Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (3): 731-743.doi: 10.3724/SP.J.1006.2023.12081
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
XIANG Si-Qian(), LI Ru-Xiang, XU Guang-Yi, DENG Ke-Li, YU Jin-Jin, LI Miao-Miao, YANG Zheng-Lin, LING Ying-Hua, SANG Xian-Chun, HE Guang-Hua, ZHAO Fang-Ming()
[1] |
Li G M, Tang J Y, Zheng J K, Chu C C. Exploration of rice yield potential: decoding agronomic and physiological traits. Crop J, 2021, 9: 577-589.
doi: 10.1016/j.cj.2021.03.014 |
[2] |
Xu J L, Xing Y Z, Xu Y B, Wan J M. Breeding by design for future rice: genes and genome technologies. Crop J, 2021, 9: 491-496.
doi: 10.1016/j.cj.2021.05.001 |
[3] |
Zhang G Q. Target chromosome-segment substitution: a way to breeding by design in rice. Crop J, 2021, 9: 658-668.
doi: 10.1016/j.cj.2021.03.001 |
[4] |
Alonso-Blanco C, Koornneef M. Naturally occurring variation in Arabidopsis: an underexploited resource for plant genetics. Trends Plant Sci, 2000, 5: 22-29.
pmid: 10637658 |
[5] |
Yano M. Genetic and molecular dissection of naturally occurring variations. Curr Opin Plant Biol, 2001, 4: 130-135.
pmid: 11228435 |
[6] |
Parry M A J, Madgwick P J, Bayon C, Tearall K, Hernandez-Lopez A, Baudo M, Rakszegi M, Hamada W, Al-Yassin A, Ouabbou H, Labhilili M, Phillips A L. Mutation discovery for crop improvement. J Exp Bot, 2009, 60: 2817-2825.
doi: 10.1093/jxb/erp189 pmid: 19516074 |
[7] |
Balakrishnan D, Surapaneni M, Mesapogu S, Neelamraju S. Development and use of chromosome segment substitution lines as a genetic resource for crop improvement. Theor Appl Genet, 2019, 132: 1-25.
doi: 10.1007/s00122-018-3219-y pmid: 30483819 |
[8] |
Yang T F, Zhang S H, Zhao J L, Liu Q, Huang Z H, Mao X X, Dong J F, Wang X F, Zhang G Q, Liu B. Identification and pyramiding of QTLs for cold tolerance at the bud bursting and the seedling stages by use of single segment substitution lines in rice (Oryza sativa L.). Mol Breed, 2016, 36: 96.
doi: 10.1007/s11032-016-0520-9 |
[9] |
Zhou Y L, Xie Y H, Cai J L, Liu C B, Zhu H T, Jiang R, Zhong Y Y, Zhang G L, Tan B, Liu G F, Fu X L, Liu Z Q, Wang S K, Zhang G Q, Zeng R Z. Substitution mapping of QTLs controlling seed dormancy using single segment substitution lines derived from multiple cultivated rice donors in seven cropping seasons. Theor Appl Genet, 2017, 130: 1191-1205.
doi: 10.1007/s00122-017-2881-9 pmid: 28283703 |
[10] | Okpala N E, Duan L X, Shen G Q, Zhang G Q, Qi X Q. Comparisons of cooking and eating qualities of two indica rice cultivars. J Rice Res, 2017, 5: 1-5. |
[11] |
Li Z H, Riaz A, Zhang Y X, Anis G B, Zhu A K, Cao L Y, Cheng S H. Quantitative trait loci mapping for rice yield-related traits using chromosomal segment substitution lines. Rice Sci, 2019, 26: 261-264.
doi: 10.1016/j.rsci.2019.02.001 |
[12] |
张波, 裴瑞琴, 杨维丰, 朱海涛, 刘桂富, 张桂权, 王少奎. 利用单片段代换系鉴定巴西陆稻IAPAR9中的粒型基因. 作物学报, 2021, 47: 1472-1480.
