Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2025, Vol. 51 ›› Issue (1): 149-160.doi: 10.3724/SP.J.1006.2025.44085

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Effects of manure replacement of chemical fertilizer nitrogen on yield, nitrogen accumulation, and quality of foxtail millet

WANG Yuan(), XU Jia-Yin, DONG Er-Wei, WANG Jin-Song, LIU Qiu-Xia, HUANG Xiao-Lei, JIAO Xiao-Yan*()   

  1. College of Resources and Environment, Shanxi Agricultural University, Taiyuan 030031, Shanxi, China
  • Received:2024-05-23 Accepted:2024-09-18 Online:2025-01-12 Published:2024-10-10
  • Contact: *E-mail: jiaoxiaoyan@sxagri.ac.cn
  • Supported by:
    Key Research Project of Shanxi Province(2022ZDYF108);China Agriculture Research System of MOF and MARA(CARS-06-14.5-A20)

Abstract:

The partial substitution of chemical fertilizer with manure is increasingly recognized as a promising strategy for achieving sustainable agriculture. This study aimed to investigate the effects of different manure substitution ratios on grain yield and its components, plant nitrogen accumulation, grain appearance quality, carotenoid content, and pasting properties. A two-year field experiment (2020-2021) was conducted with six treatments: no fertilizer application (CK), chemical fertilizer (NPK), 25% substitution of chemical nitrogen with manure (25% M), 50% substitution (50% M), 75% substitution (75% M), and 100% substitution (100% M). Results indicated that plant nitrogen accumulation was highest with 25% M and decreased as the proportion of manure substitution increased, which subsequently affected grain yield and quality. In 2020, 25% M increased plant nitrogen accumulation by 9.6% compared to NPK. In 2021, 25% M produced the highest values for plant nitrogen accumulation, aboveground biomass, grain yield, and grain number per ear, with increases of 6.1%, 12.0%, 15.4%, and 12.0%, respectively, compared to NPK. Grain appearance quality, pasting properties, and carotenoid content were significantly influenced by the 50% M treatment. Compared to NPK, 50% M increased the a* parameter (indicating red or green coloration) by 6%, CCI (indicating orange coloration) by 6%, and final viscosity by 7.8%. Additionally, amylopectin, total starch, lutein, zeaxanthin, and yellow pigment contents increased by 7.4%, 4.3%, 20.68%, 17.4%, and 2.8%, respectively, under 50% M compared to NPK. However, 100% M significantly reduced plant nitrogen accumulation, biomass, grain number per ear, and grain yield relative to NPK, and had no positive effects on lutein and zeaxanthin contents. Pearson correlation analyses revealed that plant nitrogen accumulation was negatively related to grain weight, amylose content, and setback viscosity in 2020 and 2021. A negative correlation was also observed between plant nitrogen accumulation and total starch content, protein content, peak viscosity, and yellow pigment content in 2021, while a positive correlation was found between plant nitrogen accumulation and trough viscosity. In conclusion, under a total nitrogen application rate of 120 kg hm-2, substituting 25%-50% of chemical nitrogen with manure enhanced plant nitrogen accumulation, which in turn improved yield, grain appearance quality, pasting properties, and carotenoid content in foxtail millet grains.

Key words: foxtail millet, replacement ratio of chemical fertilizer nitrogen by manure, plant nitrogen accumulation, grain yield, grain appearance quality, pasting properties, carotenoids in grains

Fig. 1

Average daily temperature and rainfall during 2020 and 2021 growing seasons"

Table 1

Fertilizer application rate for each treatment"

处理
Treatment
有机肥
Organic fertilizer (kg hm-2)
化肥Chemical fertilizer (kg hm-2)
N P2O5 K2O
CK 0 0 0 0
NPK 0 120 60 75
25% M 1200 90 42 54
50% M 2400 60 24 33
75% M 3600 30 6 12
100% M 4800 0 0 0

Table 2

Effect of manure substituting chemical fertilizer nitrogen on grain yield and composition in foxtail millet (mean±SE)"

