Acta Agronomica Sinica ›› 2025, Vol. 51 ›› Issue (5): 1347-1362.doi: 10.3724/SP.J.1006.2025.42046
• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles Next Articles
WANG Meng-Ning(), XIE Ke-Ran, GAO Ti, WANG Fei, REN Xiao-Jian, XIONG Dong-Liang, HUANG Jian-Liang, PENG Shao-Bing, CUI Ke-Hui*(
)
[1] | IPCC. Climate Change 2021: The Physical Science Basis. Contribution of Working group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press, 2021. p 3949. |
[2] |
Zhao C, Liu B, Piao S L, Wang X H, Lobell D B, Huang Y, Huang M T, Yao Y T, Bassu S, Ciais P, et al. Temperature increase reduces global yields of major crops in four independent estimates. Proc Natl Acad Sci USA, 2017, 114: 9326-9331.
doi: 10.1073/pnas.1701762114 pmid: 28811375 |
[3] | Zhang C X, Feng B H, Chen T T, Zhang X F, Tao L X, Fu G F. Sugars, antioxidant enzymes and IAA mediate salicylic acid to prevent rice spikelet degeneration caused by heat stress. Plant Growth Regul, 2017, 83: 313-323. |
[4] | Hu Q Q, Yan N, Cui K H, Li G H, Wang W C, Huang J L, Peng S B. Increased panicle nitrogen application improves rice yield by alleviating high-temperature damage during panicle initiation to anther development. Physiol Plant, 2024, 176: e14230. |
[5] |
Wu C, Cui K H, Wang W C, Li Q, Fahad S, Hu Q Q, Huang J L, Nie L X, Peng S B. Heat-induced phytohormone changes are associated with disrupted early reproductive development and reduced yield in rice. Sci Rep, 2016, 6: 34978.
doi: 10.1038/srep34978 pmid: 27713528 |
[6] | 刘建丰, 陈光辉, 何强, 李春庚. 不同产量水平杂交稻产量构成因素的分析. 云南农业大学学报, 2006, 21: 707-710. |
Liu J F, Chen G H, He Q, Li C G. A study on yield components of hybrid rice with big panicle. J Yunnan Agric Univ, 2006, 21: 707-710 (in Chinese with English abstract). | |
[7] | Liu L C, Tong H N, Xiao Y H, Che R H, Xu F, Hu B, Liang C Z, Chu J F, Li J Y, Chu C C. Activation of Big Grain1 significantly improves grain size by regulating auxin transport in rice. Proc Natl Acad Sci USA, 2015, 112: 11102-11107. |
[8] |
Ji X, Du Y X, Li F, Sun H Z, Zhang J, Li J Z, Peng T, Xin Z Y, Zhao Q Z. The basic helix-loop-helix transcription factor, OsPIL15, regulates grain size via directly targeting a purine permease gene OsPUP7 in rice. Plant Biotechnol J, 2019, 17: 1527-1537.
doi: 10.1111/pbi.13075 pmid: 30628157 |
[9] | Shi C L, Dong N Q, Guo T, Ye W W, Shan J X, Lin H X. A quantitative trait locus GW6 controls rice grain size and yield through the gibberellin pathway. Plant J, 2020, 103: 1174-1188. |
[10] | Li L F, Li J J, Liu K K, Jiang C L, Jin W H, Ye J K, Qin T R, Luo B J, Chen Z Y, Li J Z, et al. DGW1, encoding an hnRNP-like RNA binding protein, positively regulates grain size and weight by interacting with GW6 mRNA. Plant Biotechnol J, 2024, 22: 512-526. |
[11] | She K C, Kusano H, Koizumi K, Yamakawa H, Hakata M, Imamura T, Fukuda M, Naito N, Tsurumaki Y, Yaeshima M, et al. A novel factor FLOURY ENDOSPERM2 is involved in regulation of rice grain size and starch quality. Plant Cell, 2010, 22: 3280-3294. |
[12] | He Z S, Zeng J, Ren Y, Chen D, Li W J, Gao F Y, Cao Y, Luo T, Yuan G Q, Wu X H, et al. OsGIF1 positively regulates the sizes of stems, leaves, and grains in rice. Front Plant Sci, 2017, 8: 1730. |
[13] | Wei X J, Jiao G A, Lin H Y, Sheng Z H, Shao G N, Xie L H, Tang S Q, Xu Q G, Hu P S. GRAIN INCOMPLETE FILLING 2 regulates grain filling and starch synthesis during rice caryopsis development. J Integr Plant Biol, 2017, 59: 134-153. |
[14] | Lin L S, Qiu J J, Zhang L, Wei C X. Identification and analysis of nine new flo2 allelic mutants in rice. J Plant Physiol, 2024, 301: 154300. |
[15] |
Wang E T, Wang J J, Zhu X D, Hao W, Wang L Y, Li Q, Zhang L X, He W, Lu B R, Lin H X, et al. Control of rice grain-filling and yield by a gene with a potential signature of domestication. Nat Genet, 2008, 40: 1370-1374.
doi: 10.1038/ng.220 pmid: 18820698 |
[16] | Huang L C, Tan H Y, Zhang C Q, Li Q F, Liu Q Q. Starch biosynthesis in cereal endosperms: an updated review over the last decade. Plant Commun, 2021, 2: 100237. |
[17] | Morita S, Yonemaru J I, Takanashi J I. Grain growth and endosperm cell size under high night temperatures in rice (Oryza sativa L.). Ann Bot, 2005, 95: 695-701. |
[18] |
Wada H, Chang F Y, Hatakeyama Y, Erra-Balsells R, Araki T, Nakano H, Nonami H. Endosperm cell size reduction caused by osmotic adjustment during nighttime warming in rice. Sci Rep, 2021, 11: 4447.
doi: 10.1038/s41598-021-83870-1 pmid: 33627723 |
[19] |
Shi W J, Yin X Y, Struik P C, Solis C, Xie F M, Schmidt R C, Huang M, Zou Y B, Ye C R, Krishna Jagadish S V. High day- and night-time temperatures affect grain growth dynamics in contrasting rice genotypes. J Exp Bot, 2017, 68: 5233-5245.
doi: 10.1093/jxb/erx344 pmid: 29106621 |
[20] |
Bahuguna R N, Solis C A, Shi W J, Jagadish K S V. Post-flowering night respiration and altered sink activity account for high night temperature-induced grain yield and quality loss in rice (Oryza sativa L.). Physiol Plant, 2017, 159: 59-73.
doi: 10.1111/ppl.12485 pmid: 27513992 |
[21] | Zhang C X, Feng B H, Chen T T, Fu W M, Li H B, Li G Y, Jin Q Y, Tao L X, Fu G F. Heat stress-reduced kernel weight in rice at anthesis is associated with impaired source-sink relationship and sugars allocation. Environ Exp Bot, 2018, 155: 718-733. |
[22] |
董文军, 田云录, 张彬, 陈金, 张卫建. 非对称性增温对水稻品种南粳44米质及关键酶活性的影响. 作物学报, 2011, 37: 832-841.
doi: 10.3724/SP.J.1006.2011.00832 |
Dong W J, Tian Y L, Zhang B, Chen J, Zhang W J. Effects of asymmetric warming on grain quality and related key enzymes activities for japonica rice (Nanjing 44) under FATI facility. Acta Agron Sin, 2011, 37: 832-841 (in Chinese with English abstract). | |
[23] | Meng L, Wang C Y, Zhang J Q. Heat injury risk assessment for single-cropping rice in the middle and lower reaches of the Yangtze River under climate change. J Meteor Res, 2016, 30: 426-443. |
[24] |
吕川根, 宗寿余, 胡凝, 邹江石, 姚克敏, 唐卫亚. 两系杂交稻两优培九粒重因子的环境模型解析及生态特征分析. 作物学报, 2008, 34: 2202-2209.
doi: 10.3724/SP.J.1006.2008.02202 |
Lyu C G, Zong S Y, Hu N, Zou J S, Yao K M, Tang W Y. Modeling with climatic factors and analysis on ecological characters for grain weight dissected factors of two-line hybrid rice, Liangyou-peijiu. Acta Agron Sin, 2008, 34: 2202-2209 (in Chinese with English abstract). | |
[25] | Zhang X Z, Zhang Q P, Yang J, Jin Y H, Wu J S, Xu H, Xiao Y, Lai Y S, Guo Z Q, Wang J L, et al. Comparative effects of heat stress at booting and grain-filling stage on yield and grain quality of high-quality hybrid rice. Foods, 2023, 12: 4093. |
[26] |
Zhen F X, Zhou J J, Mahmood A, Wang W, Chang X N, Liu B, Liu L L, Cao W X, Zhu Y, Tang L. Quantifying the effects of short-term heat stress at booting stage on nonstructural carbohydrates remobilization in rice. Crop J, 2020, 8: 194-212.
doi: 10.1016/j.cj.2019.07.002 |
[27] |
Wu C, Cui K H, Li Q, Li L Y, Wang W C, Hu Q Q, Ding Y F, Li G H, Fahad S, Huang J L, et al. Estimating the yield stability of heat-tolerant rice genotypes under various heat conditions across reproductive stages: a 5-year case study. Sci Rep, 2021, 11: 13604.
doi: 10.1038/s41598-021-93079-x pmid: 34193936 |
[28] | Yoshida S. Fundamentals of Rice Crop Science. Los Baños, Laguna, Philippines: the International Rice Research Institute, 1981. |
[29] | 徐建龙, 王俊敏, 骆荣挺, 张铭铣, 蒋兴村, 李金国. 空间诱变水稻大粒型突变体的遗传育种研究. 遗传, 2002, 24: 431-433. |
Xu J L, Wang J M, Luo R T, Zhang M X, Jiang X C, Li J G. Studies of inheritance and application in rice breeding of the large grain mutant induced in space environment. Hereditas (Beijing), 2002, 24: 431-433 (in Chinese with English abstract). | |
[30] |
魏颖娟, 赵杨, 邹应斌. 不同穗型超级稻品种籽粒灌浆特性. 作物学报, 2016, 42: 1516-1529.
doi: 10.3724/SP.J.1006.2016.01516 |
Wei Y J, Zhao Y, Zou Y B. Grain-filling characteristics in super rice with different panicle types. Acta Agron Sin, 2016, 42: 1516-1529 (in Chinese with English abstract). | |
[31] |
韦还和, 张翔, 朱旺, 耿孝宇, 马唯一, 左博源, 孟天瑶, 高平磊, 陈英龙, 许轲, 等. 盐胁迫对水稻籽粒灌浆特性及产量形成的影响. 作物学报, 2024, 50: 734-746.
doi: 10.3724/SP.J.1006.2024.32021 |
Wei H H, Zhang X, Zhu W, Geng X Y, Ma W Y, Zuo B Y, Meng T Y, Gao P L, Chen Y L, Xu K, et al. Effects of salinity stress on grain-filling characteristics and yield of rice. Acta Agron Sin, 2024, 50: 734-746 (in Chinese with English abstract). | |
[32] |
Li G H, Pan J F, Cui K H, Yuan M S, Hu Q Q, Wang W C, Mohapatra P K, Nie L X, Huang J L, Peng S B. Limitation of unloading in the developing grains is a possible cause responsible for low stem non-structural carbohydrate translocation and poor grain yield formation in rice through verification of recombinant inbred lines. Front Plant Sci, 2017, 8: 1369.
doi: 10.3389/fpls.2017.01369 pmid: 28848573 |
[33] | Liu L, Cui K H, Qi X L, Wu Y, Huang J L, Peng S B. Varietal responses of root characteristics to low nitrogen application explain the differing nitrogen uptake and grain yield in two rice varieties. Front Plant Sci, 2023, 14: 1244281. |
[34] | Xu C S, Yang F, Tang X N, Lu B, Li Z Y, Liu Z H, Ding Y F, Ding C, Li G H. Super rice with high sink activities has superior adaptability to low filling stage temperature. Front Plant Sci, 2021, 12: 729021. |
[35] | Zheng C K, Zhou G H, Zhang Z Z, Li W, Peng Y B, Xie X Z. Moderate salinity stress reduces rice grain yield by influencing expression of grain number- and grain filling-associated genes. J Plant Growth Regul, 2021, 40: 1111-1120. |
[36] | Chen Y H, Wang Y L, Chen H Z, Xiang J, Zhang Y K, Wang Z G, Zhu D F, Zhang Y P. Brassinosteroids mediate endogenous phytohormone metabolism to alleviate high temperature injury at panicle initiation stage in rice. Rice Sci, 2023, 30: 70-86. |
[37] | Ji D L, Xiao W H, Sun Z W, Liu L J, Gu J F, Zhang H, Harrison M T, Liu K, Wang Z Q, Wang W L, et al. Translocation and distribution of carbon-nitrogen in relation to rice yield and grain quality as affected by high temperature at early panicle initiation stage. Rice Sci, 2023, 30: 598-612. |
[38] | 杨连新, 王余龙, 董桂春, 张亚洁, 单玉华, 杨洪建. 栽培和环境条件对水稻饱粒重的影响. 江苏农业科学, 2002, 30(6): 9-13. |
Yang L X, Wang Y L, Dong G C, Zhang Y J, Shan Y H, Yang H J. Effects of different cultural and environmental conditions on fulfilled grain weight in rice. Jiangsu Agric Sci, 2002, 30(6): 9-13 (in Chinese). | |
[39] | Zhen F X, Wang W, Wang H Y, Zhou J J, Liu B, Zhu Y, Liu L L, Cao W X, Tang L. Effects of short-term heat stress at booting stage on rice-grain quality. Crop Past Sci, 2019, 70: 486. |
[40] |
曹云英, 段骅, 杨立年, 王志琴, 周少川, 杨建昌. 减数分裂期高温胁迫对耐热性不同水稻品种产量的影响及其生理原因. 作物学报, 2008, 34: 2134-2142.
doi: 10.3724/SP.J.1006.2008.02134 |
Cao Y Y, Duan H, Yang L N, Wang Z Q, Zhou S C, Yang J C. Effect of heat-stress during meiosis on grain yield of rice cultivars differing in heat-tolerance and its physiological mechanism. Acta Agron Sin, 2008, 34: 2134-2142 (in Chinese with English abstract). | |
[41] |
Schmülling T, Werner T, Riefler M, Krupková E, Manns I B Y. Structure and function of cytokinin oxidase/dehydrogenase genes of maize, rice, Arabidopsis and other species. J Plant Res, 2003, 116: 241-252.
doi: 10.1007/s10265-003-0096-4 pmid: 12721786 |
[42] | Kurakawa T, Ueda N, Maekawa M, Kobayashi K, Kojima M, Nagato Y, Sakakibara H, Kyozuka J. Direct control of shoot meristem activity by a cytokinin-activating enzyme. Nature, 2007, 445: 652-655. |
[43] |
陈燕华, 王亚梁, 朱德峰, 石庆华, 陈惠哲, 向镜, 张义凯, 张玉屏. 外源油菜素内酯缓解水稻穗分化期高温伤害的机理研究. 中国水稻科学, 2019, 33: 457-466.
doi: 10.16819/j.1001-7216.2019.9036 |
Chen Y H, Wang Y L, Zhu D F, Shi Q H, Chen H Z, Xiang J, Zhang Y K, Zhang Y P. Mechanism of exogenous brassinolide in alleviating high temperature injury at panicle initiation stage in rice. Chin J Rice Sci, 2019, 33: 457-466 (in Chinese with English abstract).
doi: 10.16819/j.1001-7216.2019.9036 |
|
[44] | 吴超. 生殖生长期高温对水稻产量形成的影响及其激素调控机理研究. 华中农业大学博士学位论文, 湖北武汉, 2016. |
Wu C. Effects of High Temperature During the Reproductive Stages on Rice Yield Formation and Its Phytohormonal Basis. PhD Dissertation of Huazhong Agricultural University, Wuhan, Hubei, China, 2016 (in Chinese with English abstract). | |
[45] | Jiang N, Yu P H, Fu W M, Li G Y, Feng B H, Chen T T, Li H B, Tao L X, Fu G F. Acid invertase confers heat tolerance in rice plants by maintaining energy homoeostasis of spikelets. Plant Cell Environ, 2020, 43: 1273-1287. |
[46] | Chen Y H, Chen H Z, Xiang J, Zhang Y K, Wang Z G, Zhu D F, Wang J K, Zhang Y P, Wang Y L. Rice spikelet formation inhibition caused by decreased sugar utilization under high temperature is associated with brassinolide decomposition. Environ Exp Bot, 2021, 190: 104585. |
[47] |
Lin G Q, Yang Y, Chen X Y, Yu X R, Wu Y F, Xiong F. Effects of high temperature during two growth stages on caryopsis development and physicochemical properties of starch in rice. Int J Biol Macromol, 2020, 145: 301-310.
doi: S0141-8130(19)35966-5 pmid: 31874272 |
[48] | 胡秋倩. 氮供应对水稻幼穗分化期高温下产量形成的影响及机理研究. 华中农业大学博士学位论文, 湖北武汉, 2021. |
Hu Q Q. Effects of Different Nitrogen Rates on Yield Formation under High Temperature during Panicle Initiation Stage and Its Mechanism in Rice. PhD Dissertation of Huazhong Agricultural University, Wuhan, Hubei, China, 2021 (in Chinese with English abstract). | |
[49] |
Wang Y L, Zhang Y K, Shi Q H, Chen H Z, Xiang J, Hu G H, Chen Y H, Wang X D, Wang J K, Yi Z H, et al. Decrement of sugar consumption in rice young panicle under high temperature aggravates spikelet number reduction. Rice Sci, 2020, 27: 44-55.
doi: 10.1016/j.rsci.2019.12.005 |
[50] |
张玉屏, 王军可, 王亚梁, 陈燕华, 朱德峰, 陈惠哲, 向镜, 张义凯, 刘小军, 朱艳, 等. 水稻淀粉合成对夜温变化的响应. 中国水稻科学, 2020, 34: 525-538.
doi: 10.16819/j.1001-7216.2020.0701 |
Zhang Y P, Wang J K, Wang Y L, Chen Y H, Zhu D F, Chen H Z, Xiang J, Zhang Y K, Liu X J, Zhu Y, et al. Response of rice starch synthesis to night temperature changes. Chin J Rice Sci, 2020, 34: 525-538 (in Chinese with English abstract). | |
[51] | 赵步洪, 张洪熙, 朱庆森, 杨建昌. 两系杂交稻籽粒充实不良的成因及其与激素含量的关系. 中国农业科学, 2006, 39: 477-486. |
Zhao B H, Zhang H X, Zhu Q S, Yang J C. Causes of poor grain plumpness of two-line hybrids and their relationships to contents of hormones in the rice grain. Sci Agric Sin, 2006, 39: 477-486 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.at-2005-6166 |
|
[52] | 刘晓龙, 叶世河, 廖俊婕, 骆依菲, 龙莎, 廖婧芃, 钟歆, 谢菲, 谢子怡, 曾鹏, 等. 灌浆初期高温胁迫对水稻籽粒活性氧积累及产量形成的影响. 西北农林科技大学学报(自然科学版), 2024, 52(5): 33-47. |
Liu X L, Ye S H, Liao J J, Luo Y F, Long S, Liao J P, Zhong X, Xie F, Xie Z Y, Zeng P, et al. Effect of heat stress during early filling stage on ROS accumulation and yield formation in rice grain. J Northwest A&F Univ (Nat Sci Edn), 2024, 52(5): 33-47 (in Chinese with English abstract). |
[1] | SHENG Qian-Nan, FANG Ya-Ting, ZHAO Jian, DU Si-Yao, HU Xing-Zhen, YU Qiu-hua, ZHU Jun, REN Tao, LU Jian-Wei. Effects of different nutrient management practices on oilseed rape yield and their response to freezing stress between upland and paddy-upland rotations [J]. Acta Agronomica Sinica, 2025, 51(5): 1286-1298. |
[2] | WENG Wen-An, XING Zhi-Peng, HU Qun, WEI Hai-Yan, LIAO Ping, ZHU Hai-Bin, QU Ji-Wei, LI Xiu-Li, LIU Gui-Yun, GAO Hui, ZHANG Hong-Cheng. Study on yield formation characteristics, energy and economic benefits of unmanned dry direct-seeding rice [J]. Acta Agronomica Sinica, 2025, 51(5): 1363-1377. |
[3] | ZHU Jian-Ping, LI Wen-Qi, XU Yang, WANG Fang-Quan, LI Xia, JIANG Yan-Jie, FAN Fang-Jun, TAO Ya-Jun, CHEN Zhi-Hui, WU Ying-Ying, YANG Jie. Phenotypic analysis and gene mapping of a floury endosperm mutant we2 in rice [J]. Acta Agronomica Sinica, 2025, 51(4): 1110-1117. |
[4] | XIAO Zheng-Wu, ZHANG Ke-Qian, CAO Fang-Bo, CHEN Jia-Na, ZHENG Hua-Bin, WANG Wei-Qin, HUANG Min. Relationships between cooking and eating quality of brown rice noodles and starch component contents and pasting properties of brown rice grains [J]. Acta Agronomica Sinica, 2025, 51(4): 1102-1109. |
[5] | PAN Ju-Zhong, WEI Ping, ZHU De-Ping, SHAO Sheng-Xue, CHEN Shan-Shan, WEI Ya-Qian, GAO Wei-Wei. Cloning and functional analysis of OsERF104 transcription factor in rice [J]. Acta Agronomica Sinica, 2025, 51(4): 900-913. |
[6] | HOU Tian-Yu, DU Xiao-Jing, ZHAO Zhi-Qiang, REYIM Anwar, YIDAYETULA Abula, BUHALIQIEMU Abulizi, YUAN Jie, ZHANG Yan-Hong, WANG Feng-Bin. Evaluation of cold tolerance of japonica rice varieties at germination stage and construction of identification system [J]. Acta Agronomica Sinica, 2025, 51(3): 812-822. |
[7] | YANG Cui-Hua, LI Shi-Hao, YI Xu-Xu, ZHENG Fei-Xiong, DU Xue-Zhu, SHENG Feng. Effects of poly-γ-glutamic acid on rice yield, quality, and nutrient uptake [J]. Acta Agronomica Sinica, 2025, 51(3): 785-796. |
[8] | XIONG Qiang-Qiang, SUN Chang-Hui, GU Wen-Fei, LU Yan-Yao, ZHOU Nian-Bing, GUO Bao-Wei, LIU Guo-Dong, WEI Hai-Yan, ZHU Jin-Yan, ZHANG Hong-Cheng. Comprehensive evaluation of 70 japonica glutinous rice varieties (lines) based on growth period, yield, and quality [J]. Acta Agronomica Sinica, 2025, 51(3): 728-743. |
[9] | SU Chang, MAN Fu-Yuan, WANG Jing-Bo, FENG Jing, JIANG Si-Xu, ZHAO Ming-Hui. Response of osalr3 mutant to exogenous organic acids and plant growth regulators under aluminum stress [J]. Acta Agronomica Sinica, 2025, 51(3): 676-686. |
[10] | LIU Jian-Guo, CHEN Dong-Dong, CHEN Yu-Yu, YI Qin-Qin, LI Qing, XU Zheng-Jin, QIAN Qian, SHEN Lan. Effects of different alleles and natural variations of OsMKK4, a member of the rice MKKs family gene, on grains [J]. Acta Agronomica Sinica, 2025, 51(3): 598-608. |
[11] | YONG Rui, HU Wen-Jing, WU Di, WANG Zun-Jie, LI Dong-Sheng, ZHAO Die, YOU Jun-Chao, XIAO Yong-Gui, WANG Chun-Ping. Identification and validation of quantitative trait loci for grain number per spike showing pleiotropic effect on thousand grain weight in bread wheat (Triticum aestivum L.) [J]. Acta Agronomica Sinica, 2025, 51(2): 312-323. |
[12] | ZHANG Zheng-Kang, SU Yan-Hong, RUAN Sun-Mei, ZHANG Min, ZHANG Pan, ZHANG Hui, ZENG Qian-Chun, LUO Qiong. Cloning and functional study of OgXa13 in Oryza meyeriana [J]. Acta Agronomica Sinica, 2025, 51(2): 334-346. |
[13] | LI Chun-Mei, CHEN Jie, LANG Xing-Xuan, ZHUANG Hai-Min, ZHU Jing, DU Zi-Jun, FENG Hao-Tian, JIN Han, ZHU Guo-Lin, LIU Kai. Map-based cloning and functional analysis of Dwarf and Tillering 1 (DT1) gene in rice [J]. Acta Agronomica Sinica, 2025, 51(2): 347-357. |
[14] | HU Ya-Jie, GUO Jing-Hao, CONG Shu-Min, CAI Qin, XU Yi, SUN Liang, GUO Bao-Wei, XING Zhi-Peng, YANG Wen-Fei, ZHANG Hong-Cheng. Effect of low temperature and weak light stress during early grain filling on rice yield and quality [J]. Acta Agronomica Sinica, 2025, 51(2): 405-417. |
[15] | XIN Yu-Ning, REN Hao, WANG Hong-Zhang, LIANG Ming-Lei, YU Tao, LIU Peng. Effects of spraying 6-benzylaminopurine (6-BA) on grain filling and yield of summer maize under post-pollination high temperature stress [J]. Acta Agronomica Sinica, 2025, 51(2): 418-431. |
|