doi: 10.3724/SP.J.1006.2021.02056 |
Zhang B, Pei R Q, Yang W F, Zhu H T, Liu G F, Zhang G Q, Wang S K. Identification of grain type genes in rice IAPAR9 by single segment substitution lines. Acta Agron Sin, 2021, 47: 1472-1480. (in Chinese with English abstract) | |
[13] |
沈文强, 赵冰冰, 于国玲, 李凤菲, 朱小燕, 马福盈, 李云峰, 何光华, 赵芳明. 优良水稻染色体片段代换系Z746的鉴定及重要农艺性状QTL定位及其验证. 作物学报, 2021, 47: 451-461.
doi: 10.3724/SP.J.1006.2021.92002 |
Shen W Q, Zhao B B, Yu G L, Li F F, Zhu X Y, Ma F Y, Li Y F, He G H, Zhao F M. Identification and QTL mapping of important agronomic traits of an excellent rice chromosome fragment substitution line Z746. Acta Agron Sin, 2021, 47: 451-461. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2021.92002 |
|
[14] |
王大川, 汪会, 马福盈, 杜婕, 张佳宇, 徐光益, 何光华, 李云峰, 凌英华, 赵芳明. 增加每穗粒数的水稻染色体代换系Z747鉴定及相关性状QTL定位. 作物学报, 2020, 46: 140-146.
doi: 10.3724/SP.J.1006.2020.92022 |
Wang D C, Wang H, Ma F Y, Du J, Zhang J Y, Xu G Y, He G H, Li Y F, Ling Y H, Zhao F M. Identification and QTL mapping of related traits of rice chromosome replacement line Z747 with increased grain number per panicle. Acta Agron Sin, 2020, 46: 140-146. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2020.92022 |
|
[15] |
Ma F Y, Zhu X Y, Wang H, Wang S M, Cui G Q, Zhang T, Yang Z L, He G H, Ling Y H, Wang N, Zhao F M. Identification of QTL for kernel number-related traits in a rice chromosome segment substitution line and fine mapping of qSP1. Crop J, 2019, 7: 494-503.
doi: 10.1016/j.cj.2018.12.009 |
[16] |
Ma F Y, Du J, Wang D C, Wang H, Zhao B B, He G H, Yang Z L, Zhang T, Wu R H, Zhao F M. Identification of long-grain chromosome segment substitution line Z744 and QTL analysis for agronomic traits in rice. J Integr Agric, 2020, 19: 1163-1169.
doi: 10.1016/S2095-3119(19)62751-6 |
[17] |
Teng B, Zeng R Z, Wang Y C, Liu Z Q, Zhang Z M, Zhu H T, Ding X H, Li W T, Zhang G Q. Detection of allelic variation at the Wx locus with single-segment substitution lines in rice (Oryza sativa L.). Mol Breed, 2012, 30: 583-595.
doi: 10.1007/s11032-011-9647-x |
[18] |
Cai J, Liao Q, Dai Z, Zhu H, Zeng R, Zhang Z, Zhang G. Allelic differentiations and effects of the Rf3 and Rf4genes on fertility restoration in rice with wild abortive cytoplasmic male sterility. Biol Plant, 2013, 57: 274-280.
doi: 10.1007/s10535-012-0294-9 |
[19] |
Zhang T, Wang S M, Sun S F, Zhang Y, Li J, You J, Su T, Chen W B, Ling Y H, He G H, Zhao F M. Analysis of QTL for grain size in a rice chromosome segment substitution line Z1392 with long grains and fine mapping of qGL6. Rice, 2020, 13: 13-40.
doi: 10.1186/s12284-020-0373-z |
[20] |
Wang H, Zhang J Y, Naz F, Li J, Sun S F, He G H, Zhang T, Ling Y H, Zhao F M. Identification of rice QTLs for important agronomic traits with long-kernel CSSL-Z741 and three SSSLs. Rice Sci, 2020, 27: 414-422.