年份
Year
处理
Treatment
产量
Grain yield
(kg hm-2)
千粒重
1000-grain weight
(g)
穗粒数
Grain number
(per panicle)
生物量
Biomass
(kg hm-2)
收获指数
HI
(%)
氮累积量
N accumulation
(kg hm-2)
氮收获指数
NHI
(%)
2020 CK 5525.3±245.4 b 2.72±0.02 c 6858±136 ab 10,600.3±361.6 a 52.1±0.5 b 123.1±2.8 a 64.5±1.9 c
NPK 6050.2±180.4 bc 2.67±0.01 ab 6796±230 ab 12,401.2±124.1 b 48.8±1.1 b 158.0±0.2 d 62.0±1.5 abc
25% M 6531.7±258.8 c 2.66±0.01 ab 7433±677 ab 13,008.0±737.0 b 50.4±1.8 b 173.1±1.0 f 61.3±0.5 abc
50% M 6560.0±384.2 c 2.65±0.01 ab 8537±837 b 12,793.8±779.8 b 51.3±0.5 b 162.6±0.4 e 63.9±0.3 bc
75% M 6300.4±288.7 bc 2.70±0.01 bc 6750±685 ab 12,221.3±520.5 ab 51.7±2.9 b 149.5±1.4 c 60.8±0.4 ab
100% M 5149.4±188.8 a 2.71±0.00 c 6108±237 a 12,206.4±178.0 ab 42.2±1.6 a 144.0±0.6 b 59.3±0.6 a
2021 CK 3649.5±95.2 a 2.74±0.00 d 5461±179 a 7871.4±111.2 a 46.3±0.6 c 89.8±3.0 a 59.3±0.8 c
NPK 4472.5±77.3 c 2.70±0.01 bc 5884±173 ab 10,226.4±98.0 cd 43.8±1.1 a 137.1±3.0 c 54.1±0.2 ab
25% M 5007.2±30.3 d 2.66±0.01 a 6791±132 c 11,456.2±79.6 e 43.7±0.1 a 145.5±1.9 d 55.6±0.8 b
50% M 4639.2±109.2 c 2.68±0.01 ab 6459±419 bc 10,505.7±159.6 d 44.2±0.7 ab 138.1±1.7 c 54.3±0.6 ab
75% M 4594.0±78.6 c 2.71±0.00 cd 6518±260 bc 10,132.0±93.0 c 45.3±0.5 abc 135.3±0.2 c 52.5±0.1 a
100% M 4073.2±45.4 b 2.70±0.00 cd 5360±13 a 8824.2±51.4 b 46.2±0.6 bc 125.9±2.0 b 52.5±0.4 a

Table 3

Effect of manure substituting chemical fertilizer nitrogen on appearance quality of foxtail millet"

年份
Year
处理
Treatment
单粒重
Weight per grain
(mg)
籽粒体积
Volume per grain
(mm3)
籽粒密度
Grain density
(g L-1)
米色 Grain color values
L a b CCI E
2020 CK 2.71±0.02 c 1.96±0.01 ab 1383.58±12.51 b 54.27±0.23 b 1.73±0.01 bc 26.23±0.23 b 1.22±0.02 ab 60.30±0.28 b
NPK 2.64±0.01 ab 1.95±0.01 a 1354.69±5.74 ab 53.71±0.19 ab 1.67±0.02 a 26.04±0.08 ab 1.20±0.02 a 59.71±0.20 ab
25% M 2.64±0.01 ab 1.96±0.02 abc 1348.58±19.68 a 53.62±0.09 ab 1.70±0.01 ab 25.55±0.24 a 1.24±0.00 abc 59.42±0.07 a
50% M 2.65±0.01 ab 2.00±0.00 bc 1324.96±3.81 a 53.99±0.3 ab 1.72±0.01 bc 25.84±0.08 ab 1.23±0.01 abc 59.88±0.30 ab
75% M 2.69±0.01 bc 1.97±0.01 abc 1368.63±3.08 ab 53.37±0.29 a 1.72±0.01 bc 25.55±0.06 a 1.26±0.01 c 59.20±0.24 a
100% M 2.71±0.00 c 1.99±0.01 c 1361.19±4.52 ab 53.84±0.08 ab 1.75±0.01 c 26.02±0.07 ab 1.25±0.01 bc 59.82±0.08 ab
2021 CK 2.72±0.00 d 1.97±0.02 a 1380.86±9.59 b 53.82±0.39 a 1.37±0.01 a 25.67±0.13 b 0.99±0.02 a 59.65±0.40 a
NPK 2.69±0.01 bc 2.00±0.01 ab 1342.55±9.58 ab 53.06±0.35 a 1.34±0.01 a 25.21±0.23 ab 1.00±0.01 a 58.77±0.41 a
25% M 2.63±0.01 a 2.00±0.01 ab 1313.03±14.98 a 53.53±0.20 a 1.36±0.00 a 25.16±0.32 ab 1.01±0.01 ab 59.16±0.32 a
50% M 2.66±0.01 ab 2.03±0.03 ab 1312.31±17.12 a 53.09±0.60 a 1.42±0.01 b 25.23±0.25 ab 1.06±0.03 cd 58.80±0.63 a
75% M 2.70±0.00 cd 2.04±0.02 b 1321.99±16.38 a 53.03±0.33 a 1.42±0.01 b 25.26±0.09 ab 1.06±0.00 bc 58.76±0.34 a
100% M 2.70±0.00 cd 2.03±0.03 ab 1329.27±19.64 a 53.52±0.44 a 1.47±0.02 c 24.70±0.29 a 1.11±0.01 d 58.97±0.48 a

Fig. 2

Effects of manure substituting chemical fertilizer nitrogen on content of amylose, amylopectin, total starch and protein content in foxtail millet Different lowercase letters indicate significant differences among treatments at the 0.05 probability level. Treatments are the same as those given in Table 1."

Table 4

Effect of manure substituting chemical fertilizer nitrogen on pasting properties of dehulled grain"

年份
Year
处理
Treatment
峰值黏度
Peak viscosity
(BU)
最终黏度
Final viscosity
(BU)
崩解值
Breakdown
(BU)
回升值
Setback
(BU)
峰谷黏度
Trough viscosity
(BU)
糊化温度
Pasting temperature
(℃)
开始糊化时间
Start pasting time
(min)
2020 CK 267.0±9.7 bc 484.7±4.9 b 76.7±2.9 bc 355.7±7.1 d 129.0±3.5 a 77.3±0.5 a 9.36±0.20 a
NPK 251.7±15.5 ab 463.0±2.3 a 71.0±3.6 ab 342.3±2.4 bc 120.7±0.7 a 77.3±0.1 a 9.35±0.02 a
25% M 261.3±5.3 bc 492.3±3.7 bc 65.0±3.5 a 323.7±3.2 a 168.7±6.7 b 78.8±0.5 a 9.87±0.18 a
50% M 232.0±5.3 a 499.0±3.2 c 70.3±3.2 ab 339.3±0.9 b 159.7±3.2 b 78.5±0.5 a 9.79±0.18 a
75% M 272.3±5.4 bc 510.3±3.7 d 81.7±1.2 c 348.7±3.8 bcd 161.7±5.0 b 78.6±0.8 a 9.83±0.24 a
100% M 284.7±7.2 c 525.3±2.6 e 79.0±1.2 bc 353.3±0.9 cd 172.0±3.5 b 78.2±0.4 a 9.65±0.14 a
2021 CK 287.3±2.9 c 476.3±1.8 ab 63.0±2.0 a 373.3±3.5 ab 103.0±3.5 a 82.4±0.2 a 11.08±0.07 a
NPK 276.7±1.7 bc 471.7±2.2 a 60.0±5.2 a 335.3±8.5 b 136.3±9.2 a 82.3±0.4 a 11.06±0.13 a
25% M 265.7±6.4 ab 482.7±3.4 b 60.0±4.0 a 314.0±9.0 a 168.7±10.6 b 82.6±0.2 a 11.13±0.09 a
50% M 255.3±4.4 a 497.0±0.6 c 61.7±5.4 a 329.0±23.7 ab 168.0±23.8 b 82.6±0.4 a 11.10±0.12 a
75% M 266.0±4.6 ab 501.7±2.7 c 59.7±5.6 a 331.3±12.0 ab 170.3±12.8 b 83.1±0.1 a 11.19±0.11 a
100% M 270.7±3.7 b 510.3±2.2 d 67.3±4.5 a 340.0±20.8 ab 170.3±22.8 b 82.5±0.2 a 11.28±0.03 a

Fig. 3

Effects of manure substituting chemical fertilizer nitrogen on content of yellow pigment, lutein, zeaxanthin and β-carotene in foxtail millet Different lowercase letters indicate significant differences among treatments at the 0.05 probability level. Treatments are the same as those given in Table 1."

Fig. 4

Correlations between aboveground nitrogen accumulation and grain quality of threshed grain PN: plant total nitrogen accumulation aboveground; GW: weight per grain; GV: volume per grain; a: grain color a value (expressed red or green); CCI: grain color CCI value (expressed orange); AM: grain amylose content; AMP: grain amylopectin content; SC: grain starch content; PC: grain protein content; PV: peak viscosity; FV: final viscosity; SB: setback; YP: grain yellow pigment content; LT: grain lutein content; ZE: grain zeaxanthin content; CA: grain β-carotene content. *, **, and *** indicate significant correlations at 0.05, 0.01, and 0.001 probability levels, respectively."

[1] 刁现民. 禾谷类杂粮作物耐逆和栽培技术研究新进展. 中国农业科学, 2019, 52: 3943-3949.
Diao X M. Progresses in stress tolerance and field cultivation studies of orphan cereals in China. Sci Agric Sin, 2019, 52: 3943-3949 (in Chinese with English abstract).
[2] Mohamed T K, Issoufou A, Zhou H. Antioxidant activity of fractionated foxtail millet protein hydrolysate. Int Food Res J, 2012, 19: 207-213.
[3] 中华人民共和国国家统计局. 中国统计年鉴. 北京: 中国统计出版社, 2022. pp 382-389.
National Bureau of Statistics of China. China Statistical Yearbook. Beijing: China Statistics Press, 2022. pp 382-389 (in Chinese).
[4] Yang S H, Peng S Z, Xu J Z, Hou H J, Gao X L. Nitrogen loss from paddy field with different water and nitrogen managements in Taihu lake region of China. Commun Soil Sci Plant Anal, 2013, 44: 2393-2407.
[5] Liu B, Wang X Z, Ma L, Chadwick D, Chen X P. Combined applications of organic and synthetic nitrogen fertilizers for improving crop yield and reducing reactive nitrogen losses from China’s vegetable systems: a meta-analysis. Environ Pollut, 2021, 269: 116143.
[6] Shi Y L, Liu X R, Zhang Q W. Effects of combined biochar and organic fertilizer on nitrous oxide fluxes and the related nitrifier and denitrifier communities in a saline-alkali soil. Sci Total Environ, 2019, 686: 199-211.
[7] Cui J X, Yan P, Wang X L, Yang J, Li Z J, Yang X L, Sui P, Chen Y Q. Integrated assessment of economic and environmental consequences of shifting cropping system from wheat-maize to monocropped maize in the North China Plain. J Clean Prod, 2018, 193: 524-532.
[8] Zhang W F, Cao G X, Li X L, Zhang H Y, Wang C, Liu Q Q, Chen X P, Cui Z L, Shen J B, Jiang R F, Mi G H, Miao Y X, Zhang F S, Dou Z X. Closing yield gaps in China by empowering smallholder farmers. Nature, 2016, 537: 671-674.
[9] Chen X P, Cui Z L, Fan M S, Vitousek P, Zhao M, Ma W Q, Wang Z L, Zhang W J, Yan X Y, Yang J C, Deng X P, Gao Q, Zhang Q, Guo S W, Ren J, Li S Q, Ye Y L, Wang Z H, Huang J L, Tang Q Y, Sun Y X, Peng X L, Zhang J W, He M R, Zhu Y J, Xue J Q, Wang G L, Wu L, An N, Wu L Q, Ma L, Zhang W F, Zhang F S. Producing more grain with lower environmental costs. Nature, 2014, 514: 486-489.
[10] Li P F, Lu J W, Wang Y, Wang S, Hussain S, Ren T, Cong R H, Li X K. Nitrogen losses, use efficiency, and productivity of early rice under controlled-release urea. Agric Ecosyst Environ, 2018, 251: 78-87.
[11] Liu T Q, Fan D J, Zhang X X, Chen J, Li C F, Cao C G. Deep placement of nitrogen fertilizers reduces ammonia volatilization and increases nitrogen utilization efficiency in no-tillage paddy fields in central China. Field Crops Res, 2015, 184: 80-90.
[12] Peng S B, Buresh R J, Huang J L, Yang J C, Zou Y B, Zhong X H, Wang G H, Zhang F S. Strategies for overcoming low agronomic nitrogen use efficiency in irrigated rice systems in China. Field Crops Res, 2006, 96: 37-47.
[13] Zhou B Y, Sun X F, Wang D, Ding Z S, Li C F, Ma W, Zhao M. Integrated agronomic practice increases maize grain yield and nitrogen use efficiency under various soil fertility conditions. Crop J, 2019, 7: 527-538.
[14] Huang R, Wang Y Y, Liu J, Gao J J, Zhang Y R, Ni J P, Xie D T, Wang Z F, Gao M. Partial substitution of chemical fertilizer by organic materials changed the abundance, diversity, and activity of nirS-type denitrifying bacterial communities in a vegetable soil. Appl Soil Ecol, 2020, 152: 103589.
[15] Cai A D, Xu M G, Wang B R, Zhang W J, Liang G P, Hou E Q, Luo Y Q. Manure acts as a better fertilizer for increasing crop yields than synthetic fertilizer does by improving soil fertility. Soil Tillage Res, 2019, 189: 168-175.
[16] Zhou X, Lu Y H, Liao Y L, Zhu Q D, Cheng H D, Nie X, Cao W D, Nie J. Substitution of chemical fertilizer by Chinese milk vetch improves the sustainability of yield and accumulation of soil organic carbon in a double-rice cropping system. J Integr Agric, 2019, 18: 2381-2392.
[17] Zhao J, Ni T, Li J, Lu Q, Fang Z Y, Huang Q W, Zhang R F, Li R, Shen B, Shen Q R. Effects of organic-inorganic compound fertilizer with reduced chemical fertilizer application on crop yields, soil biological activity and bacterial community structure in a rice-wheat cropping system. Appl Soil Ecol, 2016, 99: 1-12.
[18] Tang Q, Ti C P, Xia L L, Xia Y Q, Wei Z J, Yan X Y. Ecosystem services of partial organic substitution for chemical fertilizer in a peri-urban zone in China. J Clean Prod, 2019, 224: 779-788.
[19] Wang X Q, Yang Y D, Zhao J, Nie J W, Zang H D, Zeng Z H, Olesen J E. Yield benefits from replacing chemical fertilizers with manure under water deficient conditions of the winter wheat-summer maize system in the North China Plain. Eur J Agron, 2020, 119: 126118.
[20] 谢军红, 柴强, 李玲玲, 张仁陟, 王林林, 刘畅. 有机氮替代无机氮对旱作全膜双垄沟播玉米产量和水氮利用效率的影响. 应用生态学报, 2019, 30: 1199-1206.
Xie J H, Chai Q, Li L L, Zhang R Z, Wang L L, Liu C. Effects of the substitution of inorganic nitrogen by organic nitrogen fertilizer on maize grain yield and water and nitrogen use efficiency under plastic film fully mulched ridge-furrow in semi-arid area. Chin J Appl Ecol, 2019, 30: 1199-1206 (in Chinese with English abstract).
[21] Du Y D, Cui B J, Zhang Q, Wang Z, Sun J, Niu W Q. Effects of manure fertilizer on crop yield and soil properties in China: a meta-analysis. Catena, 2020, 193: 104617.
[22] Pan Y H, Guo J J, Fan L Y, Ji Y, Liu Z, Wang F, Pu Z X, Ling N, Shen Q R, Guo S W. The source-sink balance during the grain filling period facilitates rice production under organic fertilizer substitution. Eur J Agron, 2022, 134: 126468.
[23] Yu Q G, Ye J, Yang S N, Fu J R, Ma J W, Sun W C, Jiang L N, Wang Q. Effects of nitrogen application level on rice nutrient uptake and ammonia volatilization. Rice Sci, 2013, 20: 139-147.
[24] 温延臣, 张曰东, 袁亮, 李伟, 李燕青, 林治安, 赵秉强. 商品有机肥替代化肥对作物产量和土壤肥力的影响. 中国农业科学, 2018, 51: 2136-2142.
Wen Y C, Zhang Y D, Yuan L, Li W, Li Y Q, Lin Z A, Zhao B Q. Crop yield and soil fertility response to commercial organic fertilizer substituting chemical fertilizer. Sci Agric Sin, 2018, 51: 2136-2142 (in Chinese with English abstract).
[25] Xin X L, Qin S W, Zhang J B, Zhu A N, Yang W L, Zhang X F. Yield, phosphorus use efficiency and balance response to substituting long-term chemical fertilizer use with organic manure in a wheat-maize system. Field Crops Res, 2017, 208: 27-33.
[26] Li H, Feng W T, He X H, Zhu P, Gao H J, Sun N, Xu M G. Chemical fertilizers could be completely replaced by manure to maintain high maize yield and soil organic carbon (SOC) when SOC reaches a threshold in the Northeast China Plain. J Integr Agric, 2017, 16: 937-946.
[27] Ding W C, Xu X P, He P, Ullah S, Zhang J J, Cui Z L, Zhou W. Improving yield and nitrogen use efficiency through alternative fertilization options for rice in China: a meta-analysis. Field Crops Res, 2018, 227: 11-18.
[28] Xia L L, Lam S K, Yan X Y, Chen D L. How does recycling of livestock manure in agroecosystems affect crop productivity, reactive nitrogen losses, and soil carbon balance? Environ Sci Technol, 2017, 51: 7450-7457.
[29] Chen M M, Zhang S R, Liu L, Wu L P, Ding X D. Combined organic amendments and mineral fertilizer application increase rice yield by improving soil structure, P availability and root growth in saline-alkaline soil. Soil Tillage Res, 2021, 212: 105060.
[30] Lyu F L, Song J S, Giltrap D, Feng Y T, Yang X Y, Zhang S L. Crop yield and N2O emission affected by long-term organic manure substitution fertilizer under winter wheat-summer maize cropping system. Sci Total Environ, 2020, 732: 139321.
[31] Luo L G, Itoh S, Zhang Q W, Yang S Q, Zhang Q Z, Yang Z L. Leaching behavior of nitrogen in a long-term experiment on rice under different N management systems. Environ Monit Assess, 2011, 177: 141-150.
[32] 叶静, 俞巧钢, 杨梢娜, 姜丽娜, 马军伟, 王强, 汪建妹, 孙万春, 符建荣. 有机无机肥配施对杭嘉湖地区稻田氮素利用率及环境效应的影响. 水土保持学报, 2011, 25(3): 87-91.
Ye J, Yu Q G, Yang S N, Jiang L N, Ma J W, Wang Q, Wang J M, Sun W C, Fu J R. Effect of combined application of organic manure and chemical fertilizers on N use efficiency in paddy fields and the environmental effects in hang Jiahu area. J Soil Water Conserv, 2011, 25(3): 87-91 (in Chinese with English abstract).
[33] Shang Q Y, Gao C M, Yang X X, Wu P P, Ling N, Shen Q R, Guo S W. Ammonia volatilization in Chinese double rice-cropping systems: a 3-year field measurement in long-term fertilizer experiments. Biol Fert Soils, 2014, 50: 715-725.
[34] Han J N, Wang L F, Zheng H Y, Pan X Y, Li H Y, Chen F J, Li X X. ZD958 is a low-nitrogen-efficient maize hybrid at the seedling stage among five maize and two teosinte lines. Planta, 2015, 242: 935-949.
[35] Nadeem F, Ahmad Z, Wang R F, Han J N, Shen Q, Chang F R, Diao X M, Zhang F S, Li X X. Foxtail millet [Setaria italica (L.) beauv.] grown under low nitrogen shows a smaller root system, enhanced biomass accumulation, and nitrate transporter expression. Front Plant Sci, 2018, 9: 205.
[36] Laperche A, Devienne-Barret F, Maury O, Le Gouis J, Ney B. A simplified conceptual model of carbon/nitrogen functioning for QTL analysis of winter wheat adaptation to nitrogen deficiency. Theor Appl Genet, 2006, 113: 1131-1146.
[37] Zhu D W, Zhang H C, Guo B W, Xu K, Dai Q G, Wei C X, Zhou G S, Huo Z Y. Effects of nitrogen level on structure and physicochemical properties of rice starch. Food Hydrocoll, 2017, 63: 525-532.
[38] Wang Y, Wang J S, Dong E W, Liu Q X, Wang L G, Chen E Y, Jiao X Y, Diao X M. Foxtail millet [Setaria italica (L.) P. Beauv.] grown under nitrogen deficiency exhibits a lower folate contents. Front Nutr, 2023, 10: 1035739.
[39] Lyu X M, Zhang Y, Zhang Y X, Fan S J, Kong L G. Source-sink modifications affect leaf senescence and grain mass in wheat as revealed by proteomic analysis. BMC Plant Biol, 2020, 20: 257.
[40] Zhang J, Zhuang M H, Shan N, Zhao Q, Li H, Wang L G. Substituting organic manure for compound fertilizer increases yield and decreases NH3 and N2O emissions in an intensive vegetable production systems. Sci Total Environ, 2019, 670: 1184-1189.
[41] Luan H A, Gao W, Huang S W, Tang J W, Li M Y, Zhang H Z, Chen X P. Partial substitution of chemical fertilizer with organic amendments affects soil organic carbon composition and stability in a greenhouse vegetable production system. Soil Tillage Res, 2019, 191: 185-196.
[42] Han J Q, Dong Y Y, Zhang M. Chemical fertilizer reduction with organic fertilizer effectively improve soil fertility and microbial community from newly cultivated land in the Loess Plateau of China. Appl Soil Ecol, 2021, 165: 103966.
[43] Tounkara A, Clermont-Dauphin C, Affholder F, Ndiaye S, Masse D, Cournac L. Inorganic fertilizer use efficiency of millet crop increased with organic fertilizer application in rainfed agriculture on smallholdings in central Senegal. Agric Ecosyst Environ, 2020, 294: 106878.
[44] 董二伟, 王媛, 王劲松, 刘秋霞, 黄晓磊, 焦晓燕. 施氮量对谷子产量、氮素利用及小米品质的影响. 中国农业科学, 2024, 57: 306-318.
Dong E W, Wang Y, Wang J S, Liu Q X, Huang X L, Jiao X Y. Effects of nitrogen fertilization levels on grain yield, plant nitrogen utilization characteristics and grain quality of foxtail millet. Sci Agric Sin, 2024, 57: 306-318 (in Chinese with English abstract).
[45] 鲁如坤. 土壤农业化学分析方法. 北京: 中国农业科技出版社, 1999. pp 264-268.
Lu R K. Analytical Methods for Soil and Agro-Chemistry. Beijing: China Agricultural Science and Technology Press, 1999. pp 264-268 (in Chinese).
[46] Zhao F C, Jing L Q, Wang D C, Bao F, Lu W P, Wang G Y. Grain and starch granule morphology in superior and inferior kernels of maize in response to nitrogen. Sci Rep, 2018, 8: 6343.
[47] 赵利蓉, 马珂, 张丽光, 汤沙, 原向阳, 刁现民. 不同生态区谷子品种农艺性状和品质分析. 作物杂志, 2022, (2): 44-53.
Zhao L R, Ma K, Zhang L G, Tang S, Yuan X Y, Diao X M. Analysis of agronomic traits and quality of foxtail millet varieties in different ecological regions. Crops, 2022, (2): 44-53 (in Chinese with English abstract).
[48] Man J M, Yang Y, Zhang C Q, Zhou X H, Dong Y, Zhang F M, Liu Q Q, Wei C X. Structural changes of high-amylose rice starch residues following in vitro and in vivo digestion. J Agric Food Chem, 2012, 60: 9332-9341.
[49] Shen R, Yang S P, Zhao G H, Shen Q, Diao X M. Identification of carotenoids in foxtail millet (Setaria italica) and the effects of cooking methods on carotenoid content. J Cereal Sci, 2015, 61: 86-93.
[50] Xiang N, Li C Y, Li G K, Yu Y T, Hu J G, Guo X B. Comparative evaluation on vitamin E and carotenoid accumulation in sweet corn (Zea mays L.) seedlings under temperature stress. J Agric Food Chem, 2019, 67: 9772-9781.
[51] Li J Q, Lu Y Y, Chen H L, Wang L X, Wang S H, Guo X B, Cheng X Z. Effect of photoperiod on vitamin E and carotenoid biosynthesis in mung bean (Vigna radiata) sprouts. Food Chem, 2021, 358: 129915.
[52] 晏娟, 沈其荣, 尹斌. 施氮量对氮高效水稻种质4007的氮素吸收、转运和利用的影响. 土壤学报, 2010, 47: 107-114.
Yan J, Shen Q R, Yin B. Effects of nitrogen application rate on uptake, translocation and use of nitrogen by rice germ plasm 4007 high in nitrogen use efficiency. Acta Pedol Sin, 2010, 47: 107-114 (in Chinese with English abstract).
[53] Moe K, Moh S M, Htwe A Z, Kajihara Y, Yamakawa T. Effects of integrated organic and inorganic fertilizers on yield and growth parameters of rice varieties. Rice Sci, 2019, 26: 309-318.
[54] Akhtar K, Wang W Y, Ren G X, Khan A, Feng Y Z, Yang G H. Changes in soil enzymes, soil properties, and maize crop productivity under wheat straw mulching in Guanzhong, China. Soil Tillage Res, 2018, 182: 94-102.
[55] Nagar R, Goud V V, Kumar R, Kumar R. Effect of organic manures and crop residue management on physical, chemical and biological properties of soil under pigeon pea based intercropping system. Int J Farm Sci, 2016, 6: 101-113.
[56] Zhai L C, Wang Z B, Zhai Y C, Zhang L H, Zheng M J, Yao H P, Lyu L H, Shen H P, Zhang J T, Yao Y R, Jia X L. Partial substitution of chemical fertilizer by organic fertilizer benefits grain yield, water use efficiency, and economic return of summer maize. Soil Tillage Res, 2022, 217: 105287.
[57] Anisuzzaman M, Rafii M Y, Jaafar N M, Izan Ramlee S, Ikbal M F, Haque M A. Effect of organic and inorganic fertilizer on the growth and yield components of traditional and improved rice (Oryza sativa L.) genotypes in Malaysia. Agronomy, 2021, 11: 1830.
[58] Garzón E, González-Andrés F, García-Martínez V M, de Paz J M. Mineralization and nutrient release of an organic fertilizer made by flour, meat, and crop residues in two vineyard soils with different pH levels. Commun Soil Sci Plant Anal, 2011, 42: 1485-1496.
[59] Cai Z C, Qin S W. Dynamics of crop yields and soil organic carbon in a long-term fertilization experiment in the Huang-Huai- Hai Plain of China. Geoderma, 2006, 136: 708-715.
[60] Iqbal A, He L, Ali I, Ullah S, Khan A, Khan A, Akhtar K, Wei S Q, Zhao Q, Zhang J, Jiang L G. Manure combined with chemical fertilizer increases rice productivity by improving soil health, post-anthesis biomass yield, and nitrogen metabolism. PLoS One, 2020, 15: e0238934.
[61] Gibbs P, Barraclough D. Gross mineralisation of nitrogen during the decomposition of leaf protein I (ribulose 1,5-diphosphate carboxylase) in the presence or absence of sucrose. Soil Biol Biochem, 1998, 30: 1821-1827.
[62] Yang Q H, Zhang P P, Qu Y, Gao X L, Liang J B, Yang P, Feng B L. Comparison of physicochemical properties and cooking edibility of waxy and non-waxy proso millet (Panicum miliaceum L.). Food Chem, 2018, 257: 271-278.
[63] 张婷, 王根平, 罗焱杰, 李琳, 高翔, 程汝宏, 师志刚, 董立, 张喜瑞, 杨伟红, 许立闪. 色差分析在优质小米选育中的应用. 中国农业科学, 2021, 54: 901-908.
Zhang T, Wang G P, Luo Y J, Li L, Gao X, Cheng R H, Shi Z G, Dong L, Zhang X R, Yang W H, Xu L S. Color difference analysis in the application of high-quality foxtail millet breeding. Sci Agric Sin, 2021, 54: 901-908 (in Chinese with English abstract).
[64] Gu J F, Li Z K, Mao Y Q, Struik P C, Zhang H, Liu L J, Wang Z Q, Yang J C. Roles of nitrogen and cytokinin signals in root and shoot communications in maximizing of plant productivity and their agronomic applications. Plant Sci, 2018, 274: 320-331.
[65] Saini R K, Nile S H, Park S W. Carotenoids from fruits and vegetables: chemistry, analysis, occurrence, bioavailability and biological activities. Food Res Int, 2015, 76: 735-750.
[66] Toishimanov M, Suleimenova Z, Myrzabayeva N, Dossimova Z, Shokan A, Kenenbayev S, Yessenbayeva G, Serikbayeva A. Effects of organic fertilizers on the quality, yield, and fatty acids of maize and soybean in southeast Kazakhstan. Sustainability, 2023, 16: 162.
[67] Sun M J, Chao Y, He W, Kang X R, Yang Q G, Wang H, Pan H, Lou Y H, Zhuge Y P. Changes in foxtail millet (Setaria italica L.) yield, quality, and soil microbiome after replacing chemical nitrogen fertilizers with organic fertilizers. Sustainability, 2022, 14: 16412.
[68] 娄菲, 左怿平, 李萌, 代鑫萌, 王健, 韩金玲, 吴舒, 李向岭, 段会军. 有机肥替代部分化肥氮对糯玉米产量、品质及氮素利用的影响. 作物学报, 2024, 50: 1053-1064.
Lou F, Zuo Y P, Li M, Dai X M, Wang J, Han J L, Wu S, Li X L, Duan H J. Effects of organic fertilizer substituting chemical fertilizer nitrogen on yield, quality, and nitrogen efficiency of waxy maize. Acta Agron Sin, 2024, 50: 1053-1064 (in Chinese with English abstract).
[69] Zhou T Y, Chen L, Wang W L, Xu Y J, Zhang W Y, Zhang H, Liu L J, Wang Z Q, Gu J F, Yang J C. Effects of application of rapeseed cake as organic fertilizer on rice quality at high yield level. J Sci Food Agric, 2022, 102: 1832-1841.
[70] Jane J, Chen Y Y, Lee L F, McPherson A E, Wong K S, Radosavljevic M, Kasemsuwan T. Effects of amylopectin branch chain length and amylose content on the gelatinization and pasting properties of starch. Cereal Chem, 1999, 76: 629-637.
[71] Martin M, Fitzgerald M A. Proteins in rice grains influence cooking properties. J Cereal Sci, 2002, 36: 285-294.
[72] Gao L C, Bai W M, Xia M J, Wan C X, Wang M, Wang P K, Gao X L, Gao J F. Diverse effects of nitrogen fertilizer on the structural, pasting, and thermal properties of common buckwheat starch. Int J Biol Macromol, 2021, 179: 542-549.
[73] 胡雅杰, 薛建涛, 吴培, 李娈, 丛舒敏, 余恩唯, 倪嘉颢, 张洪程. 施氮量和直播密度对稻米食味品质和淀粉结构的影响. 中国粮油学报, 2022, 37(2): 7-13.
Hu Y J, Xue J T, Wu P, Li L, Cong S M, Yu E W, Ni J H, Zhang H C. Effects of nitrogen application and sowing density on eating quality and starch structure of direct-seeding rice. J Chin Cereals Oils Assoc, 2022, 37(2): 7-13 (in Chinese with English abstract).
[1] WANG Li-Ping, LI Pan, ZHAO Lian-Hao, FAN Zhi-Long, HU Fa-Long, FAN Hong, HE Wei, CHAI Qiang, YIN Wen. Response of senescence characteristics for maize leaves under different plastic mulching and using patterns in oasis irrigation areas of northwestern China [J]. Acta Agronomica Sinica, 2025, 51(1): 233-246.
[2] MENG Fan-Hua, LIU Min, SHEN Ao, LIU Wei. Preliminary investigation of the SiLTP1: a lipid transfer protein gene involved in the salt tolerance of foxtail millet [J]. Acta Agronomica Sinica, 2025, 51(1): 58-67.
[3] ZHANG Zhen, HE Jian-Ning, SHI Yu, YU Zhen-Wen, ZHANG Yong-Li. Effects of row spacing and planting patterns on photosynthetic characteristics and yield of wheat [J]. Acta Agronomica Sinica, 2024, 50(9): 2396-2407.
[4] YAN Feng, DONG Yang, LI Qing-Quan, ZHAO Fu-Yang, HOU Xiao-Min, LIU Yang, LI Qing-Chao, ZHAO Lei, FAN Guo-Quan, LIU Kai. Comprehensively evaluation on cold tolerance of foxtail millet varieties at germination stage [J]. Acta Agronomica Sinica, 2024, 50(9): 2207-2218.
[5] CHEN Juan, YANG Ting-Ting, YAN Su-Hui, YONG Yu-Dong, ZHANG Shi-Ya, LI Wen-Yang. Effects of waterlogging at jointing stage on starch particle size distribution and pasting properties of soft wheat [J]. Acta Agronomica Sinica, 2024, 50(7): 1877-1884.
[6] HAN Xiao-Chen, ZHANG Gui-Qin, WANG Ya-Hui, REN Hao, WANG Hong-Zhang, LIU Guo-Li, LIN Dian-Xu, WANG Zi-Qiang, ZHANG Ji-Wang, ZHAO Bin, REN Bao-Zhao, LIU Peng. Effects of soil conditioners on soil salinity content and maize yield in coastal saline-alkali land [J]. Acta Agronomica Sinica, 2024, 50(7): 1776-1786.
[7] QIN Na, YE Zhen-Yan, ZHU Can-Can, FU Sen-Jie, DAI Shu-Tao, SONG Ying-Hui, JING Ya, WANG Chun-Yi, LI Jun-Xia. QTL mapping for flavonoid content and seed color in foxtail millet [J]. Acta Agronomica Sinica, 2024, 50(7): 1719-1727.
[8] ZHANG Zhen, ZHAO Jun-Ye, SHI Yu, ZHANG Yong-Li, YU Zhen-Wen. Effects of different sowing space on photosynthetic characteristics after anthesis and grain yield of wheat [J]. Acta Agronomica Sinica, 2024, 50(4): 981-990.
[9] ZOU Jia-Qi, WANG Zhong-Lin, TAN Xian-Ming, CHEN Liao-Yuan, YANG Wen-Yu, YANG Feng. Estimation of maize grain yield under drought stress based on continuous wavelet transform [J]. Acta Agronomica Sinica, 2024, 50(4): 1030-1042.
[10] WU Xia-Yu, LI Pan, WEI Jin-Gui, FAN Hong, HE Wei, FAN Zhi-Long, HU Fa-Long, CHAI Qiang, YIN Wen. Effect of reduced irrigation and combined application of organic and chemical fertilizers on photosynthetic physiology, grain yield and quality of maize in northwestern irrigation areas [J]. Acta Agronomica Sinica, 2024, 50(4): 1065-1079.
[11] LI Bo-Yang, YE Yin, CHU Rui-Wen, JING Miao, ZHANG Sui-Qi, YAN Jia-Kun. Effects of biochar application on dry matter accumulation, transport, and distribution of foxtail millet and soil physicochemical properties [J]. Acta Agronomica Sinica, 2024, 50(3): 695-708.
[12] WEI Huan-He, ZHANG Xiang, ZHU Wang, GENG Xiao-Yu, MA Wei-Yi, ZUO Bo-Yuan, MENG Tian-Yao, GAO Ping-Lei, CHEN Ying-Long, XU Ke, DAI Qi-Gen. Effects of salinity stress on grain-filling characteristics and yield of rice [J]. Acta Agronomica Sinica, 2024, 50(3): 734-746.
[13] DIAO Xian-Min, WANG Li-Wei, ZHI Hui, ZHANG Jun, LI Shun-Guo, CHENG Ru-Hong. Development, genetic deciphering, and breeding utilization of dwarf lines in foxtail millet [J]. Acta Agronomica Sinica, 2024, 50(2): 265-279.
[14] XU Ran, YANG Wen-Ye, ZHU Jun-Lin, CHEN Song, XU Chun-Mei, LIU Yuan-Hui, ZHANG Xiu-Fu, WANG Dan-Ying, CHU Guang. Effects of different irrigation regimes on grain yield and water use efficiency in japonica-indica hybrid rice cultivar Yongyou 1540 [J]. Acta Agronomica Sinica, 2024, 50(2): 425-439.
[15] XIE Wei, HE Peng, MA Hong-Liang, LEI Fang, HUANG Xiu-Lan, FAN Gao-Qiong, YANG Hong-Kun. Effects of straw mulching from autumn fallow and phosphorus application on nitrogen uptake and utilization of winter wheat [J]. Acta Agronomica Sinica, 2024, 50(2): 440-450.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .