Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2025, Vol. 51 ›› Issue (3): 696-712.doi: 10.3724/SP.J.1006.2025.43031

;

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Effects of straw returning combined with nitrogen fertilizer on yield and grain quality of spring maize

LI Xiang-Yu(), JI Xin-Jie(), WANG Xue-Lian, LONG An-Ran, WANG Zheng-Yu, YANG Zi-Hui, GONG Xiang-Wei(), JIANG Ying, QI Hua   

  1. College of Agronomy, Shenyang Agricultural University, Shenyang 110866, Liaoning, China
  • Received:2024-07-18 Accepted:2024-10-25 Online:2025-03-12 Published:2024-11-11
  • Contact: *E-mail: gongxiangwei@syau.edu.cn
  • About author:

    **Contributed equally to this work

  • Supported by:
    Shenyang Science and Technology Talent Special Project(RC230899);Innovation and Entrepreneurship Training Program for College Students of Shenyang Agricultural University(D202406091411428680)

Abstract:

To elucidate the impact of nitrogen (N) fertilizer on spring maize grain yield and quality under different straw returning methods, this study analyzed the pasting and thermal characteristics of maize starch and explored the optimal N fertilizer rate under varying straw returning practices. The goal was to provide a scientific basis for improving cultivation practices to enhance maize quality. This research utilized a long-term field experiment initiated in 2015 at the Shenyang Agricultural University Experimental Base in Cainiu town, Tieling county, Liaoning province. The study addressed issues of unstable spring maize yields and the challenge of balancing yield and quality in Northeast China. From 2021 to 2022, the effects of two straw returning methods—rotary tillage with straw returning (RTS) and plow tillage with straw returning (PTS)—and five N application levels (0, 112, 187, 262, and 337 kg hm-2) were investigated. The results showed that, compared to RTS, PTS increased grain yield by 6.09% and enhanced total starch content as well as amylose content and the amylose/amylopectin ratio, while effectively reducing fat content and promoting the pasting and retrogradation properties of maize starch. Additionally, PTS increased the enthalpy of pasting (?H) by 14.09%, which optimized the relative crystallinity and microstructure of starch. In comparison to tillage methods, N application had a more significant effect on crude protein, crude fat, and sugar content in maize grains, with the maximum values observed at an N rate of 262 kg hm-2. Under N fertilizer treatment, the contents of crude protein, crude fat, sucrose, soluble sugar, amylose, and the amylose/amylopectin ratio increased by 17.99%-31.20%, 3.19%-14.91%, 32.88%-45.41%, 13.93%-23.73%, 6.80%-21.02%, and 10.26%-33.77%, respectively, compared to no N application. However, excessive N application (337 kg hm-2) reduced maize starch and crude fat content, decreased total starch and amylopectin levels, and led to lower peak and final viscosities, as well as a decrease in breakdown value, which could negatively affect starch pasting characteristics during processing. N application increased the peak time and pasting temperature of maize starch by 1.42% and 6.79%, respectively, enhancing viscosity, taste, and cooking stability. Correlation analysis revealed a significant positive association between total starch content and viscosity parameters (including peak, trough, and final viscosity), while crude protein content was negatively correlated with these indexes. Furthermore, the interaction between different tillage methods and N fertilizer rates significantly improved maize yield and enhanced sucrose content, starch enthalpy, and gelatinization characteristics, demonstrating that the synergistic effects of these factors can more effectively enhance maize grain quality. In conclusion, the combined application of 262 kg hm-2 N fertilizer with plow tillage and straw returning (PTS) can significantly increase maize yield, promote starch accumulation in maize grains, and improve the thermal and pasting characteristics of maize, thereby achieving overall improvements in maize quality.

Key words: returning straw, nitrogen fertilizer, maize, grain quality, yield

Fig. 1

Climate factors during maize growth period"

Table S1

Soil nutrient contents in 0-20 cm soil layer were treated before sowing"

耕作方式Tillage method 施氮处理
Nitrogen treatment
SOC
(g kg-1)
TN
(g kg-1)
TP
(g kg-1)
TK
(g kg-1)
NH4+-N
(mg kg-1)
NO3--N
(mg kg-1)
AP
(mg kg-1)
AK
(mg kg-1)
RTS N0 12.12 1.11 0.83 11.66 4.71 6.54 19.77 124.49
N1 12.91 1.21 0.84 11.65 4.90 9.32 21.05 129.41
N2 13.51 1.26 0.84 11.84 5.07 10.12 24.36 134.30
N3 13.17 1.26 0.83 11.29 3.99 9.31 23.38 130.51
N4 12.83 1.27 0.86 11.07 3.48 7.42 21.77 123.37
PTS N0 12.63 1.22 0.82 10.90 4.48 12.35 20.24 105.63
N1 14.35 1.26 0.92 13.29 5.19 28.53 22.04 120.52
N2 15.77 1.30 1.04 14.57 6.54 30.15 25.94 126.13
N3 13.89 1.28 0.95 13.98 6.42 18.93 23.30 124.06
N4 13.67 1.12 0.89 11.26 6.30 8.77 23.77 120.49

Table 1

Effects of straw returning combined with N fertilizer on the yield and yield components of maize"

年份
Year
耕作方式
Tillage
method
氮肥
Nitrogen
fertilizer
穗数
Ear number
(×104 hm-2)
穗粒数
Grain per ear
(hm-2)
百粒重
100-grain weight
(g)
籽粒产量
Grain yield
(t hm-2)
2021 RTS N0 5.47±0.12 b 259.44±3.05 d 32.48±1.18 c 3.59±0.12 c
N1 6.45±0.01 a 462.92±5.81 c 37.68±0.63 b 11.98±0.27 b
N2 6.52±0.01 a 506.36±1.16 ab 39.75±0.69 ab 13.15±0.12 a
N3 6.53±0.01 a 513.26±6.95 a 41.14±0.53 a 13.20±0.01 a
N4 6.50±0.04 a 492.46±6.13 b 39.69±0.38 ab 12.99±0.35 a
PTS N0 5.60±0.04 b 355.18±12.30 c 30.55±0.59 d 6.39±0.22 b
N1 6.45±0.01 a 468.37±5.28 b 38.41±0.69 c 12.75±0.50 a
N2 6.52±0.01 a 501.50±4.78 ab 39.31±0.72 bc 12.96±0.31 a
N3 6.54±0 a 528.71±35.32 a 41.93±0.53 a 13.40±0.23 a
N4 6.50±0.04 a 454.41±7.26 b 40.71±0.52 ab 13.33±0.16 a
2022 RTS N0 4.65±0.24 b 325.73±12.49 b 26.88±0.05 c 3.98±0.08 c
N1 6.42±0.28 a 552.02±29.09 a 35.94±0.25 b 12.12±0.07 b
N2 6.52±0.06 a 544.20±19.56 a 37.93±0.34 a 12.17±0.11 b
N3 6.54±0.02 a 555.38±2.44 a 35.91±0.27 b 12.50±0.20 ab
N4 6.59±0.04 a 562.55±1.03 a 35.78±0.74 b 12.63±0.13 a
PTS N0 5.22±0.33 b 396.92±11.20 b 29.25±0.12 b 6.00±0.24 c
N1 6.45±0.04 a 540.10±4.40 a 35.96±0.06 a 12.11±0.36 b
N2 6.59±0.03 a 554.00±22.56 a 36.31±0.55 a 12.45±0.18 a
N3 6.61±0.03 a 544.13±10.07 a 35.97±0.19 a 12.74±0.27 a
N4 6.54±0.02 a 527.55±2.30 a 35.78±0.15 a 12.78±0.09 a
显著性Significance
年份 Year (Y) ns ** ** **
耕作方式 Tillage method (T) ns ns ns **
氮肥水平 Nitrogen fertilizer (N) ** ** ** **
Y×T ns ns ns ns
Y×N ** ns ** ns
T×N ns ** ns **
Y×T×N ns ns ** ns

Fig. 2

Effects of straw returning combined with N fertilizer on total starch, amylose, amylopectin and amylose/amylopectin of maize grains a: effects of tillage method and nitrogen application on different starch content; b: morphological structure diagram of amylose and amylopectin; c: influence of tillage method and nitrogen application on amylose/amylopectin ratio; Y: year; T: tillage method; N: nitrogen application level; Y×T: interaction between year and tillage method; Y×N: interaction between year and nitrogen application level; T×N: interaction between tillage method and nitrogen application level; Y×T×N: interaction of year, tillage method, and nitrogen application level. Abbreviations and treatments are the same as those given in Table 1. Data presented as mean ± SD (n = 3). In the same year, different letters with different farming methods showed significant difference (P < 0.05). * and ** indicate significant differences at the 0.05 and 0.01 levels, respectively. ns: no significant differences."

Fig. 3

Effects of straw returning combined with N fertilizer on crude protein and soluble protein of maize grains a: effects of tillage method and nitrogen application on crude protein content of maize grains; b: effects of tillage method and nitrogen application on soluble protein content of maize grains. Abbreviations and treatments are the same as those given in Table 1 and Fig. 2. In the same year, different letters with different farming methods showed significant difference (P < 0.05). * and ** indicate significant differences at the 0.05 and 0.01 levels, respectively. ns: no significant differences."

Fig. 4

Effects of straw returning combined with N fertilizer on crude fat of maize grains Abbreviations and treatments are the same as those given in Table 1 and Fig. 2. In the same year, different letters with different farming methods showed significant difference (P < 0.05). * and ** indicate significant differences at the 0.05 and 0.01 levels, respectively. ns: no significant differences."

Fig. 5

Effects of straw returning combined with N fertilizer on sucrose and soluble sugar of maize grains a: effect of tillage method and nitrogen application on sucrose content in grains; b: effect of tillage method and nitrogen application on soluble sugar content of grains. Abbreviations and treatments are the same as those given in Table 1 and Fig. 2. In the same year, different letters with different farming methods showed significant difference (P < 0.05). * and ** indicate significant differences at the 0.05 and 0.01 levels, respectively. ns: no significant differences."

Table 2

Effects of straw returning combined with N fertilizer on thermal characteristics of maize starch"

年份
Year
耕作方式
Tillage
method
氮肥
Nitrogen
fertilizer
起始温度
To (℃)
峰值温度
Tp (℃)
终止温度
Tc (℃)
热焓值
ΔH (J g-1)
2021 RTS N0 61.40±0.62 c 66.86±0.62 c 72.85±0.56 b 6.20±0.20 c
N1 63.51±0.41 b 68.65±0.62 bc 74.22±0.06 b 7.69±0.09 b
N2 64.72±0.31 b 69.99±0.39 b 76.36±0.62 a 7.76±0.12 b
N3 67.01±0.59 a 72.46±0.75 a 77.13±0.44 a 7.97±0.05 ab
N4 68.32±0.31 a 73.77±0.58 a 77.55±0.34 a 8.24±0.07 a
PTS N0 61.45±0.45 d 66.55±0.43 d 72.53±0.31 d 7.15±0.04 c
N1 63.82±0.15 c 69.18±0.37 c 74.36±0.31 c 7.63±0.03 b
N2 64.36±0.27 bc 71.14±0.51 b 75.51±0.29 b 7.80±0.05 b
N3 65.25±0.37 ab 73.07±0.45 a 76.53±0.32 a 8.28±0.24 a
N4 65.59±0.35 a 74.03±0.05 a 76.95±0.29 a 8.29±0.03 a
2022 RTS N0 62.44±0.49 d 66.49±0.29 c 72.33±0.33 c 7.39±0.04 d
N1 63.29±0.45 cd 69.65±0.70 b 73.17±0.39 c 8.54±0.12 c
N2 64.46±0.70 c 70.16±0.40 b 76.14±0.42 b 8.74±0.13 bc
N3 67.07±0.42 b 72.38±0.92 a 77.19±0.60 ab 8.95±0.12 b
N4 69.46±0.48 a 73.86±0.14 a 77.75±0.17 a 9.41±0.08 a
PTS N0 61.33±0.25 c 66.20±0.65 d 72.84±0.51 c 8.28±0.11 c
N1 63.99±0.16 b 69.29±0.32 c 73.03±0.60 c 8.80±0.07 b
N2 64.95±0.49 ab 71.14±0.28 b 75.44±0.51 b 8.88±0.01 b
N3 64.07±0.04 b 73.50±0.64 a 76.22±0.70 ab 9.41±0.27 a
N4 65.60±0.35 a 73.67±0.52 a 77.95±0.55 a 9.48±0.19 a
显著性Significance
年份Year (Y) ns ns ns **
耕作方式 Tillage method (T) ** ns ns **
氮肥水平 Nitrogen fertilizer (N) ** ** ** **
Y×T ns ns ns ns
Y×N ns ns ns ns
T×N ** ns ns **
Y×T×N ns ns ns ns

Table 3

Effects of straw returning combined with N fertilizer on pasting characteristics of maize starch"

年份
Year
耕作方式Tillage
modes
氮肥
Nitrogen
fertilizer
峰值黏度
Peak viscosity
(cp)
谷值黏度
Trough viscosity
(cp)
最终黏度
Final viscosity
(cp)
破损值
Breakdown
(cp)
回升值
Setback
(cp)
糊化温度
Pasting temperature (℃)
峰值时间
Peak time
(min)
2021 RTS N0 1658.00 ± 21.00 a 1148.50 ± 6.50 a 3140.00 ± 42.00 a 509.50 ± 27.50 a 1991.50 ± 48.50 a 75.88 ± 0.03 e 5.25 ± 0.02 d
N1 1342.00 ± 2.00 b 972.50 ± 42.50 b 2631.50 ± 64.50 b 369.50 ± 44.50 b 1659.00 ± 22.00 a 81.55 ± 0.01 d 5.29 ± 0.01 d
N2 1345.00 ± 6.00 b 984.00 ± 29.00 b 2715.00 ± 58.00 b 361.00 ± 23.00 b 1731.00 ± 29.00 a 85.60 ± 0.05 b 5.50 ± 0.03 b
N3 1377.00 ± 4.00 b 971.50 ± 0.50 b 2736.50 ± 5.50 b 405.50 ± 3.50 b 1765.00 ± 6.00 a 86.38 ± 0.03 a 5.60 ± 0 a
N4 1369.50 ± 3.50 b 970.50 ± 0.50 b 2686.50 ± 195.50 b 399.00 ± 4.00 b 1716.00 ± 19.50 a 83.60 ± 0.40 c 5.40 ± 0 c
PTS N0 1712.50 ± 2.50 a 1101.00 ± 4.00 b 3282.00 ± 47.00 a 611.50 ± 6.50 a 2681.00 ± 51.00 a 76.25 ± 0.40 c 5.30 ± 0.10 a
N1 1396.50 ± 8.50 e 988.00 ± 6.00 d 2716.50 ± 0.50 d 408.50 ± 2.50 b 1928.50 ± 5.50 c 84.43 ± 0.38 a 5.40 ± 0.07 a
N2 1494.50 ± 15.50 d 1009.00 ± 3.00 d 3091.50 ± 15.50 b 485.50 ± 18.50 c 2082.50 ± 18.50 b 78.73 ± 0.43 b 5.30 ± 0.03 a
N3 1647.50 ± 13.50 b 1142.00 ± 12.00 a 2931.00 ± 47.00 c 505.50 ± 1.50 b 1989.00 ± 35.00 bc 77.38 ± 0.03 c 5.37 ± 0.03 a
N4 1567.50 ± 31.50 c 1066.50 ± 1.50 c 2890.00 ± 3.00 c 501.00 ± 30.00 b 2073.50 ± 51.50 b 77.05 ± 0.35 c 5.23 ± 0.03 a
2022 RTS N0 2071.67 ± 27.94 a 1087.67 ± 5.81 a 2884.67 ± 5.17 a 984.00 ± 33.31 a 1797.00 ± 10.82 a 73.45 ± 0.03 b 5.08 ± 0.02 b
N1 1608.00 ± 6.25 b 874.67 ± 2.19 c 2395.33 ± 36.40 b 733.33 ± 6.84 b 1520.67 ± 34.42 b 77.05 ± 0.03 b 5.10 ± 0 b
N2 1625.67 ± 16.37 b 889.67 ± 18.12 bc 2491.67 ± 110.73 b 736.00 ± 6.81 b 1602.00 ± 93.95 b 77.08 ± 0.04 a 5.11 ± 0.01 b
N3 1665.67 ± 39.83 b 920.33 ± 19.94 b 2744.67 ± 48.57 a 745.33 ± 22.60 b 1824.33 ± 28.64 a 78.77 ± 0.40 ab 5.17 ± 0 a
N4 1341.33 ± 3.76 c 729.00 ± 12.90 d 1976.00 ± 65.51 c 612.33 ± 12.35 c 1247.00 ± 69.96 c 76.83 ± 0.27 b 5.01 ± 0.02 c
PTS N0 1921.00 ± 23.52 a 1127.67 ± 8.01 a 3107.33 ± 25.20 a 793.33 ± 16.15 a 1979.67 ± 18.11 a 72.88 ± 0.28 d 5.06 ± 0.02 c
N1 1409.00 ± 27.61 c 837.33 ± 3.28 c 2510.00 ± 29.50 c 571.67 ± 25.96 c 1672.67 ± 26.52 c 76.60 ± 0.25 c 5.06 ± 0.02 b
N2 1458.67 ± 10.53 bc 881.33 ± 14.84 b 2553.00 ± 22.01 c 577.33 ± 9.21 c 1671.67 ± 20.10 c 77.87 ± 0.03 ab 5.17 ± 0.04 b
N3 1503.67 ± 10.74 b 861.00 ± 7.09 bc 2710.67 ± 45.12 b 642.67 ± 13.20 b 1849.67 ± 44.82 b 78.65 ± 0.31 a 5.12 ± 0.02 a
N4 1347.00 ± 12.90 d 782.00 ± 14.93 d 2192.67 ± 29.55 d 565.00 ± 6.43 c 1410.67 ± 16.19 d 77.33 ± 0.28 bc 5.08 ± 0.02 b
显著性Significance
年份 Years (Y) ** ** ** ** ** ** **
耕作方式 Tillage methods (T) ns ** ** ** ** ** **
氮肥水平 Nitrogen fertilizer (N) ** ** ** ** ** ** **
Y×T ** ** * ** ** ** **
Y×N ** ** ** ** ** ** **
T×N ** ** ns ** ** ** **
Y×T×N ** ** * ** * ** **

Fig. 6

Correlation of straw returning with nitrogen fertilizer on maize grain quality parameters PV: peak viscosity; TV: trough viscosity; FV: final viscosity; SB: setback value; BD: breakdown value; PT: peak time; PT℃: pasting temperature; To: temperature onset; Tp: temperature peak; Tc: temperature conclusion; ΔH: gelatinization enthalpy. The red line shows a positive correlation and the blue line shows a negative correlation. * and ** indicate significant correlation at the 0.05 and 0.01 probability levels, respectively."

Fig. 7

Principal component analysis of maize grain quality parameters of straw returning combined with nitrogen fertilizer PC1: principal component 1; PC2: principal component 2; PV: peak viscosity; TV: trough viscosity; FV: final viscosity; SB: setback value; BD: breakdown value; PT: peak time; PT℃: pasting temperature; To: temperature onset; Tp: temperature peak; Tc: temperature conclusion; ΔH: gelatinization enthalpy. Treatments are the same as those given in Table 1."

[1] Simić M, Dragičević V, Mladenović Drinić S, Vukadinović J, Kresović B, Tabaković M, Brankov M. The contribution of soil tillage and nitrogen rate to the quality of maize grain. Agronomy, 2020, 10: 976.
[2] Li X Y, Wang H L, Sun S T, Ji X J, Wang X L, Wang Z Y, Shang J X, Jiang Y, Gong X W, Qi H. Optimization of the morphological, structural, and physicochemical properties of maize starch using straw returning and nitrogen fertilization in Northeast China. Int J Biol Macromol, 2024, 265: 130791.
[3] 任强, 徐珂, 樊志龙, 殷文, 范虹, 何蔚, 胡发龙, 柴强. 小麦玉米间作氮肥后移利于减少土壤蒸发提高水分利用效率. 中国农业科学, 2024, 57: 1295-1307.
doi: 10.3864/j.issn.0578-1752.2024.07.007
Ren Q, Xu K, Fan Z L, Yin W, Fan H, He W, Hu F L, Chai Q. Nitrogen fertilizer postponing application benefits wheat-maize intercropping by reducing soil evaporation and improving water use efficiency. Sci Agric Sin, 2024, 57: 1295-1307 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2024.07.007
[4] 赵凯男, 丁豪, 刘阿康, 姜宗昊, 陈广周, 冯波, 王宗帅, 李华伟, 司纪升, 张宾, 毕香君, 李勇, 李升东, 王法宏. 氮肥减量后移改善植株光合特性提高麦-玉周年产量及经济效益. 中国农业科学, 2024, 57: 868-884.
doi: 10.3864/j.issn.0578-1752.2024.05.004
Zhao K N, Ding H, Liu A K, Jiang Z H, Chen G Z, Feng B, Wang Z S, Li H W, Si J S, Zhang B, Bi X J, Li Y, Li S D, Wang F H. Nitrogen fertilizer reduction and postponing for improving plant photosynthetic physiological characteristics to increase wheat- maize and annual yield and economic return. Sci Agric Sin, 2024, 57: 868-884 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2024.05.004
[5] 李志慧, 王艺霏, 邓祥征. 东北黑土地区稻田甲烷排放时空演变及排放潜力分析. 生态学报, 2024, 44: 3814-3829.
Li Z H, Wang Y F, Deng X Z. Spatiotemporal evolution and potential prediction of methane emission from paddy fields in the black soil region of Northeast China. Acta Ecol Sin, 2024, 44: 3814-3829 (in Chinese with English abstract).
[6] 王治统, 凌俊, 刘子熙, 赵德强, 李泽学, 周顺利, 袁兴茂, 李霄鹤, 温媛. 秸秆还田方式对土壤理化性质和玉米产量的影响. 中国生态农业学报(中英文), 2024, 32: 663-674.
Wang Z T, Ling J, Liu Z X, Zhao D Q, Li Z X, Zhou S L, Yuan X M, Li X H, Wen Y. Effect of straw return practices on soil physico-chemical properties and maize yield. Chin J Eco-Agric, 2024, 32: 663-674 (in Chinese with English abstract).
[7] 隽英华, 何志刚, 刘慧屿, 刘艳, 陈玥. 秸秆还田与氮肥运筹对农田棕壤微生物生物量碳氮及酶活性的调控效应. 土壤, 2023, 55: 1223-1229.
Juan Y H, He Z G, Liu H Y, Liu Y, Chen Y. Regulation effects of straw returning and nitrogen application management on farmland brown soil microbial biomass and enzyme activities. Soils, 2023, 55: 1223-1229 (in Chinese with English abstract).
[8] 张静, 马嵩科, 张冬霞, 柴雪茹, 张俊豪, 王贺正, 文晓阳. 秸秆还田配施氮肥对旱地小麦生理生化特性及产量的影响. 江苏农业科学, 2023, 51(23): 61-69.
Zhang J, Ma S K, Zhang D X, Chai X R, Zhang J H, Wang H Z, Wen X Y. Effects of straw returning with nitrogen fertilizer on physiological and biochemical characteristics and yield of dryland wheat. Jiangsu Agric Sci, 2023, 51(23): 61-69 (in Chinese with English abstract).
[9] 胡聪聪, 李红宇, 孙显龙, 王童, 赵海成, 范名宇, 张巩亮. 秸秆还田与氮肥运筹对寒地水稻光合特性和产量的影响. 作物杂志, 网络首发[2024-04-07], http://kns.cnki.net/kcms/detail/11.1808.s.20240405.1900.002.html.
Hu C C, Li H Y, Sun X L, Wang T, Zhao H C, Fan M Y, Zhang G L. Effects of Straw Returning and Nitrogen Fertilizer Management on Photosynthetic Characteristics and Yield of Rice in Cold Region. Crops, Published online [2024-04-07], http://kns.cnki.net/kcms/detail/11.1808.s.20240405.1900.002.html (in Chinese with English abstract).
[10] 张洪程, 王秀芹, 戴其根, 霍中洋, 许轲. 施氮量对杂交稻两优培九产量、品质及吸氮特性的影响. 中国农业科学, 2003, 36: 800-806.
Zhang H C, Wang X Q, Dai Q G, Huo Z Y, Xu K. Effects of N-application rate on yield, quality and characters of nitrogen uptake of hybrid rice variety Liangyoupeijiu. Sci Agric Sin, 2003, 36: 800-806 (in Chinese with English abstract).
[11] 袁伟, 陈婉华, 王子阳, 周正萍, 刘世平. 双季稻秸秆还田与减施氮肥对水稻产量和品质的影响. 江西农业大学学报, 2021, 43: 711-720.
Yuan W, Chen W H, Wang Z Y, Zhou Z P, Liu S P. Effects of returning double-season rice straw to the field and reducing N-fertilizer on yield and quality of rice. Acta Agric Univ Jiangxiensis, 2021, 43: 711-720 (in Chinese with English abstract).
[12] 聂良鹏, 郭利伟, 牛海燕, 魏杰, 李增嘉, 宁堂原. 轮耕对小麦-玉米两熟农田耕层构造及作物产量与品质的影响. 作物学报, 2015, 41: 468-478.
doi: 10.3724/SP.J.1006.2015.00468
Nie L P, Guo L W, Niu H Y, Wei J, Li Z J, Ning T Y. Effects of rotational tillage on tilth soil structure and crop yield and quality in maize-wheat cropping system. Acta Agron Sin, 2015, 41: 468-478 (in Chinese with English abstract).
[13] Yang S Y, Zou Y B, Liang Y Z, Xia B, Liu S K, Ibrahim M, Li D Q, Li Y Q, Chen L, Zeng Y, Liu L, Chen Y, Li P, Zhu J W. Role of soil total nitrogen in aroma synthesis of traditional regional aromatic rice in China. Field Crops Res, 2012, 125: 151-160.
[14] Zhang J S, Tong T Y, Potcho P M, Huang S H, Ma L, Tang X R. Nitrogen effects on yield, quality and physiological characteristics of giant rice. Agronomy, 2020, 10: 1816.
[15] 彭小爱, 卢茂昂, 张玲, 刘童, 曹磊, 宋有洪, 郑文寅, 何贤芳, 朱玉磊. 基于55K SNP芯片的小麦籽粒主要品质性状的全基因组关联分析. 作物学报, 2024, 50: 1948-1960.
doi: 10.3724/SP.J.1006.2024.31052
Peng X A, Lu M A, Zhang L, Liu T, Cao L, Song Y H, Zheng W Y, He X F, Zhu Y L. Genome-wide association study of major grain quality traits in wheat based on 55K SNP arrays. Acta Agron Sin, 2024, 50: 1948-1960 (in Chinese with English abstract).
[16] 原亚琦, 廉焘徽, 杨清山, 范宇琛, 原亚超, 高志强, 薛建福. 基于Meta分析评价耕作与秸秆还田对小麦籽粒品质的影响. 山西农业科学, 2023, 51: 1379-1387.
Yuan Y Q, Lian T H, Yang Q S, Fan Y C, Yuan Y C, Gao Z Q, Xue J F. Evaluation of effects of tillage and straw return on grain quality of wheat based on meta-analysis. J Shanxi Agric Sci, 2023, 51: 1379-1387 (in Chinese with English abstract).
[17] 高立城. 施氮对甜荞籽粒胚乳发育、淀粉合成及理化性质的影响. 西北农林科技大学硕士学位论文, 陕西杨凌, 2021.
Gao L C. Effects of Nitrogen Fertilizer on Endosperm Development, Starch Synthesis and Physicochemical Properties of Common Buckwheat. MS Thesis of Northwest A & F University, Yangling, Shaanxi, China, 2021 (in Chinese with English abstract).
[18] 马强强, 汪星宇, 崔阔澍, 杨成勇, 李晓锋, 何如钰, 夏运红, 胡红文, 付如勇, 程明军. 不同饲用麦类品种农艺性状、生产性能和营养品质比较. 草学, 2023, (4): 16-26.
Ma Q Q, Wang X Y, Cui K S, Yang C Y, Li X F, He R Y, Xia Y H, Hu H W, Fu R Y, Cheng M J. Comparison of agronomic characters, production performance and nutritional quality of different forage wheat varieties. J Grassland Forage Sci, 2023, (4): 16-26 (in Chinese with English abstract).
[19] 刘帅, 徐学欣, 孟繁港, 徐宇凡, 郝天佳, 贾靖, 张玉璐, 赵长星. 滴灌水肥一体化下施氮量和追氮时期对夏玉米籽粒品质及淀粉糊化特性的影响. 西北农业学报, 2024, 33: 426-434.
Liu S, Xu X X, Meng F G, Xu Y F, Hao T J, Jia J, Zhang Y L, Zhao C X. Effects of nitrogen fertilization application and topdressing period on grain quality and starch pasting properties of summer maize under drip irrigation. Acta Agric Boreali-Occident Sin, 2024, 33: 426-434 (in Chinese with English abstract).
[20] 朱新产, 高玲. 基础生物化学实验. 北京: 中国农业出版社, 2016. pp 39-40.
Zhu X C, Gao L. Basic Biochemistry Experiments. Beijing: China Agriculture Press, 2016. pp 39-40 (in Chinese).
[21] 李荣, 勉有明, 侯贤清, 李培富, 王西娜. 施氮对还田秸秆腐解及养分释放、土壤肥力与玉米产量的影响. 作物学报, 2023, 49: 2012-2022.
doi: 10.3724/SP.J.1006.2023.23055
Li R, Mian Y M, Hou X Q, Li P F, Wang X N. Effects of nitrogen application on decomposition and nutrient release of returning straw, soil fertility, and maize yield. Acta Agron Sin, 2023, 49: 2012-2022 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2023.23055
[22] 王沣, 王美佳, 苏思慧, 王英俨, 苏业涵, 孟广鑫, 孙悦, 齐华, 姜英. 水分胁迫下秸秆还田对玉米产量和根系空间分布的影响. 应用生态学报, 2018, 29: 3643-3648.
doi: 10.13287/j.1001-9332.201811.023
Wang F, Wang M J, Su S H, Wang Y Y, Su Y H, Meng G X, Sun Y, Qi H, Jiang Y. Effects of straw returning on maize yield and root system spatial distribution under water stress. Chin J Appl Ecol, 2018, 29: 3643-3648 (in Chinese with English abstract).
doi: 10.13287/j.1001-9332.201811.023
[23] 杨文钰, 王兰英. 作物秸秆还田的现状与展望. 四川农业大学学报, 1999, 17(2): 211-216.
Yang W Y, Wang L Y. Present situation and prospects of returning application of crop straw. J Sichuan Agric Univ, 1999, 17(2): 211-216 (in Chinese with English abstract).
[24] 杨恩琼, 黄建国, 何腾兵, 袁玲. 氮肥用量对普通玉米产量和营养品质的影响. 植物营养与肥料学报, 2009, 15: 509-513.
Yang E Q, Huang J G, He T B, Yuan L. Effect of nitrogen fertilization on yield and nutritional qualities of food maize. Plant Nutr Fert Sci, 2009, 15: 509-513 (in Chinese with English abstract).
[25] 白非, 白桂萍, 王春云, 李真, 龚德平, 黄威, 程雨贵, 汪波, 王晶, 徐正华, 蒯婕, 周广生. 翻耕深度对遮阴油菜根系生长和养分吸收利用的影响. 中国农业科学, 2022, 55: 2726-2739.
doi: 10.3864/j.issn.0578-1752.2022.14.004
Bai F, Bai G P, Wang C Y, Li Z, Gong D P, Huang W, Cheng Y G, Wang B, Wang J, Xu Z H, Kuai J, Zhou G S. Effects of tillage depth and shading on root growth and nutrient utilization of rapeseed. Sci Agric Sin, 2022, 55: 2726-2739 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2022.14.004
[26] He P, Jin J Y, Zhou W. Effect of nitrogen application on accumulation and translocation of carbon and nitrogen compounds in two maize cultivars with different senescent appearance. J Plant Nutr, 2001, 24: 671-681.
[27] 姬景红, 刘双全, 马星竹, 郝小雨, 郑雨, 赵月, 刘颖, 张明怡, 暴帅. 施氮对北方粳稻产量、品质及氮肥利用率的影响. 东北农业科学, 2024, 49(1): 1-6.
Ji J H, Liu S Q, Ma X Z, Hao X Y, Zheng Y, Zhao Y, Liu Y, Zhang M Y, Bao S. Effects of nitrogen application on yield, quality and fertilizer efficiency of japonica rice in Northern China. J Northeast Agric Sci, 2024, 49(1): 1-6 (in Chinese with English abstract).
[28] 姚霄宇, 邱纹, 陆虎华, 郭剑, 陆大雷. 种植密度和施肥方式对春播鲜食糯玉米产量、品质及氮素吸收利用的影响. 植物营养与肥料学报, 2023, 29: 2258-2271.
Yao X Y, Qiu W, Lu H H, Guo J, Lu D L. Optimum combination of planting density and fertilization mode for high yield, quality and nitrogen utilization of spring-sown fresh waxy maize. J Plant Nutr Fert, 2023, 29: 2258-2271 (in Chinese with English abstract).
[29] 马正波, 唐会会, 王庆燕, 李瑞杰, 董学瑞, 张瑞栋, 董志强. 矮壮素配合氮肥基施对夏玉米氮代谢及氮素利用特征的影响. 玉米科学, 2020, 28(4): 130-136.
Ma Z B, Tang H H, Wang Q Y, Li R J, Dong X R, Zhang R D, Dong Z Q. Effects of chlormequat chloride on summer maize nitrogen metabolism and nitrogen utilization efficiency. J Maize Sci, 2020, 28(4): 130-136 (in Chinese with English abstract).
[30] Qi J, Zhang S R, Azam M, Shaibu A S, Abdelghany A M, Feng Y, Huai Y Y, Feng H Y, Liu Y T, Ma C Y, Gebregziabher B S, Ghosh S, Li J, Yu D Y, Li B, Qiu L J, Sun J M. Profiling seed soluble sugar compositions in 1164 Chinese soybean accessions from major growing ecoregions. Crop J, 2022, 10: 1825-1831.
[31] 吴元奇, 王伟, 赵丽, 邱贵兰, 唐兰, 杨荣, 张艳茹. 施氮量与密度对西南地区主栽青贮玉米品种产量和品质的影响. 玉米科学, 2022, 30(5): 99-107.
Wu Y Q, Wang W, Zhao L, Qiu G L, Tang L, Yang R, Zhang Y R. Effect of nitrogen application and density on yield and quality of mainly planted maize varieties in Southwest China. J Maize Sci, 2022, 30(5): 99-107 (in Chinese with English abstract).
[32] 娄菲, 左怿平, 李萌, 代鑫萌, 王健, 韩金玲, 吴舒, 李向岭, 段会军. 有机肥替代部分化肥氮对糯玉米产量、品质及氮素利用的影响. 作物学报, 2024, 50: 1053-1064.
doi: 10.3724/SP.J.1006.2024.33038
Lou F, Zuo Y P, Li M, Dai X M, Wang J, Han J L, Wu S, Li X L, Duan H J. Effects of organic fertilizer substituting chemical fertilizer nitrogen on yield, quality, and nitrogen efficiency of waxy maize. Acta Agron Sin, 2024, 50: 1053-1064 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2024.33038
[33] 乔江方, 何佳雯, 侯传伟, 张美微, 杨铭波, 韩琳琳, 张盼盼, 李川, 牛军, 郭涵潇, 穆蔚林. 施氮量对不同夏玉米品种籽粒灌浆特性、产量和品质的影响. 河南农业科学, 2024, 53(3): 33-42.
Qiao J F, He J W, Hou C W, Zhang M W, Yang M B, Han L L, Zhang P P, Li C, Niu J, Guo H X, Mu W L. Effects of nitrogen application rate on grain filling characteristics, yield and quality of different summer maize varieties. J Henan Agric Sci, 2024, 53(3): 33-42 (in Chinese with English abstract).
[34] 魏正业, 张海星, 石薇, 常生华, 张程, 贾倩民, 侯扶江. 种植方式与施氮对西北旱区饲草作物产量、品质和水分利用的影响. 作物学报, 2022, 48: 2638-2653.
doi: 10.3724/SP.J.1006.2022.13053
Wei Z Y, Zhang H X, Shi W, Chang S H, Zhang C, Jia Q M, Hou F J. Effects of planting methods and nitrogen application on forage crop yield, quality and water use in arid area of Northwest China. Acta Agron Sin, 2022, 48: 2638-2653 (in Chinese with English abstract).
[35] Carrera Y, Utrilla-Coello R, Bello-Pérez A, Alvarez-Ramirez J, Vernon-Carter E J. In vitro digestibility, crystallinity, rheological, thermal, particle size and morphological characteristics of pinole, a traditional energy food obtained from toasted ground maize. Carbohydr Polym, 2015, 123: 246-255.
[36] 刘彩彩, 张孟妮, 武雪萍, 裴雪霞, 党建友, 张永清, 奚雅静, 王碧胜, 宋霄君, 李生平, 郑凤君, 董悦. 微喷水肥一体化氮肥后移对夏玉米氮素吸收及籽粒产量品质的影响. 中国土壤与肥料, 2019, (6): 108-113.
Liu C C, Zhang M N, Wu X P, Pei X X, Dang J Y, Zhang Y Q, Xi Y J, Wang B S, Song X J, Li S P, Zheng F J, Dong Y. Effects of integrated micro-water spraying fertilizer on nitrogen uptake and grain yield and quality of summer maize. Soil Fert Sci China, 2019, (6): 108-113 (in Chinese with English abstract).
[37] 于宁宁, 任佰朝, 赵斌, 刘鹏, 张吉旺. 施氮量对夏玉米籽粒灌浆特性和营养品质的影响. 应用生态学报, 2019, 30: 3771-3776.
doi: 10.13287/j.1001-9332.201911.021
Yu N N, Ren B Z, Zhao B, Liu P, Zhang J W. Effects of nitrogen application rate on grain filling characteristics and nutritional quality of summer maize. Chin J Appl Ecol, 2019, 30: 3771-3776 (in Chinese with English abstract).
doi: 10.13287/j.1001-9332.201911.021
[38] Waters D L E, Henry R J, Reinke R F, Fitzgerald M A. Gelatinization temperature of rice explained by polymorphisms in starch synthase. Plant Biotechnol J, 2006, 4: 115-122.
pmid: 17177790
[39] Sun X X, Sun Z Z, Saleh A S M, Zhao K, Ge X Z, Shen H S, Zhang Q, Yuan L, Yu X Z, Li W H. Understanding the granule, growth ring, blocklets, crystalline and molecular structure of normal and waxy wheat A- and B- starch granules. Food Hydrocoll, 2021, 121: 107034.
[40] Zhang W L, Yang Q H, Xia M J, Bai W M, Wang P K, Gao X L, Li J, Feng B L, Gao J F. Effects of nitrogen level on the physicochemical properties of Tartary buckwheat (Fagopyrum tataricum (L.)Gaertn.) starch. Int J Biol Macromol, 2019, 129: 799-808.
[41] Zhu D W, Zhang H C, Guo B W, Xu K, Dai Q G, Wei C X, Wei H Y, Gao H, Hu Y J, Cui P Y, Huo Z Y. Effect of nitrogen management on the structure and physicochemical properties of rice starch. J Agric Food Chem, 2016, 64: 8019-8025.
[42] Yao D P, Wu J, Luo Q H, Li J W, Zhuang W, Xiao G, Deng Q Y, Lei D Y, Bai B. Influence of high natural field temperature during grain filling stage on the morphological structure and physicochemical properties of rice (Oryza sativa L.)starch. Food Chem, 2020, 310: 125817.
[43] 蒋岩. 氮素穗肥对粳稻产量及强弱势粒品质、淀粉特性和结构的影响. 扬州大学硕士学位论文, 江苏扬州, 2023.
Jiang Y. Effects of Panicle Nitrogen Fertilizer on Yield and Superior and Inferior Grains Quality, Starch Property and Structure of Japonica Rice. MS Thesis of Yangzhou University, Yangzhou, Jiangsu, China, 2023 (in Chinese with English abstract).
[44] 董二伟, 王媛, 王劲松, 刘秋霞, 黄晓磊, 焦晓燕. 施氮量对谷子产量、氮素利用及小米品质的影响. 中国农业科学, 2024, 57: 306-318.
doi: 10.3864/j.issn.0578-1752.2024.02.007
Dong E W, Wang Y, Wang J S, Liu Q X, Huang X L, Jiao X Y. Effects of nitrogen fertilization levels on grain yield, plant nitrogen utilization characteristics and grain quality of foxtail millet. Sci Agric Sin, 2024, 57: 306-318 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2024.02.007
[45] 陆大雷, 王德成, 景立权, 韩晴, 郭换粉, 赵久然, 陆卫平. 基肥配比和拔节期追施氮肥对糯玉米淀粉胶凝和回生特性的影响. 作物学报, 2009, 35: 867-874.
Lu D L, Wang D C, Jing L Q, Han Q, Guo H F, Zhao J R, Lu W P. Starch gelatinization and retrogradation properties under different basic fertilizer regimes and nitrogen topdressing at jointing stage of waxy maize. Acta Agron Sin, 2009, 35: 867-874 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2009.00867
[46] 王新智, 王天池, 吴玉柱, 刘景圣, 许秀颖, 赵城彬. 微波间歇干燥对玉米籽粒中淀粉理化特性的影响. 中国食品学报, 2024, 24(2): 179-190.
Wang X Z, Wang T C, Wu Y Z, Liu J S, Xu X Y, Zhao C B. Effects of microwave intermittent drying on physicochemical properties of starch in corn kernels. J Chin Inst Food Sci Technol, 2024, 24(2): 179-190 (in Chinese with English abstract).
[47] Shi S J, Zhang G Y, Chen L L, Zhang W H, Wang X D, Pan K Q, Li L N, Wang J, Liu J, Cao C G, Jiang Y. Different nitrogen fertilizer application in the field affects the morphology and structure of protein and starch in rice during cooking. Food Res Int, 2023, 163: 112193.
[48] 马瑞, 黄成亮, 孟英, 刘猷红. 播期对三江平原主栽水稻品种品质的影响. 中国稻米, 2020, 26(2): 80-83.
doi: 10.3969/j.issn.1006-8082.2020.02.019
Ma R, Huang C L, Meng Y, Liu Y H. Effects of sowing date on quality of main rice varieties in Sanjiang Plain. China Rice, 2020, 26(2): 80-83 (in Chinese with English abstract).
doi: 10.3969/j.issn.1006-8082.2020.02.019
[49] Ge J H, Du Y R, Wang Q, Xu X Y, Li J, Tao J C, Gao F, Yang P, Feng B L, Gao J F. Effects of nitrogen fertilizer on the physicochemical, structural, functional, thermal, and rheological properties of mung bean (Vigna radiata) protein. Int J Biol Macromol, 2024, 260: 129616.
[1] YANG Cui-Hua, LI Shi-Hao, YI Xu-Xu, ZHENG Fei-Xiong, DU Xue-Zhu, SHENG Feng. Effects of poly-γ-glutamic acid on rice yield, quality, and nutrient uptake [J]. Acta Agronomica Sinica, 2025, 51(3): 785-796.
[2] LIU Ya-Long, WANG Peng-Fei, YU Ai-Zhong, WANG Yu-Long, SHANG Yong-Pan, YANG Xue-Hui, YIN Bo, ZHANG Dong-Ling, WANG Feng. Effects of nitrogen reduction on maize yield and N2O emission under green manure returning in Hexi oasis irrigation area [J]. Acta Agronomica Sinica, 2025, 51(3): 771-784.
[3] WANG Yan, BAI Chun-Sheng, LI Bo, FAN Hong, HE Wei, YANG Li-Li, CAO Yue, ZHAO Cai. Effects of no-tillage with plastic film and the amount of irrigation water on yield and photosynthetic characteristics of maize in oasis irrigation area of Northwest China [J]. Acta Agronomica Sinica, 2025, 51(3): 755-770.
[4] YANG Xin-Yue, XIAO Ren-Hao, ZHANG Lin-Xi, TANG Ming-Jun, SUN Guang-Yan, DU Kang, LYU Chang-Wen, TANG Dao-Bin, WANG Ji-Chun. Effects of waterlogging at different growth stages on the stress-resistance physiological characteristics and yield formation of sweet potato [J]. Acta Agronomica Sinica, 2025, 51(3): 744-754.
[5] XIONG Qiang-Qiang, SUN Chang-Hui, GU Wen-Fei, LU Yan-Yao, ZHOU Nian-Bing, GUO Bao-Wei, LIU Guo-Dong, WEI Hai-Yan, ZHU Jin-Yan, ZHANG Hong-Cheng. Comprehensive evaluation of 70 japonica glutinous rice varieties (lines) based on growth period, yield, and quality [J]. Acta Agronomica Sinica, 2025, 51(3): 728-743.
[6] SU Ming, WU Jia-Rui, HONG Zi-Qiang, LI Fan-Guo, ZHOU Tian, WU Hong-Liang, KANG Jian-Hong. Response of potato tuber starch formation and yield to phosphorus fertilizer reduction in the semi-arid region of Northwest China [J]. Acta Agronomica Sinica, 2025, 51(3): 713-727.
[7] HU Ya-Jie, GUO Jing-Hao, CONG Shu-Min, CAI Qin, XU Yi, SUN Liang, GUO Bao-Wei, XING Zhi-Peng, YANG Wen-Fei, ZHANG Hong-Cheng. Effect of low temperature and weak light stress during early grain filling on rice yield and quality [J]. Acta Agronomica Sinica, 2025, 51(2): 405-417.
[8] XIN Yu-Ning, REN Hao, WANG Hong-Zhang, LIANG Ming-Lei, YU Tao, LIU Peng. Effects of spraying 6-benzylaminopurine (6-BA) on grain filling and yield of summer maize under post-pollination high temperature stress [J]. Acta Agronomica Sinica, 2025, 51(2): 418-431.
[9] QIN Meng-Qian, HUANG Wei, CHEN Min, NING Ning, HE De-Zhi, HU Bing, XIA Qi-Xin, JIANG Bo, CHENG Tai, CHANG Hai-Bin, WANG Jing, ZHAO Jie, WANG Bo, KUAI Jie, XU Zheng-Hua, ZHOU Guang-Sheng. Effect of nitrogen fertilizer management on yield and resistance of late-seeded rapeseed [J]. Acta Agronomica Sinica, 2025, 51(2): 432-446.
[10] WANG Chong-Ming, LU Zhi-Feng, YAN Jin-Yao, SONG Yi, WANG Kun-Kun, FANG Ya-Ting, LI Xiao-Kun, REN Tao, CONG Ri-Huan, LU Jian-Wei. Effect of phosphorus fertilizer rates on crop yield, phosphorus uptake and its stability in rapeseed-rice rotation system [J]. Acta Agronomica Sinica, 2025, 51(2): 447-458.
[11] ZHANG Chen-Yu, GE Jun-Yong, CHU Jun-Cong, WANG Xing-Yu, ZHAO Bao-Ping, YANG Ya-Dong, ZANG Hua-Dong, ZENG Zhao-Hai. Yield effect and its root and soil enzyme characteristics of oat and red kidney bean strip intercropping [J]. Acta Agronomica Sinica, 2025, 51(2): 459-469.
[12] QIN Jin-Hua, HONG Wei-Yuan, FENG Xiang-Qian, LI Zi-Qiu, ZHOU Zi-Yu, WANG Ai-Dong, LI Rui-Jie, WANG Dan-Ying, ZHANG Yun-Bo, CHEN Song. Analysis of agronomic and physiological indicators of rice yield and grain quality under nitrogen fertilization management [J]. Acta Agronomica Sinica, 2025, 51(2): 485-502.
[13] CHEN Yu-Ting, DING Xiao-Yu, XU Ben-Bo, ZHANG Xue-Kun, XU Jin-Song, YIN Yan. Effects of climate warming on yield, quality-related and agronomic traits of winter rapeseed (Brassica napus L.) [J]. Acta Agronomica Sinica, 2025, 51(2): 516-525.
[14] CHEN Chen, FU Xiu-Yi, CHEN Chuan-Yong, WU Shan-Shan, ZHANG Hua-Sheng, ZHANG Chun-Yuan, CHEN Shao-Jiang, ZHAO Jiu-Ran, WANG Yuan-Dong. Study on the haploid breeding performance of maize inbred lines [J]. Acta Agronomica Sinica, 2025, 51(2): 526-533.
[15] WANG Peng-Bo, ZHANG Dong-Xia, QIAO Chang-Chang, HUANG Ming, WANG He-Zheng. Effects of straw returning and phosphorus application on soil enzyme activity and yield formation of wheat in dry land of western Henan, China [J]. Acta Agronomica Sinica, 2025, 51(2): 534-547.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!