doi: 10.1016/j.rsci.2020.04.008 |
[21] |
Chen J, Li X, Cheng C, Wang Y, Qin M, Zhu H, Zeng R, Fu X, Liu Z, Zhang G. Characterization of epistasis interaction of QTLs LH8 and EH3 controlling heading date in rice. Sci Rep, 2014, 4: 4263.
doi: 10.1038/srep04263 |
[22] |
Qin M, Zhao X, Ru J, Zhang G, Ye G Y. Bigenic epistasis between QTLs for heading date in rice analyzed using single segment substitution lines. Field Crops Res, 2015, 178: 16-25.
doi: 10.1016/j.fcr.2015.03.020 |
[23] |
Zhao F M, Zhu H T, Zeng R Z, Zhang G Q, Xu S Z. Detection of additive and additive × environment interaction effects of QTLs for yield-component traits of rice using single-segment substitution lines (SSSLs). Plant Breed, 2016, 135: 452-458.
doi: 10.1111/pbr.12385 |
[24] |
Wang S K, Wu K, Yuan Q B, Liu X Y, Liu Z B, Lin X Y, Zeng R Z, Zhu H T, Dong G J, Qian Q, Zhang G Q, Fu X D. Control of grain size, shape and quality by OsSPL16 in rice. Nat Genet, 2012, 44: 950-954.
doi: 10.1038/ng.2327 |
[25] |
Wang S K, Li S, Liu Q, Wu K, Zhang J Q, Wang S S, Wang Y, Chen X B, Zhang Y, Gao C, Wang F, Huang H X, Fu X D. The OsSPL16-GW7 regulatory module determines grain shape and simultaneously improves rice yield and grain quality. Nat Genet, 2015, 47: 949-954.
doi: 10.1038/ng.3352 |
[26] |
Fang C, Li L, He R, Wang D, Wang M, Hu Q, Ma Q, Qin K, Feng X, Zhang G, Fu X, Liu Z. Identification of S23 causing both interspecific hybrid male sterility and environment-conditioned male sterility in rice. Rice, 2019, 12: 10.
doi: 10.1186/s12284-019-0271-4 pmid: 30820693 |
[27] | 张桂权. 基于SSSL文库的水稻设计育种平台. 遗传, 2019, 41: 754-760. |
Zhang G Q. Rice design and breeding platform based on SSSL library. Genetics, 2019, 41: 754-760. (in Chinese with English abstract) | |
[28] | 赵芳明, 郭超, 魏霞, 杨正林, 凌英华, 桑贤春, 王楠, 张长伟, 李云峰, 何光华. 日本晴与5个优良恢复系的多态性标记筛选及遗传差异分析. 西南大学学报(自然科学版), 2016, 38(11): 1-7. |
Zhao F M, Guo C, Wei X, Yang Z L, Ling Y H, Sang X C, Wang N, Zhang C W, Li Y F, He G H. Polymorphic SSR markers screening and genetic difference analysis between Nipponbare and five excellent restorer lines. J Southwest Univ (Nat Sci Edn), 2016, 38(11): 1-7. (in Chinese with English abstract) | |
[29] | 崔国庆, 王世明, 马福盈, 汪会, 向朝中, 李云峰, 何光华, 张长伟, 杨正林, 凌英华, 赵芳明. 水稻高秆染色体片段代换系Z1377的鉴定及重要农艺性状QTL定位. 作物学报, 2018, 44: 1477-1484. |
Cui G Q, Wang S M, Ma F Y, Wang H, Xiang C Z, Li Y F, He G H, Zhang C W, Yang Z L, Ling Y H, Zhao F M. Identification and QTL mapping of important agronomic traits in rice Z1377. Acta Agron Sin, 2018, 44: 1477-1484 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2018.01477 |
|
[30] |
Paterson A H, Damon S, Hewitt J D, Zamir D, Rabinowitch H D, Lincoln S E, Lander E S, Tanksley S D. Mendelian factors underlying quantitative traits in tomato: comparison across species, generations, and environments. Genetics, 1991, 127: 181-197.
doi: 10.1093/genetics/127.1.181 pmid: 1673106 |
[31] |
McCouch S R, Kochert G, Yu Z H, Wang Z Y, Khush G S, Coffman W R, Tanksley S D. Molecular mapping of rice chromosomes. Theor Appl Genet, 1988, 76: 815-829.
doi: 10.1007/BF00273666 pmid: 24232389 |
[32] |
Zhao F M, Tan Y, Zheng L Y, Zhou K, He G H, Ling Y H, Zhang L H, Xu S Z. Identification of rice chromosome segment substitution line Z322-1-10 and mapping QTL for agronomic traits from the F3 population. Cereal Res Commun, 2016, 44: 370-380.
doi: 10.1556/0806.44.2016.022 |
[33] |
Liang P X, Wang H, Zhang Q L, Zhou K, Li M M, Li R X, Xiang S Q, Zhang Z, Ling Y H, Yang Z L, He G H, Zhao F M. Identification and pyramiding of QTLs for rice grain size based on short-wide grain CSSL-Z563 and fine-mapping of qGL3-2. Rice, 2021, 14: 35.
doi: 10.1186/s12284-021-00477-w |
[34] | Ma M Y, Gong W J, Duan H Y. Rice grain shape genes: research progress and application. J Agric, 2020, 10: 21-25. |
[35] |
Bai X F, Luo L J, Yan W H, Kovi M R, Zhan W, Xing Y Z. Genetic dissection of rice grain shape using a recombinant inbred line population derived from two contrasting parents and fine mapping a pleiotropic quantitative trait locus qGL7. BMC Genet, 2010, 11: 16.
doi: 10.1186/1471-2156-11-16 |
[36] |
Xing Y, Zhang Q. Genetic and molecular bases of rice yield. Annu Rev Plant Biol, 2010, 61: 421-442.
doi: 10.1146/annurev-arplant-042809-112209 pmid: 20192739 |
[37] | 张静, 李晨, 潘大建, 陈文丰, 孙炳蕊, 刘清, 吕树伟, 江立群, 毛兴学, 范芝兰. 水稻粒长遗传及其功能基因研究进展. 广东农业科学, 2021, 48(3): 1-10. |
Zhang J, Li C, Pan D J, Chen W F, Sun B R, Liu Q, Lyu S W, Jiang L Q, Mao X X, Fan Z L. Research progress on genetic and functional genes of rice grain length. Guangdong Agric Sci, 2021, 48(3): 1-10. (in Chinese with English abstract) | |
[38] |
Wang D C, Zhou K, Xiang S Q, Zhang Q L, Li R X, Li M M, Liang P X, Farkhanda N, He G H, Ling Y H, Zhao F M. Identification, pyramid and candidate genes of QTLs for associated traits based on a dense erect panicle rice CSSL-Z749 and five SSSLs, three DSSLs and one TSSL. Rice, 2021, 14: 55.
doi: 10.1186/s12284-021-00496-7 pmid: 34132908 |
[39] | Du Y W, He W, Deng C W, Chen X, Gou L M, Zhu F G, Guo W, Zhang J F, Wang T. Flowering-related RING protein 1 (FRRP1) regulates flowering time and yield potential by affecting histone H2B monoubiquitination in rice (Oryza sativa). PLoS One, 2016, 11: e0150458. |
[40] |
Yang C, Ma B, He S J, Xiong Q, Duan X K, Yin C C, Chen H, Lu X, Chen S Y, Zhang J S. MAOHUZI6/ETHYLENE INSENSITIVE3-LIKE1 and ETHYLENE INSENSITIVE3-LIKE2 regulate ethylene response of roots and coleoptiles and negatively affect salt tolerance in rice. Plant Physiol, 2015, 169: 148-165.
doi: 10.1104/pp.15.00353 |
[41] |
Zhou S X, Zhu Y, Wang L F, Zheng Y P, Chen J F, Li T T, Yang X M, Wang H, Li X P, Ma X C, Zhao J Q, Pu M, Feng F, Li Y, Fan J, Zhang J W, Huang Y Y, Wang W M. Osa-miR1873 fine-tunes rice immunity against magnaporthe oryzae and yield traits. J Integr Plant Biol, 2020, 62: 1213-1226.
doi: 10.1111/jipb.12900 |
[42] |
Wang Z, Wei K, Xiong M, Wang J D, Zhang C Q, Fan X L, Huang L C, Zhao D S, Liu Q Q, Li Q F. Glucan, Water-Dikinase 1 (GWD1), an ideal biotechnological target for potential improving yield and quality in rice. Plant Biotechnol J, 2021, 19: 2606-2618.
doi: 10.1111/pbi.13686 pmid: 34416068 |
[43] |
Zhang L, Wang R C, Xing Y D, Xu Y F, Xiong D P, Wang Y M, Yao S G. Separable regulation of POW1 in grain size and leaf angle development in rice. Plant Biotechnol J, 2021, 19: 2517-2531.
doi: 10.1111/pbi.13677 pmid: 34343399 |
[44] |
Wang X L, Jin L L, Zhu H T, Wang S K, Zhang G Q, Liu G F. QTL epistasis analysis for yield components with single-segment substitution lines in rice. Plant Breed, 2018, 137: 346-354.
doi: 10.1111/pbr.12578 |
[1] | ZHANG Chen-Hui, ZHANG Yan, LI Guo-Hui, YANG Zi-Jun, ZHA Ying-Ying, ZHOU Chi-Yan, XU Ke, HUO Zhong-Yang, DAI Qi-Gen, GUO Bao-Wei. Root morphology and physiological characteristics for high yield formation under side-deep fertilization in rice [J]. Acta Agronomica Sinica, 2023, 49(4): 1039-1051. |
[2] | TANG Wen-Qiang, ZHANG Wen-Long, ZHU Xiao-Qiao, DONG Bi-Zheng, LI Yong-Cheng, YANG Nan, ZHANG Yao, WANG Yun-Yue, HAN Guang-Yu. Effects of diverse mixture intercropping on the structure and function of bacterial communities in rice rhizosphere [J]. Acta Agronomica Sinica, 2023, 49(4): 1111-1121. |
[3] | LI Qiu-Ping, ZHANG Chun-Long, YANG Hong, WANG Tuo, LI Juan, JIN Shou-Lin, HUANG Da-Jun, LI Dan-Dan, WEN Jian-Cheng. Physiological characteristics analysis and gene mapping of a semi-sterility plant mutant sfp10 in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2023, 49(3): 634-646. |
[4] | LIU Li-Jun, ZHOU Shen-Qi, LIU Kun, ZHANG Wei-Yang, YANG Jian-Chang. Research progress on the formation of large panicles in rice and its regulation [J]. Acta Agronomica Sinica, 2023, 49(3): 585-596. |
[5] | ZHU Xiao-Tong, YE Ya-Feng, GUO Jun-Yao, YANG Hui-Jie, WANG Zi-Yao, ZHAN Yue, WU Yue-Jin, TAO Liang-Zhi, MA Bo-Jun, CHEN Xi-Feng, LIU Bin-Mei. Heredity and fine mapping of an early-senescence leaf gene ESL8 in rice [J]. Acta Agronomica Sinica, 2023, 49(3): 662-671. |
[6] | XU Jia-Bo, WU Peng-Hao, HUANG Bo-Wen, CHEN Zhan-Hui, MA Yue-Hong, REN Jiao-Jiao. QTL locating and genomic selection for tassel-related traits using F2:3 lineage haploids [J]. Acta Agronomica Sinica, 2023, 49(3): 622-633. |
[7] | WU Dong-Qing, LI Zhou, GUO Chun-Lin, ZOU Jing-Nan, PANG Zi-Qin, LIN Fei-Fan, HE Hai-Bin, LIN Wen-Xiong. Dry matter partitioning properties and mechanism of ratooning rice and main crop (late season) synchronized in rice heading time [J]. Acta Agronomica Sinica, 2023, 49(3): 755-771. |
[8] | FU Jing, WANG Ya, YANG Wen-Bo, WANG Yue-Tao, LI Ben-Yin, WANG Fu-Hua, WANG Sheng-Xuan, BAI Tao, YIN Hai-Qing. Effects of alternate wetting and drying irrigation and nitrogen coupling on grain filling physiology and root physiology in rice [J]. Acta Agronomica Sinica, 2023, 49(3): 808-820. |
[9] | FANG Ya-Ting, REN Tao, ZHANG Shun-Tao, ZHOU Xiang-Qi, ZHAO Jian, LIAO Shi-Peng, CONG Ri-Huan, LU Jian-Wei. Different effects of nitrogen, phosphorus and potassium fertilizers on oilseed rape yield and nutrient utilization between continuous upland and paddy-upland rotations [J]. Acta Agronomica Sinica, 2023, 49(3): 772-783. |
[10] | CHEN Sai-Hua, PENG Sheng, YOU Yi-Wen, ZHANG Lu-Yao, WANG Kai, XUE Ming, YANG Yuan-Zhu, WAN Jian-Min. Genetic analysis of photosensitivity divergence among hybrids derived from rice sterile line Xiangling 628S [J]. Acta Agronomica Sinica, 2023, 49(2): 332-342. |
[11] | YANG Xiao-Yi, WANG Hui-Hui, ZHANG Yan-Wen, HOU Dian-Yun, ZHANG Hong-Xiao, KANG Guo-Zhang, XU Hua-Wei. Function analysis of OsPIN5c gene by CRISPR/Cas9 [J]. Acta Agronomica Sinica, 2023, 49(2): 354-364. |
[12] | LI Zhao-Wei, MO Zu-Yi, SUN Cong-Ying, SHI Yu, SHANG Ping, LIN Wei-Wei, FAN Kai, LIN Wen-Xiong. Construction of rice mutants by gene editing of OsNAC2d and their response to drought stress [J]. Acta Agronomica Sinica, 2023, 49(2): 365-376. |
[13] | CAI Xiao-Xi, HU Bing-Shuang, SHEN Yang, WANG Yan, CHEN Yue, SUN Ming-Zhe, JIA Bo-Wei, SUN Xiao-Li. Effects of GsERF6 overexpression on salt-alkaline tolerance in rice [J]. Acta Agronomica Sinica, 2023, 49(2): 561-569. |
[14] | TAO Shi-Bao, KE Jian, SUN Jie, YIN Chuan-Jun, ZHU Tie-Zhong, CHEN Ting-Ting, HE Hai-Bing, YOU Cui-Cui, GUO Shuang-Shuang, WU Li-Quan. High-yielding population agronomic characteristics of middle-season indica hybrid rice with different panicle sizes in the middle and lower reaches of the Yangtze River [J]. Acta Agronomica Sinica, 2023, 49(2): 511-525. |
[15] | ZHAO Ling, LIANG Wen-Hua, ZHAO Chun-Fang, WEI Xiao-Dong, ZHOU Li-Hui, YAO Shu, WANG Cai-Lin, ZHANG Ya-Dong. Mapping of QTLs for heading date of rice with high-density bin genetic map [J]. Acta Agronomica Sinica, 2023, 49(1): 119-128. |
|