plant Physiol, 2015, 169: 148-165.
doi: 10.1104/pp.15.00353
[41] Zhou S X, Zhu Y, Wang L F, Zheng Y P, Chen J F, Li T T, Yang X M, Wang H, Li X P, Ma X C, Zhao J Q, Pu M, Feng F, Li Y, Fan J, Zhang J W, Huang Y Y, Wang W M. Osa-miR1873 fine-tunes rice immunity against magnaporthe oryzae and yield traits. J Integr Plant Biol, 2020, 62: 1213-1226.
doi: 10.1111/jipb.12900
[42] Wang Z, Wei K, Xiong M, Wang J D, Zhang C Q, Fan X L, Huang L C, Zhao D S, Liu Q Q, Li Q F. Glucan, Water-Dikinase 1 (GWD1), an ideal biotechnological target for potential improving yield and quality in rice. Plant Biotechnol J, 2021, 19: 2606-2618.
doi: 10.1111/pbi.13686 pmid: 34416068
[43] Zhang L, Wang R C, Xing Y D, Xu Y F, Xiong D P, Wang Y M, Yao S G. Separable regulation of POW1 in grain size and leaf angle development in rice. Plant Biotechnol J, 2021, 19: 2517-2531.
doi: 10.1111/pbi.13677 pmid: 34343399
[44] Wang X L, Jin L L, Zhu H T, Wang S K, Zhang G Q, Liu G F. QTL epistasis analysis for yield components with single-segment substitution lines in rice. Plant Breed, 2018, 137: 346-354.
doi: 10.1111/pbr.12578
[1] ZHANG Chen-Hui, ZHANG Yan, LI Guo-Hui, YANG Zi-Jun, ZHA Ying-Ying, ZHOU Chi-Yan, XU Ke, HUO Zhong-Yang, DAI Qi-Gen, GUO Bao-Wei. Root morphology and physiological characteristics for high yield formation under side-deep fertilization in rice [J]. Acta Agronomica Sinica, 2023, 49(4): 1039-1051.
[2] TANG Wen-Qiang, ZHANG Wen-Long, ZHU Xiao-Qiao, DONG Bi-Zheng, LI Yong-Cheng, YANG Nan, ZHANG Yao, WANG Yun-Yue, HAN Guang-Yu. Effects of diverse mixture intercropping on the structure and function of   bacterial communities in rice rhizosphere [J]. Acta Agronomica Sinica, 2023, 49(4): 1111-1121.
[3] LI Qiu-Ping, ZHANG Chun-Long, YANG Hong, WANG Tuo, LI Juan, JIN Shou-Lin, HUANG Da-Jun, LI Dan-Dan, WEN Jian-Cheng. Physiological characteristics analysis and gene mapping of a semi-sterility plant mutant sfp10 in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2023, 49(3): 634-646.
[4] LIU Li-Jun, ZHOU Shen-Qi, LIU Kun, ZHANG Wei-Yang, YANG Jian-Chang. Research progress on the formation of large panicles in rice and its regulation [J]. Acta Agronomica Sinica, 2023, 49(3): 585-596.
[5] ZHU Xiao-Tong, YE Ya-Feng, GUO Jun-Yao, YANG Hui-Jie, WANG Zi-Yao, ZHAN Yue, WU Yue-Jin, TAO Liang-Zhi, MA Bo-Jun, CHEN Xi-Feng, LIU Bin-Mei. Heredity and fine mapping of an early-senescence leaf gene ESL8 in rice [J]. Acta Agronomica Sinica, 2023, 49(3): 662-671.
[6] XU Jia-Bo, WU Peng-Hao, HUANG Bo-Wen, CHEN Zhan-Hui, MA Yue-Hong, REN Jiao-Jiao. QTL locating and genomic selection for tassel-related traits using F2:3 lineage haploids [J]. Acta Agronomica Sinica, 2023, 49(3): 622-633.
[7] WU Dong-Qing, LI Zhou, GUO Chun-Lin, ZOU Jing-Nan, PANG Zi-Qin, LIN Fei-Fan, HE Hai-Bin, LIN Wen-Xiong. Dry matter partitioning properties and mechanism of ratooning rice and main crop (late season) synchronized in rice heading time [J]. Acta Agronomica Sinica, 2023, 49(3): 755-771.
[8] FU Jing, WANG Ya, YANG Wen-Bo, WANG Yue-Tao, LI Ben-Yin, WANG Fu-Hua, WANG Sheng-Xuan, BAI Tao, YIN Hai-Qing. Effects of alternate wetting and drying irrigation and nitrogen coupling on grain filling physiology and root physiology in rice [J]. Acta Agronomica Sinica, 2023, 49(3): 808-820.
[9] FANG Ya-Ting, REN Tao, ZHANG Shun-Tao, ZHOU Xiang-Qi, ZHAO Jian, LIAO Shi-Peng, CONG Ri-Huan, LU Jian-Wei. Different effects of nitrogen, phosphorus and potassium fertilizers on oilseed rape yield and nutrient utilization between continuous upland and paddy-upland rotations [J]. Acta Agronomica Sinica, 2023, 49(3): 772-783.
[10] CHEN Sai-Hua, PENG Sheng, YOU Yi-Wen, ZHANG Lu-Yao, WANG Kai, XUE Ming, YANG Yuan-Zhu, WAN Jian-Min. Genetic analysis of photosensitivity divergence among hybrids derived from rice sterile line Xiangling 628S [J]. Acta Agronomica Sinica, 2023, 49(2): 332-342.
[11] YANG Xiao-Yi, WANG Hui-Hui, ZHANG Yan-Wen, HOU Dian-Yun, ZHANG Hong-Xiao, KANG Guo-Zhang, XU Hua-Wei. Function analysis of OsPIN5c gene by CRISPR/Cas9 [J]. Acta Agronomica Sinica, 2023, 49(2): 354-364.
[12] LI Zhao-Wei, MO Zu-Yi, SUN Cong-Ying, SHI Yu, SHANG Ping, LIN Wei-Wei, FAN Kai, LIN Wen-Xiong. Construction of rice mutants by gene editing of OsNAC2d and their response to drought stress [J]. Acta Agronomica Sinica, 2023, 49(2): 365-376.
[13] CAI Xiao-Xi, HU Bing-Shuang, SHEN Yang, WANG Yan, CHEN Yue, SUN Ming-Zhe, JIA Bo-Wei, SUN Xiao-Li. Effects of GsERF6 overexpression on salt-alkaline tolerance in rice [J]. Acta Agronomica Sinica, 2023, 49(2): 561-569.
[14] TAO Shi-Bao, KE Jian, SUN Jie, YIN Chuan-Jun, ZHU Tie-Zhong, CHEN Ting-Ting, HE Hai-Bing, YOU Cui-Cui, GUO Shuang-Shuang, WU Li-Quan. High-yielding population agronomic characteristics of middle-season indica hybrid rice with different panicle sizes in the middle and lower reaches of the Yangtze River [J]. Acta Agronomica Sinica, 2023, 49(2): 511-525.
[15] ZHAO Ling, LIANG Wen-Hua, ZHAO Chun-Fang, WEI Xiao-Dong, ZHOU Li-Hui, YAO Shu, WANG Cai-Lin, ZHANG Ya-Dong. Mapping of QTLs for heading date of rice with high-density bin genetic map [J]. Acta Agronomica Sinica, 2023, 49(1): 119-128.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .