Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2025, Vol. 51 ›› Issue (3): 713-727.doi: 10.3724/SP.J.1006.2025.44130

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Response of potato tuber starch formation and yield to phosphorus fertilizer reduction in the semi-arid region of Northwest China

SU Ming1(), WU Jia-Rui1,2, HONG Zi-Qiang1, LI Fan-Guo1, ZHOU Tian1, WU Hong-Liang1,*(), KANG Jian-Hong1,*()   

  1. 1College of Agriculture, Ningxia University, Yinchuan 750021, Ningxia, China
    2Ningxia Reclamation Agricultural, Forestry and Animal Husbandry Technology Extension and Service Center, Yinchuan 750011, Ningxia, China
  • Received:2024-08-11 Accepted:2024-10-29 Online:2025-03-12 Published:2024-11-11
  • Contact: *E-mail: kangjianhong@163.com; E-mail: nxuwu@163.com
  • Supported by:
    National Natural Science Foundation of China(31860336);Natural Science Foundation of Ningxia(2019AAC03065);Ningxia Grain Crop Germplasm Creation and Growth Regulation Science and Technology Innovation Team Project(2022BSB03109)

Abstract:

To elucidate the effects of phosphorus reduction on potato starch synthesis and yield in semi-arid regions, a single-factor randomized block design was implemented in Haiyuan county, Ningxia, from 2018 to 2019. Using the local farmers’ customary phosphorus application rate of 240 kg hm-2 (RP) as a control, four phosphorus reduction treatments were established: P25 (180 kg hm-2, representing a 25% reduction), P50 (120 kg hm-2, 50% reduction), P75 (60 kg hm-2, 75% reduction), and CK (0 kg hm-2, serving as an absolute control with no phosphate fertilizer applied). This study analyzed the relationships between starch accumulation, enzyme activities, and yield, aiming to provide technical support for sustainable potato cultivation. The results indicate that a moderate reduction in phosphorus can significantly enhance potato starch content, accelerate the rate of accumulation, and consequently increase overall yield. Compared to RP, P50 resulted in a 7.64% and 7.76% increase in amylopectin and total starch content, respectively. The accumulation amount at the maximum starch accumulation rate (Wmax), the maximum starch accumulation rate (Gmax), and the average starch accumulation rate (Gmean) increased by 8.92%, 29.90%, and 26.23%, respectively. The starch yield, total dry matter mass, and total yield under P50 increased by 53.39%, 50.92%, and 25.62%, respectively. Enzyme activities of adenosine diphosphate glucose pyrophosphorylase (AGP), uridine diphosphate glucose pyrophosphorylase (UGP), soluble starch synthase (SSS), granular starch synthase (GBSS), and starch branching enzyme (SBE) under P50 rose by 29.74%, 26.88%, 31.42%, 33.56%, and 18.72%, respectively. Principal component analysis ranked the treatments as P50 > P25 > RP > P75 > CK. In conclusion, reducing phosphorus application by 50% (to a rate of 120 kg hm-2) significantly enhances the activity of key enzymes involved in tuber starch synthesis and increases levels of amylopectin, amylose, and total starch content. This treatment also optimizes starch accumulation characteristics, leading to higher starch yield, total dry matter accumulation, and total yield. A comprehensive analysis suggests that the optimal economic range for phosphorus fertilization in potatoes within the semi-arid region of Ningxia is 120-137 kg hm-2, promoting sustainable, high-yield cultivation.

Key words: potato, phosphate fertilizer reduction, starch content, starch accumulation characteristics, starch synthesis key enzyme activities, yield

Table 1

Baseline soil properties of the experimental field from 2018 to 2019"

年份
Year
pH 有机质
Organic matter
(g kg-1)
全氮
Total N
(g kg-1)
全磷
Total P
(g kg-1)
碱解氮
Alkaline nitrogen
decomposition (mg kg-1)
速效磷
Available P
(mg kg-1)
速效钾
Available K
(mg kg-1)
2018 8.05 10.58 0.78 0.64 38.22 26.34 195.63
2019 8.11 14.17 0.62 0.72 36.57 31.06 206.54

Table 2

Fertilizer application rates under different treatments"

处理
Treatment
施肥量 Rate of fertilizer application (kg hm-2) 氮肥分配 Split N fertilizer application
N P2O5 K2O 基肥
Base fertilizer (70%)
追肥
Application fertilizer (30%)
RP 180 240 45 126 54
P25 180 180 45 126 54
P50 180 120 45 126 54
P75 180 60 45 126 54
CK 180 0 45 126 54

Fig. 1

Effect of phosphorus fertilizer reduction on amylose (A, B) and amylopectin content (C, D) of potato tubers Treatments are the same as those given in Table 2. Lowercase letters indicate significant differences at the 0.05 probability level. * and ** indicate significant difference at the 0.05 and 0.01 probability levels, respectively. NS: no significant difference. Y: year; T: treatment."

Fig. 2

Effect of phosphorus fertilizer reduction on tuber amyloset/amylopectin (A, B) and total starch content (C, D) Treatments are the same as those given in Table 2. Lowercase letters indicate significant differences at the 0.05 probability level. * and ** indicate significant difference at the 0.05 and 0.01 probability levels, respectively. NS: no significant difference. Y: year; T: treatment."

Fig. 3

Effect of phosphorus fertilizer reduction on the rate of starch accumulation Treatments are the same as those given in Table 2. * and ** indicate significant difference at the 0.05 and 0.01 probability levels, respectively. NS: no significant difference. Y: year; T: treatment."

Table 3

Effect of phosphorus fertilizer reduction on total starch accumulation parameters in tubers"

年份
Year
处理
Treatment
方程参数
Parameter of equation
R2 淀粉积累参数
Starch accumulation parameter
A B K Tmax (d) Wmax (mg g-1) Gmax (mg g-1 d-1) D (d) Gmean (mg g-1 d-1)
2018 RP 64.11 5.41 0.0601 0.9914 28.09 32.06 0.96 64.65 0.61
P25 67.00 6.19 0.0671 0.9980 27.17 33.50 1.12 59.91 0.70
P50 74.26 6.73 0.0738 0.9996 25.83 37.13 1.37 55.61 0.84
P75 66.67 6.70 0.0632 0.9944 30.10 33.36 1.05 64.86 0.65
CK 51.28 5.13 0.0512 0.9914 31.94 25.64 0.66 74.85 0.42
2019 RP 64.42 6.14 0.0609 0.9977 29.80 32.21 0.98 65.88 0.61
P25 65.19 5.73 0.0634 0.9938 27.53 32.60 1.03 62.19 0.65
P50 65.77 6.47 0.0691 0.9942 27.02 32.89 1.14 58.82 0.70
P75 58.67 5.10 0.0529 0.9963 30.80 29.34 0.78 72.33 0.50
CK 53.07 5.12 0.0501 0.9877 32.60 26.54 0.66 76.45 0.43

Fig. 4

Effect of phosphorus fertilizer reduction on starch AGP activity Treatments are the same as those given in Table 2. Lowercase letters indicate significant differences at the 0.05 probability level. ** indicates significant difference at the 0.01 probability level. Y: year; T: treatment."

Fig. 5

Effect of phosphorus fertilizer reduction on starch UGP activity (A, B) and SSS activity (C, D) Treatments are the same as those given in Table 2. * and ** indicate significant difference at the 0.05 and 0.01 probability levels, respectively. NS: no significant difference. Y: year; T: treatment."

Fig. 6

Effect of phosphorus fertilizer reduction on starch GBSS activity (A, B) and SBE activity (C, D) Treatments are the same as those given in Table 2. ** indicates significant difference at the 0.01 probability levels. NS: no significant difference. Y: year; T: treatment."

Fig. 7

Correlation between tuber dry matter content and starch content (A), yield and phosphorus application (B, C) EPA: economically optimal phosphorus application rate; EPY: economically optimal yield. ** indicates significant correlation at P < 0.01."

Table 4

Effect of phosphorus fertilizer reduction on tuber yield and starch content and yield of potatoes"

年份
Year
处理
Treatment
总干物质质量
Dry matter content of tubers
(g株-1)
块茎产量
Tuber yield
(t hm-2)
鲜基淀粉含量
Fresh base starch content
(%)
淀粉产量
Starch yield (t hm-2)
2018 RP 278.44 c 33.66 b 15.75 b 5.30 c
P25 329.50 b 36.80 b 17.36 b 6.39 b
P50 399.89 a 42.03 a 20.64 a 8.67 a
P75 324.23 b 29.03 c 16.30 b 4.73 c
CK 201.07 d 28.57 c 12.24 c 3.50 d
2019 RP 249.76 d 31.92 bc 18.45 ab 5.89 b
P25 342.73 b 36.01 b 20.55 a 7.40 a
P50 397.25 a 40.35 a 21.06 a 8.50 a
P75 281.14 c 31.17 cd 15.42 b 4.81 c
CK 226.06 d 27.54 d 13.93 c 3.84 c
方差分析
ANOVA
年份Year (Y) NS NS * *
处理 Treatment (T) * ** ** **
年份×处理 (Y×T) NS NS NS NS

Table 5

Correlation analysis of starch accumulation rate with starch content and key enzyme activity enzymes"

年份
Year
项目
Item
淀粉含量
Starch content
AGP活性
AGP activity
UGP活性
UGP activity
SSS活性
SSS activity
SBE活性
SBE activity
GBSS活性
GBSS activity
2018 直链淀粉积累速率
Amylose
accumulation rate
0.58* 0.75** 0.41NS 0.48NS 0.54* 0.88**
支链淀粉积累速率
Amylopectin
accumulation rate
0.84** 0.39 NS 0.74** 0.52* 0.95** 0.53*
总淀粉积累速率
Total starch
accumulation rate
0.77** 0.95** 0.55* 0.45NS 0.92** 0.76**
2019 直链淀粉积累速率
Amylose
accumulation rate
0.56* 0.66** 0.35NS 0.44NS 0.48NS 0.79**
支链淀粉积累速率
Amylopectin
accumulation rate
0.96** 0.53* 0.92** 0.61** 0.95** 0.74**
总淀粉积累速率
Total starch
accumulation rate
0.69** 0.87** 0.66** 0.57* 0.91** 0.80**

Fig. 8

Principal component analysis of yield in relation to starch content and its related enzyme activities under phosphate fertilizer reduction conditions Treatments are the same as those given in Fig. 2. SV: total starch accumulation rate; SC: total starch content. Other indexes were abbreviated as those given in Table 5."

[1] 李守强, 田世龙, 程建新. 中国马铃薯贮藏现状、存在问题及建议. 见:中国作物学会马铃薯专业委员会主编. 马铃薯产业与种业创新, 黑龙江: 黑龙江科学技术出版社, 2023. pp 16-20.
Li S Q, Tian S L, Cheng J X. Current status of potato storage in China, problems and suggestions. In: Crop Society of China, Potato Specialized Committee, eds. Potato Industry and Seed Innovation, Heilongjiang: Heilongjiang Science and Technology Press, 2023. pp 16-20 (in Chinese).
[2] 勉卫忠, 李愉. 马铃薯在宁夏的传播及其影响. 农业考古, 2022, (4): 67-73.
Mian W Z, Li Y. The spread and influence of potato in Ningxia. Agric Archaeol, 2022, (4): 67-73 (in Chinese with English abstract).
[3] 王天, 张舒涵, 闫士朋, 张俊莲, 李朝周. 干旱胁迫和磷肥用量对马铃薯根系形态及生理特征的影响. 干旱地区农业研究, 2020, 38(1): 117-124.
Wang T, Zhang S H, Yan S P, Zhang J L, Li C Z. Effects of drought stress and application amount of phosphorus fertilizer on morphological and physiological characteristics of potato roots. Agric Res Arid Areas, 2020, 38(1): 117-124 (in Chinese with English abstract).
[4] 王涛, 何文寿, 姜海刚, 王耀科, 党柯柯, 赵小霞. 氮磷钾不同用量对马铃薯产量和淀粉含量的影响. 中国土壤与肥料, 2016, (3): 80-86.
Wang T, He W S, Jiang H G, Wang Y K, Dang K K, Zhao X X. The effects of nitrogen, phosphorus and potassium application on yield and starch content of potato plants. Soil Fert Sci China, 2016, (3): 80-86 (in Chinese with English abstract).
[5] 张馥林, 陈美球, 李兴懿, 黄庆龙, 严福华, 周婷婷. 农户测土配方施肥技术采纳行为的社会乘数效应—对农村社会网络中集体行动的分析. 中国农业资源与区划, 网络首发[2024-08-06], https://link.cnki.net/urlid/11.3513.S.20240805.1323.020.
Zhang F L, Chen M G, Li X Y, Huang Q L, Yan F H, Zhou T T. Social Multiplier Effects of Farmers' Adoption Behavior of Soil-Formulated Fertilizer Technology: an Analysis of Collective Action in Rural Social Networks. Chin J Agric Res Region Plan, Published online [2024-08-06], https://link.cnki.net/urlid/11.3513.S.20240805.1323.020 (in Chinese with English abstract).
[6] 吴佳瑞. 马铃薯块茎淀粉积累和产量形成对不同施磷量的响应机理. 宁夏大学硕士学位论文, 宁夏银川2020.
Wu J R. Response Mechanism of Potato Tuber Starch Accumulation and Yield Formation to Different Phosphorus Application. MS Thesis of Ningxia University, Yinchuan, Ningxia, China, 2020 (in Chinese with English abstract).
[7] 娄梦玉, 薛华龙, 郭彬彬, 汪江涛, 昝志曼, 马超, 郭大勇, 焦念元, 付国占. 施磷水平与冬小麦产量和土壤有效磷含量的关系. 植物营养与肥料学报, 2022, 28: 1582-1593.
Lou M Y, Xue H L, Guo B B, Wang J T, Zan Z M, Ma C, Guo D Y, Jiao N Y, Fu G Z. Relationship of phosphorus application rate, winter wheat yield and soil available phosphorus content. J Plant Nutr Fert, 2022, 28: 1582-1593 (in Chinese with English abstract).
[8] 程瑶, 孙磊, 原琳, 聂鑫. 磷肥用量对马铃薯淀粉理化性质及产量的影响. 植物营养与肥料学报, 2021, 27: 1603-1613.
Cheng Y, Sun L, Yuan L, Nie X. Effects of phosphorus fertilizer application rates on physicochemical properties and yield of potato starch. J Plant Nutr Fert, 2021, 27: 1603-1613 (in Chinese with English abstract).
[9] 鲍艺丹, 付凯勇, 贾中立, 李诚, 李春艳. 不同水分条件下磷肥运筹对小麦籽粒淀粉粒理化性状的影响. 植物营养与肥料学报, 2022, 28: 216-226.
Bao Y D, Fu K Y, Jia Z L, Li C, Li C Y. Effects of phosphorus management on physicochemical properties of wheat starch granules under different water conditions. J Plant Nutr Fert, 2022, 28: 216-226 (in Chinese with English abstract).
[10] 姜宗庆, 封超年, 黄联联, 郭文善, 朱新开, 彭永欣. 施磷量对弱筋小麦扬麦9号籽粒淀粉合成和积累特性的调控效应. 麦类作物学报, 2006, 26: 81-85.
Jiang Z Q, Feng C N, Huang L L, Guo W S, Zhu X K, Peng Y X. Grain starch formation characteristics as affected by phosphorus application in weak-gluten wheat Yangmai 9. J Triticeae Crops, 2006, 26: 81-85 (in Chinese with English abstract).
[11] 李雨阳, 李浩晶, 郝威名, 赵喜辉, 曹静, 徐国伟. 施磷量对不同耐低磷型水稻品质及淀粉合成酶活性的影响. 中国生态农业学报(中英文), 2024, 32: 816-826.
Li Y Y, Li H J, Hao W M, Zhao X H, Cao J, Xu G W. Effects of phosphorus fertilizer application rate on grain quality and starch synthase activity of different low-phosphorus-tolerant varieties of rice. Chin J Eco-Agric, 2024, 32: 816-826 (in Chinese with English abstract).
[12] 柳强娟, 康建宏, 吴佳瑞, 孙建波, 马雪莹, 王星强, 坚天才. 施氮量对宁夏旱区马铃薯块茎淀粉形成和产量的影响. 核农学报, 2021, 35: 1196-1208.
doi: 10.11869/j.issn.100-8551.2021.05.1196
Liu Q J, Kang J H, Wu J R, Sun J B, Ma X Y, Wang X Q, Jian T C. Effects of nitrogen application amount on formation and yield of potato Tuber starch in Ningxia arid region. J Nucl Agric Sci, 2021, 35: 1196-1208 (in Chinese with English abstract).
[13] 马力, 杨菁菁, 马达, 张峰, 孙海洋, 李慧丽, 吕文河. 马铃薯淀粉含量和淀粉产量的品种×年份互作以及稳定性分析. 中国马铃薯, 2023, 37: 481-488.
Ma L, Yang J J, Ma D, Zhang F, Sun H Y, Li H L, Lyu W H. Variety × year interaction and stability analysis for starch content and starch yield in potato. Chin Potato J, 2023, 37: 481-488 (in Chinese with English abstract).
[14] 王丽, 罗红霞, 李淑荣, 刘小飞, 潘妍, 徐毓谦. 马铃薯中直链淀粉和支链淀粉含量测定方法的优化. 食品工业科技, 2017, 38: 220-223.
Wang L, Luo H X, Li S R, Liu X F, Pan Y, Xu Y Q. Optimization for determination of content of amylose and amylopectin in potato. Sci Technol Food Ind, 2017, 38: 220-223 (in Chinese with English abstract).
[15] 程方民, 钟连进, 孙宗修. 灌浆结实期温度对早籼水稻籽粒淀粉合成代谢的影响. 中国农业科学, 2003, 36: 492-501.
Cheng F M, Zhong L J, Sun Z X. Effect of temperature at grain-filling stage on starch biosynthetic metabolism in developing rice grains of early-indica. Sci Agric Sin, 2003, 36: 492-501 (in Chinese with English abstract).
[16] 李太贵, 沈波, 陈能, 罗玉坤. Q酶在水稻籽粒垩白形成中作用的研究. 作物学报, 1997, 23: 338-344.
Li T G, Shen B, Chen N, Luo Y K. Effect of Q-enzyme on the chalkiness formation of rice grain. Acta Agron Sin, 1997, 23: 338-344 (in Chinese with English abstract).
[17] 汪敏, 王邵宇, 吴佳佳, 许开放, 汪涛, 何启方, 邢肖丽, 姚文政, 张文静. 花后阴雨对小麦籽粒淀粉合成和干物质积累的影响. 中国生态农业学报(中英文), 2020, 28: 76-85.
Wang M, Wang S Y, Wu J J, Xu K F, Wang T, He Q F, Xing X L, Yao W Z, Zhang W J. Effects of shading and waterlogging following anthesis on starch synthesis and dry matter accumulation in wheat grain. Chin J Eco-Agric, 2020, 28: 76-85 (in Chinese with English abstract).
[18] 李亚婷, 康建宏, 吴宏亮, 李昱, 姚珊. 花后水分胁迫对春小麦淀粉形成及相关酶活性的影响. 草业科学, 2016, 33: 917-925.
Li Y T, Kang J H, Wu H L, Li Y, Yao S. Effects of water stress after anthesis on starch formation and the activity of associated enzyme in spring wheat. Pratac Sci, 2016, 33: 917-925 (in Chinese with English abstract).
[19] 杨启睿, 李岚涛, 张铎, 王雅娴, 盛开, 王宜伦. 施磷对夏花生产量品质、光温生理特性及根系形态的影响. 作物学报, 2024, 50: 1841-1854.
doi: 10.3724/SP.J.1006.2024.34161
Yang Q R, Li L T, Zhang D, Wang Y X, Sheng K, Wang Y L. Effect of phosphorus application on yield, quality, light temperature physiological characteristics, and root morphology in summer peanut. Acta Agron Sin, 2024, 50: 1841-1854 (in Chinese with English abstract).
[20] 孙莉莉, 陈海生. 甘肃省马铃薯产业高质量发展研究. 中国马铃薯, 2022, 36: 565-572.
Sun L L, Chen H S. Study on potato industry high quality development in Gansu province. Chin Potato J, 2022, 36: 565-572 (in Chinese with English abstract).
[21] 张孟鸽, 李永梅, 范茂攀, 赵吉霞, 鲁泽让, 王婷. 高肥力土壤下马铃薯磷肥利用及投入阈值研究. 农业环境科学学报, 2024, 43, 1838-1845.
Zhang M G, Li Y M, Fan M P, Zhao J X, Lu Z R, Wang T. Phosphorus fertilizer utilization and input threshold of potato in high fertility soil. J Agro-Environ Sci, 2024, 43: 1838-1845 (in Chinese with English abstract).
[22] 张丽微, 董清山, 解国庆, 华玉晨, 范书华, 王艳, 宋泽. “水肥一体化”下马铃薯磷肥的合理施用. 中国马铃薯, 2023, 37: 236-244.
Zhang L W, Dong Q S, Xie G Q, Hua Y C, Fan S H, Wang Y, Song Z. Rational application of phosphorus fertilizer in potato under fertigation. Chin Potato J, 2023, 37: 236-244 (in Chinese with English abstract).
[23] 杨宏伟, 刘文瑜, 冯焕琴, 张俊莲, 李朝周. 土壤含水量和磷肥对马铃薯生长发育及抗旱生理的影响. 中国沙漠, 2018, 38: 307-314.
doi: 10.7522/j.issn.1000-694X.2016.00159
Yang H W, Liu W Y, Feng H Q, Zhang J L, Li C Z. Effects of soil moisture and phosphate fertilizer on the growth and drought resistance physiology of potato seedlings. J Desert Res, 2018, 38: 307-314 (in Chinese with English abstract).
doi: 10.7522/j.issn.1000-694X.2016.00159
[24] 尚文艳, 许志兴, 赵丽萍, 陈万翔, 张翠珍. 定量氮磷肥条件下钾肥不同施用量对地膜马铃薯产量、干物质与淀粉含量的影响. 中国马铃薯, 2016, 30: 99-104.
Shang W Y, Xu Z X, Zhao L P, Chen W X, Zhang C Z. Effects of various potassium fertilizer application rates on yield, dry matter and starch content of plastic film mulching potato. Chin Potato J, 2016, 30: 99-104 (in Chinese with English abstract).
[25] 卢圆明, 王科捷, 杨乔乔, 王佳, 康建宏. 引黄灌区水肥一体模式下春玉米磷素吸收特征与磷肥适宜用量研究. 玉米科学, 2023, 31(6): 119-127.
Lu Y M, Wang K J, Yang Q Q, Wang J, Kang J H. Study on the characteristics of phosphorus uptake and appropriate amount of phosphorus fertilizer for spring maize under the integrated water and fertilizer model in the yellow irrigation area. J Maize Sci, 2023, 31(6): 119-127 (in Chinese with English abstract).
[26] 薛华龙, 娄梦玉, 李雪, 王飞, 郭彬彬, 郭大勇, 李海港, 焦念元. 施磷水平对不同茬口下冬小麦生长发育及产量的影响. 中国农业科学, 2021, 54: 3712-3725.
doi: 10.3864/j.issn.0578-1752.2021.17.013
Xue H L, Lou M Y, Li X, Wang F, Guo B B, Guo D Y, Li H G, Jiao N Y. Effects of phosphorus application levels on growth and yield of winter wheat under different crops for rotation. Sci Agric Sin, 2021, 54: 3712-3725 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2021.17.013
[27] 张鑫尧, 张敏, 朱远芃, 惠晓丽, 柴如山, 郜红建, 罗来超. 巢湖流域磷肥减量施用对稻麦轮作体系作物产量和品质的影响. 中国农业科学, 2022, 55: 3791-3806.
doi: 10.3864/j.issn.0578-1752.2022.19.009
Zhang X Y, Zhang M, Zhu Y P, Hui X L, Chai R S, Gao H J, Luo L C. Effects of reduced phosphorus application on crop yield and grain nutritional quality in the rice-wheat rotation system in Chaohu Lake Basin. Sci Agric Sin, 2022, 55: 3791-3806 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2022.19.009
[28] 单晓宇, 魏庆薪, 于振文, 张永丽, 石玉. 氮磷钾施用量对小麦旗叶13C同化物分配、籽粒淀粉积累和肥料利用的影响. 应用生态学报, 2024, 35: 933-941.
doi: 10.13287/j.1001-9332.202404.009
Shan X Y, Wei Q X, Yu Z W, Zhang Y L, Shi Y. Effects of N, P, and K application rates on distribution of 13C assimilates, starch accumulation in grains and fertilizer utilization of wheat. Chin J Appl Ecol, 2024, 35: 933-941 (in Chinese with English abstract).
[29] 李瑞, 王玲玲, 谭植, 闫素辉, 张从宇, 周永进, 杜祥备, 吴文革, 李文阳. 氮磷互作对弱筋小麦氮素利用与籽粒淀粉品质的影响. 中国土壤与肥料, 2021, (3): 27-34.
Li R, Wang L L, Tan Z, Yan S H, Zhang C Y, Zhou Y J, Du X B, Wu W G, Li W Y. Effects of nitrogen and phosphorus interaction on nitrogen utilization and starch quality of weak gluten wheat. Soil Fertil Sci China, 2021, (3): 27-34 (in Chinese with English abstract).
[30] 李友军, 熊瑛, 陈明灿, 骆炳山. 氮、磷、钾对豫麦50旗叶蔗糖和籽粒淀粉积累的影响. 应用生态学报, 2006, 17: 1196-1200.
Li Y J, Xiong Y, Chen M C, Luo B S. Effects of nitrogen, phosphorus and potassium fertilization on sucrose accumulation in flag leaf and starch accumulation in kernel of weak gluten wheat. Chin J Appl Ecol, 2006, 17: 1196-1200 (in Chinese with English abstract).
[31] 陈静. 小麦籽粒淀粉合成关键酶表达对磷素的响应. 扬州大学硕士学位论文, 江苏扬州, 2010.
Chen J. Response of Key Enzymes of Starch Synthesis in Wheat Grain to Phosphorus. MS Thesis of Yangzhou University, Yangzhou, Jiangsu, China, 2010 (in Chinese with English abstract).
[32] 周甜, 吴少华, 康建宏, 吴宏亮, 杨生龙, 王星强, 李昱, 黄玉峰. 不同种植模式对水稻籽粒淀粉含量及淀粉关键酶活性的影响. 中国水稻科学, 2024, 38: 303-315.
doi: 10.16819/j.1001-7216.2024.230908
Zhou T, Wu S H, Kang J H, Wu H L, Yang S L, Wang X Q, Li Y, Huang Y F. Effects of planting patterns on starch content and activities of key starch enzymes in rice grains. Chin J Rice Sci, 2024, 38: 303-315 (in Chinese with English abstract).
doi: 10.16819/j.1001-7216.2024.230908
[33] 王国兴, 徐福利, 王渭玲, 于丹, 王伟东. 氮磷钾及有机肥对马铃薯生长发育和干物质积累的影响. 干旱地区农业研究, 2013, 31(3): 106-111.
Wang G X, Xu F L, Wang W L, Yu D, Wang W D. Effects of N-P-K and organic fertilizers on growth and dry matter accumulation of potato. Agric Res Arid Areas, 2013, 31(3): 106-111 (in Chinese with English abstract).
[1] YANG Cui-Hua, LI Shi-Hao, YI Xu-Xu, ZHENG Fei-Xiong, DU Xue-Zhu, SHENG Feng. Effects of poly-γ-glutamic acid on rice yield, quality, and nutrient uptake [J]. Acta Agronomica Sinica, 2025, 51(3): 785-796.
[2] LIU Ya-Long, WANG Peng-Fei, YU Ai-Zhong, WANG Yu-Long, SHANG Yong-Pan, YANG Xue-Hui, YIN Bo, ZHANG Dong-Ling, WANG Feng. Effects of nitrogen reduction on maize yield and N2O emission under green manure returning in Hexi oasis irrigation area [J]. Acta Agronomica Sinica, 2025, 51(3): 771-784.
[3] WANG Yan, BAI Chun-Sheng, LI Bo, FAN Hong, HE Wei, YANG Li-Li, CAO Yue, ZHAO Cai. Effects of no-tillage with plastic film and the amount of irrigation water on yield and photosynthetic characteristics of maize in oasis irrigation area of Northwest China [J]. Acta Agronomica Sinica, 2025, 51(3): 755-770.
[4] YANG Xin-Yue, XIAO Ren-Hao, ZHANG Lin-Xi, TANG Ming-Jun, SUN Guang-Yan, DU Kang, LYU Chang-Wen, TANG Dao-Bin, WANG Ji-Chun. Effects of waterlogging at different growth stages on the stress-resistance physiological characteristics and yield formation of sweet potato [J]. Acta Agronomica Sinica, 2025, 51(3): 744-754.
[5] XIONG Qiang-Qiang, SUN Chang-Hui, GU Wen-Fei, LU Yan-Yao, ZHOU Nian-Bing, GUO Bao-Wei, LIU Guo-Dong, WEI Hai-Yan, ZHU Jin-Yan, ZHANG Hong-Cheng. Comprehensive evaluation of 70 japonica glutinous rice varieties (lines) based on growth period, yield, and quality [J]. Acta Agronomica Sinica, 2025, 51(3): 728-743.
[6] LI Xiang-Yu, JI Xin-Jie, WANG Xue-Lian, LONG An-Ran, WANG Zheng-Yu, YANG Zi-Hui, GONG Xiang-Wei, JIANG Ying, QI Hua. Effects of straw returning combined with nitrogen fertilizer on yield and grain quality of spring maize [J]. Acta Agronomica Sinica, 2025, 51(3): 696-712.
[7] HUO Ru-Xue, GE Xiang-Han, SHI Jia, LI Xue-Rui, DAI Sheng-Jie, LIU Zhen-Ning, LI Zong-Yun. Functional analysis of the sweetpotato histidine kinase protein IbHK5 in response to drought and salt stresses [J]. Acta Agronomica Sinica, 2025, 51(3): 650-666.
[8] YAN Bing-Chun, WAN Xue, ZHONG Min, LIU Yu-Qi, ZHAO Yan-Ze, JIANG Hong-Fang, LIU Ya, LIU Hui-Ling, MA Qin-Chun, GAO Ji-Ping, ZHANG Wen-Zhong. Effects of nitrogen levels on quality and fine grinding powder characteristics of northern japonica rice [J]. Acta Agronomica Sinica, 2025, 51(2): 503-515.
[9] WANG Yu-Xin, CHEN Tian-Yu, ZHAI Hong, ZHANG Huan, GAO Shao-Pei, HE Shao-Zhen, ZHAO Ning, LIU Qing-Chang. Cloning and characterization of drought tolerance function of kinase gene IbHT1 in sweetpotato [J]. Acta Agronomica Sinica, 2025, 51(2): 301-311.
[10] HU Ya-Jie, GUO Jing-Hao, CONG Shu-Min, CAI Qin, XU Yi, SUN Liang, GUO Bao-Wei, XING Zhi-Peng, YANG Wen-Fei, ZHANG Hong-Cheng. Effect of low temperature and weak light stress during early grain filling on rice yield and quality [J]. Acta Agronomica Sinica, 2025, 51(2): 405-417.
[11] QIN Meng-Qian, HUANG Wei, CHEN Min, NING Ning, HE De-Zhi, HU Bing, XIA Qi-Xin, JIANG Bo, CHENG Tai, CHANG Hai-Bin, WANG Jing, ZHAO Jie, WANG Bo, KUAI Jie, XU Zheng-Hua, ZHOU Guang-Sheng. Effect of nitrogen fertilizer management on yield and resistance of late-seeded rapeseed [J]. Acta Agronomica Sinica, 2025, 51(2): 432-446.
[12] WANG Chong-Ming, LU Zhi-Feng, YAN Jin-Yao, SONG Yi, WANG Kun-Kun, FANG Ya-Ting, LI Xiao-Kun, REN Tao, CONG Ri-Huan, LU Jian-Wei. Effect of phosphorus fertilizer rates on crop yield, phosphorus uptake and its stability in rapeseed-rice rotation system [J]. Acta Agronomica Sinica, 2025, 51(2): 447-458.
[13] ZHANG Chen-Yu, GE Jun-Yong, CHU Jun-Cong, WANG Xing-Yu, ZHAO Bao-Ping, YANG Ya-Dong, ZANG Hua-Dong, ZENG Zhao-Hai. Yield effect and its root and soil enzyme characteristics of oat and red kidney bean strip intercropping [J]. Acta Agronomica Sinica, 2025, 51(2): 459-469.
[14] QIN Jin-Hua, HONG Wei-Yuan, FENG Xiang-Qian, LI Zi-Qiu, ZHOU Zi-Yu, WANG Ai-Dong, LI Rui-Jie, WANG Dan-Ying, ZHANG Yun-Bo, CHEN Song. Analysis of agronomic and physiological indicators of rice yield and grain quality under nitrogen fertilization management [J]. Acta Agronomica Sinica, 2025, 51(2): 485-502.
[15] CHEN Yu-Ting, DING Xiao-Yu, XU Ben-Bo, ZHANG Xue-Kun, XU Jin-Song, YIN Yan. Effects of climate warming on yield, quality-related and agronomic traits of winter rapeseed (Brassica napus L.) [J]. Acta Agronomica Sinica, 2025, 51(2): 516-525.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!