Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2026, Vol. 52 ›› Issue (1): 233-248.doi: 10.3724/SP.J.1006.2026.55042

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Effects of straw incorporation combined with nitrogen management on stem quality and lodging resistance of rapeseed following rice

Zhu Jia-Bao1(), Wang Xian-Ling1, Fan You-Zhong1, Wang Zong-Kai1, Kuai Jie1, Wang Bo1, Wang Jing1, Xu Zheng-Hua1, Zhao Jie1, Zhou Guang-Sheng1,2,*()   

  1. 1College of Plant Science and Technology, Huazhong Agricultural University / Key Laboratory of Crop Ecophysiology and Farming System for the Middle Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, Wuhan 430070, Hubei, China
    2Hongshan Laboratory, Wuhan 430070, Hubei, China
  • Received:2025-06-30 Accepted:2025-09-10 Online:2026-01-12 Published:2025-09-18
  • Contact: *E-mail: zhougs@mail.hzau.edu.cn
  • Supported by:
    National Key Research and Development Program of China(2021YFD1901205)

Abstract:

Lodging is a major constraint limiting the yield and stability of direct-seeded rapeseed in the Yangtze River Basin. Straw incorporation from the preceding rice crop can influence lodging resistance in rapeseed by affecting carbon-nitrogen metabolism and stem morphology, especially when combined with tailored nitrogen management strategies. In this study, a split-plot design was used with the rapeseed hybrid Huayouza 62, based on a long-term rice-rapeseed rotation field experiment. The main plots comprised straw incorporation treatments (R0: no straw incorporation; R1: full straw incorporation). Subplots consisted of nitrogen application regimes: CK (conventional nitrogen rate of 240 kg hm-2 with basal: seedling fertilizer ratio 6:4:0:0) and four 20%-reduced nitrogen treatments (N1, N2, N3, N4), maintaining identical total nitrogen reduction but differing fertilizer ratios (basal:seedling:bolting:flower fertilizer stages): N1 (10:0:0:0), N2 (6:4:0:0), N3 (6:2:2:0), and N4 (6:2:0:2). The effects of these treatments on stem cell wall composition at maturity, stem silicon and calcium content, and stem anatomical structure at flowering were evaluated. Compared with no straw return, full straw incorporation significantly increased aboveground fresh biomass by 29.1% and stem breaking strength by 23.3%. Increases were also observed in stem contents of cellulose (26.3%), total lignin (3.4%), pectin (30.6%), silicon (45.0%), and calcium (9.5%) (P < 0.05), contributing to improved stem strength and toughness. However, the gains in plant height and biomass outpaced the improvements in stem strength, leading to a 7.9% average increase in the lodging index. Appropriate nitrogen allocation strategies improved stem structural quality and reduced lodging risk. Notably, the N3 treatment (192 kg hm-2, applied as 6:2:2:0) under full straw return conditions reduced the actual lodging angle by 2.6%, increased stem breaking strength by 15.2%, and decreased the lodging index by 10.2% compared to the conventional treatment. These improvements were attributed to significant increases in stem cellulose, pectin, and calcium contents, as well as enhanced anatomical characteristics at flowering, including greater cortex and epidermis thickness, increased vascular bundle length and area, and a higher number of vascular bundles. A more uniform vascular bundle arrangement further contributed to improved stem mechanical strength and lodging resistance. Therefore, under high-density direct-seeded rapeseed cultivation with rice straw incorporation in the Yangtze River Basin, an optimized nitrogen regime of 192 kg hm-2 (basal:seedling:bolting = 6:2:2) is recommended. This strategy not only reduces nitrogen input but also enhances stem strength and lodging resistance, thereby improving mechanical harvest efficiency while maintaining high yield and structural resilience.

Key words: rapeseed, straw incorporation, nitrogen management, lodging index, stem composition, microstructure

Fig. 1

Main meteorological factors in 2018-2019 growing season (A) and in 2019-2020 growing season (B)"

Table 1

Basic physicochemical properties of the experimental soil"

年份
Year
全氮TN
(g kg-1)
碱解氮AN
(mg kg-1)
速效磷AP
(mg kg-1)
速效钾AK
(mg kg-1)
有机质SOC
(g kg-1)
pH
2018-2019 1.58 107.54 19.17 174.87 11.62 7.41
2019-2020 1.64 102.24 20.85 190.24 8.44 7.13

Fig. 2

Effects of rice straw management and nitrogen management on the actual lodging angle of rapeseed stems at maturity N: nitrogen management; R: straw management; R0 represents no straw incorporation, while R1 represents straw incorporation. CK: application of 100% nitrogen fertilizer (N 240 kg hm-2) with a basal:seedling:bolting:flowering fertilizer ratio of 6:4:0:0; N1: application of 80% nitrogen fertilizer with a basal:seedling:bolting:flowering fertilizer ratio of 10:0:0:0; N2: application of 80% nitrogen fertilizer with a basal: seedling:bolting:flowering fertilizer ratio of 6:4:0:0; N3: application of 80% nitrogen fertilizer with a basal:seedling:bolting:flowering fertilizer ratio of 6:2:2:0; N4: application of 80% nitrogen fertilizer with a basal:seedling:bolting:flowering fertilizer ratio of 6:2:0:2. Different letters indicate significant differences between treatments within the same year (P < 0.05). ** indicates significant differences at the 0.01 probability level."

Fig. 3

Effects of rice straw management and nitrogen management on aboveground fresh weight of rapeseed at maturity Abbreviations and treatments are the same as those given in Fig. 2. Different lowercase letters indicate significant differences among treatments within the same year (P < 0.05). * and ** indicate significant differences at the 0.05 and 0.01 probability levels, respectively."

Fig. 4

Effects of rice straw management and nitrogen management on stem bending resistance of rapeseed at maturity Abbreviations and treatments are the same as those given in Fig. 2. Different lowercase letters indicate significant differences among treatments within the same year (P < 0.05). ** indicates significant differences at the 0.01 probability level, while ns indicates no significant difference."

Fig. 5

Effects of rice straw management and nitrogen management on the lodging index of rapeseed stems at maturity Abbreviations and treatments are the same as those given in Fig. 2. Different lowercase letters indicate significant differences among treatments within the same year (P < 0.05). ** indicates significant differences at the 0.01 probability level, while ns indicates no significant difference."

Table 2

Correlation between yield, yield components and lodging-related traits"

倒伏相关性状
Lodging-related traits
单株角果数
Effective pods per plant
每角果粒数
Seeds per pod
千粒重
1000-seed weight (g)
实际产量
Yield (kg hm-2)
地上部鲜重Shoot fresh weight (g plant-1) 0.643** -0.360 -0.464* 0.483*
倒伏角度Lodging angle (°) 0.594** -0.790** -0.172 0.332
茎秆抗折力Stem breaking strength (N) 0.643** -0.303 -0.619** 0.540**
倒伏指数Lodging index -0.583** -0.092 0.492* -0.721**

Table 3

Effects of rice straw management and nitrogen management on basal stem composition of rapeseed at maturity (%)"

年份
Year
秸秆管理
Straw
management
氮肥运筹
Nitrogen
management
酸不溶木质素
Acid-insoluble lignin
总木质素
Total
lignin
可溶性糖
Soluble sugars
半纤维素
Hemicellulose
纤维素
Cellulose
果胶
Pectin
2018-2019 R0 CK 21.5 h 24.8 d 3.2 b 14.7 bc 19.2 e 16.6 cd
N1 22.9 c 26.3 bc 3.5 a 16.3 a 21.6 bc 15.7 d
N2 22.0 fg 25.2 cd 3.3 ab 16.0 ab 21.1 bcd 15.7 d
N3 24.7 a 27.9 a 2.6 e 14.8 bc 22.0 b 13.2 d
N4 21.6 gh 25.2 cd 3.4 ab 14.6 c 18.9 e 14.6 d
2018-2019 R1 CK 22.4 de 25.7 bcd 2.9 cd 15.2 abc 22.6 b 19.8 bc
N1 23.7 b 26.9 ab 2.9 cd 15.3 abc 20.2 cde 21.5 ab
N2 22.3 ef 26.2 bc 2.7 de 15.1 bc 21.0 bcd 24.1 a
N3 22.7 cd 26.3 bc 2.9 cd 14.8 bc 24.5 a 23.7 a
N4 24.0 b 27.9 a 2.7 cde 15.1 abc 19.6 de 24.1 a
2019-2020 R0 CK 16.6 de 21.1 ab 2.4 b 16.9 a 16.8 de 19.5 de
N1 16.1 fg 20.4 b 3.1 a 17.0 a 16.5 de 21.9 cd
N2 16.0 gh 20.5 b 2.1 cd 16.6 a 15.9 e 23.1 bc
N3 16.4 ef 20.8 ab 1.9 de 17.0 a 20.4 b 22.7 bc
N4 15.7 h 20.4 b 1.9 de 17.8 a 18.1 cd 18.7 e
R1 CK 18.0 a 22.1 ab 1.9 de 14.1 b 17.3 cde 23.3 bc
N1 17.7 b 22.3 a 2.5 b 14.7 b 16.7 de 25.7 ab
N2 17.2 c 21.3 ab 2.1 cd 14.5 b 20.7 b 25.5 ab
N3 17.0 cd 21.2 ab 2.2 c 12.4 c 22.4 a 26.7 a
N4 16.7 de 21.6 ab 1.8 e 13.9 b 18.7 c 24.8 abc
方差分析 ANOVA
年份 Year (Y) ** ** ** ns ** **
秸秆管理Straw management (R) ** ** ** ** ** **
氮肥运筹Nitrogen management (N) ** ns ** ** ** **
R×N ** ns * ** ns **
R×Y ** ** ** ns ** *
N×Y ** ** ** ns ** **
R×N×Y ** ns ** ** ** **

Table 4

Effects of rice straw management and nitrogen management on upper stem composition of rapeseed at maturity (%)"

年份
Year
秸秆管理
Straw
management
氮肥运筹
Nitrogen management
酸不溶木质素
Acid-insoluble lignin
总木质素
Total lignin
可溶性糖
Soluble sugars
半纤维素
Hemicellulose
纤维素
Cellulose
果胶
Pectin
2018-
2019
R0 CK 20.2 e 25.0 c 3.8 b 23.2 bc 17.4 e 15.3 b
N1 18.5 f 23.3 d 4.3 a 24.8 a 21.0 d 6.4 f
N2 20.5 de 25.9 bc 3.7 bc 23.6 ab 18.1 e 7.6 ef
N3 21.8 a 26.6 b 3.5 bcd 21.6 cd 24.8 c 8.7 def
N4 20.4 e 24.9 c 3.4 cd 22.7 bc 27.1 bc 10.9 cd
R1 CK 20.8 cd 26.2 b 2.7 e 19.0 f 30.6 a 15.0 b
N1 21.9 a 27.6 a 3.3 d 20.8 de 28.6 ab 9.9 cde
N2 21.1 bc 26.7 ab 2.5 e 19.6 ef 30.5 a 12.5 c
N3 20.5 de 26.1 b 2.4 e 20.8 de 27.1 bc 18.6 a
N4 21.3 b 26.2 b 2.7 e 20.1 def 27.4 bc 15.7 b
2019-
2020
R0 CK 23.3 a 27.1 a 3.8 b 18.0 ab 19.6 cd 15.2 bc
N1 21.9 d 25.7 abc 4.7 a 17.5 abc 20.7 c 14.6 bc
N2 20.8 f 24.7 c 2.9 def 17.7 abc 12.9 e 10.7 e
N3 22.1 d 26.0 abc 3.4 bc 18.8 a 22.2 c 14.1 bcd
N4 22.4 c 26.4 ab 2.9 efg 18.6 ab 17.4 d 11.0 e
R1 CK 23.0 b 26.9 a 2.6 fg 16.4 c 25.7 b 13.3 cd
N1 22.4 c 26.1 abc 3.3 cd 16.4 c 28.5 ab 17.9 a
N2 21.1 e 24.8 bc 3.1 cde 17.4 abc 29.5 a 14.4 bc
N3 20.9 ef 24.7 c 2.9 def 16.3 c 30.7 a 16.4 ab
N4 23.1 ab 27.2 a 2.5 g 17.3 bc 30.3 a 12.0 de
方差分析 ANOVA
年份 Year (Y) ** ** ** ns ns **
秸秆管理Straw management (R) ** ** ** * ** **
氮肥运筹Nitrogen management (N) ** ns ** ns ** ns
R×N ** ns ** * ** **
R×Y ** ** ** ** ** *
N×Y ** ** ** * ** ns
R×N×Y ** ns ** ns ** **

Fig. 6

Effects of rice straw management and nitrogen management on stem silicon content of rapeseed at maturity Abbreviations and treatments are the same as those given in Fig. 2. Different lowercase letters indicate significant differences among treatments within the same year (P < 0.05). ** indicates significant differences at the 0.01 probability level, respectively, while ns indicates no significant difference."

Fig. 7

Effects of rice straw management and nitrogen management on stem calcium content of rapeseed at maturity Abbreviations and treatments are the same as those given in Fig. 2. Different lowercase letters indicate significant differences among treatments within the same year (P < 0.05). * and ** indicate significant differences at the 0.05 and 0.01 probability levels, respectively, while ns indicates no significant difference."

Table 5

Effects of rice straw management and nitrogen management on stem microstructure of rapeseed at flowering stage"

秸秆管理
Straw
management
氮肥运筹
Nitrogen
management
表皮厚度
Epidermal
thickness (μm)
皮层厚度
Cortical thickness
(μm)
维管束长
Vascular length
(μm)
维管束周长
Vascular
circumference
(mm)
横截面积
Cross-sectional area
(mm2)
维管束数目
Number of vascular
bundles
维管束面积
Vascular
bundle area (mm2)
R0 CK 20.3 abc 255.5 e 659.4 e 35.9 a 98.3 bcd 78.0 c 13.4 abc
N1 17.2 e 328.9 bc 857.5 cd 25.9 c 52.8 h 65.0 e 8.2 d
N2 20.3 abc 337.7 b 983.7 a 34.6 ab 92.7 de 80.0 bc 12.4 c
N3 19.4 bcd 296.4 d 807.6 d 35.7 a 95.2 cd 86.0 a 13.2 bc
N4 17.0 e 322.2 bcd 939.9 ab 30.9 b 85.3 f 82.0 abc 12.8 bc
R1 CK 20.1 abc 323.0 bcd 843.2 cd 35.8 a 103.9 ab 86.0 a 14.5 a
N1 18.3 cde 348.7 b 706.3 e 31.1 b 77.1 g 72.0 d 8.6 d
N2 21.4 ab 321.8 bcd 903.3 bc 35.8 a 106.9 a 84.0 ab 14.0 ab
N3 22.2 a 397.3 a 996.5 a 36.4 a 101.7 abc 86.0 a 13.8 ab
N4 17.7 de 306.3 cd 817.8 d 31.6 b 88.0 ef 78.0 c 12.5 c
方差分析ANOVA
秸秆管理
Straw management (R)
*
**
ns
ns ** * *
氮肥运筹
Nitrogen management (N)
**
**
** ** ** ** **
R×N ns ** ** ns ** ** ns

Fig. 8

Effects of straw management and nitrogen management on calcium content of stems at maturity stage of field rapeseed A-E: microstructure of stems managements with N1 (A), N2 (B), N3 (C), N4 (D) and CK (E) under full straw incorporation (R1). F-J: microstructure of stems managements with N1 (F), N2 (G), N3 (H), N4 (I) and CK (J) under no straw incorporation (R0). CO: cortex; SVB: small vascular bundle; LVB: great vascular bundle; PI: medulla. Abbreviations and treatments are the same as those given in Fig. 2. Scale bar = 500 μm."

Table 6

Correlation between stem microstructure and lodging-related traits"

倒伏相关性状
Lodging-related traits
表皮厚度
Epidermal thickness
(μm)
皮层厚度
Cortical thickness
(μm)
维管束长
Vascular length
(μm)
维管束周长
Vascular circumference (mm)
地上部鲜重Shoot fresh weight (g plant-1) 0.510** 0.301 0.346 0.435*
倒伏角度Lodging angle (°) -0.066 -0.111 0.164 0.019
茎秆抗折力Stem breaking strength (N) 0.538** 0.349 0.376* 0.538**
倒伏指数Lodging index -0.087 0.096 0.146 0.303
倒伏相关性状
Lodging-related traits
横截面积
Cross-sectional area (mm2)
维管束数目
Number of vascular bundles
维管束面积
Vascular bundle area (mm2)
地上部鲜重Shoot fresh weight (g plant-1) 0.458* 0.382* 0.533**
倒伏角度Lodging angle (°) 0.281 0.334 0.415*
茎秆抗折力Stem breaking strength (N) 0.544** 0.387* 0.561**
倒伏指数Lodging index 0.372* 0.251 0.365*

Table 7

Correlation between stem composition and lodging-related traits"

倒伏相关性状
Lodging-related traits
酸不溶木质素
Acid-insoluble lignin
总木质素
Total lignin
可溶性糖
Soluble sugars
半纤维素
Hemicellulose
地上部鲜重Shoot fresh weight (g plant-1) -0.458** -0.465** -0.575** -0.695**
倒伏角度Lodging angle (°) -0.630** -0.627** -0.731** -0.661**
茎秆抗折力Stem breaking strength (N) 0.639** 0.638** -0.009 0.177
倒伏指数Lodging index -0.782** -0.789** -0.508** -0.703**
倒伏相关性状
Lodging-related traits
纤维素
Cellulose
果胶
Pectin

Si

Ca
地上部鲜重Shoot fresh weight (g plant-1) 0.095 0.456** -0.394* 0.058
倒伏角度Lodging angle (°) -0.093 0.545** -0.390* -0.160
茎秆抗折力Stem breaking strength (N) 0.442* -0.553** 0.127 0.557**
倒伏指数Lodging index -0.279 0.618** -0.299 -0.256
[1] 王先领, 姜岳, 雷贻忠, 等. 外源物质浸种对迟播油菜越冬期抗寒性及产量的影响. 作物学报, 2024, 50: 1271-1286.
doi: 10.3724/SP.J.1006.2024.34134
Wang X L, Jiang Y, Lei Y Z, et al. Effects of seed soaking with exogenous substances on late-seeded rapeseed cold resistance of during overwintering period and yield. Acta Agron Sin, 2024, 50: 1271-1286 (in Chinese with English abstract).
[2] Li Z, Gao G D, Xu L S, et al. Reducing nitrogen application at high planting density enhances secondary cell wall formation and decreases stem lodging in rapeseed. Eur J Agron, 2024, 156: 127162.
doi: 10.1016/j.eja.2024.127162
[3] Li X Y, Zuo Q S, Chang H B, et al. Higher density planting benefits mechanical harvesting of rapeseed in the Yangtze River Basin of China. Field Crops Res, 2018, 218: 97-105.
doi: 10.1016/j.fcr.2018.01.013
[4] 黄肖玉, 娄洪祥, 邵东李, 等. 高密度直播油菜不同类型叶片功能探究. 作物学报, 2024, 50: 2550-2561.
doi: 10.3724/SP.J.1006.2024.44032
Huang X Y, Lou H X, Shao D L, et al. Exploring the functions of different leaf types of directly-sown rapeseed under high density. Acta Agron Sin, 2024, 50: 2550-2561 (in Chinese with English abstract).
[5] 蒯婕, 左青松, 陈爱武, 等. 不同栽培模式对油菜产量和倒伏相关性状的影响. 作物学报, 2017, 43: 875-884.
doi: 10.3724/SP.J.1006.2017.00875
Kuai J, Zuo Q S, Chen A W, et al. Effects of different cultivation modes on canola yield and lodging related indices. Acta Agron Sin, 2017, 43: 875-884 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2017.00875
[6] 丛日环, 张智, 鲁剑巍. 长江流域不同种植区气候因子对冬油菜产量的影响. 中国油料作物学报, 2019, 41: 894-903.
doi: 10.19802/j.issn.1007-9084.2019046
Cong R H, Zhang Z, Lu J W. Climate impacts on yield of winter oilseed rape in different growth regions of the Yangtze River Basin. Chin J Oil Crop Sci, 2019, 41: 894-903 (in Chinese with English abstract).
doi: 10.19802/j.issn.1007-9084.2019046
[7] Hu Q, Hua W, Yin Y, et al. Rapeseed research and production in China. Crop J, 2017, 5: 127-135.
doi: 10.1016/j.cj.2016.06.005
[8] 张青松, 齐涛, 燕桓, 等. 稻茬田油菜直播秸秆覆盖还田装置设计与试验. 农业机械学报, 2025, 56(1): 186-196.
Zhang Q S, Qi T, Yan H, et al. Design and experiment of rape direct seeding straw mulching returning device in rice stubble field. Trans CSAM, 2025, 56(1): 186-196 (in Chinese with English abstract).
[9] 樊友众, 王先领, 王宗铠, 等. 秸秆还田耦合氮肥运筹对稻茬油菜光合性能及产量的影响. 作物学报, 2025, 51: 2139-2151.
doi: 10.3724/SP.J.1006.2025.55015
Fan Y Z, Wang X L, Wang Z K, et al. Effects of straw incorporation combined with nitrogen management on photosynthetic effciency and yield of rapeseed following rice. Acta Agron Sin, 2025, 51: 2139-2151 (in Chinese with English abstract).
[10] 戴志刚, 鲁剑巍, 李小坤, 等. 不同作物还田秸秆的养分释放特征试验. 农业工程学报, 2010, 26(6): 272-276.
Dai Z G, Lu J W, Li X K, et al. Nutrient release characteristic of different crop straws manure. Trans CSAE, 2010, 26(6): 272-276 (in Chinese with English abstract).
[11] Zhang S T, Ren T, Fang Y T, et al. Enhancing soil labile organic matter through oilseed rape-rice rotation and straw returning in paddy-upland systems. Plant Soil, 2025: 1-18.
[12] 王宣茗, 官玉, 姜雪, 等. 超细水稻秸秆还田对干湿交替稻田水分生产率、水稻产量及品质的影响. 农业工程学报, 2025, 41(8): 97-108.
Wang X M, Guan Y, Jiang X, et al. Effects of ultra-fine rice straw return to the field on water productivity, rice yield and quality in paddy fields on alternating dry and wet conditions. Trans CSAE, 2025, 41(8): 97-108 (in Chinese with English abstract).
[13] 王晓华. 水稻秸秆全量还田对直播油菜出苗和产量的影响. 园艺与种苗, 2023, 43(3): 86-87.
Wang X H. Effects of total rice straw returning on seedling emergence and yield of direct-seeded rapeseed. Hort Seed, 2023, 43(3): 86-87 (in Chinese with English abstract).
[14] 刘慧屿, 刘慧颖, 娄春荣, 等. 不同秸秆还田模式对风沙土玉米生育特性及土壤活性碳、氮的影响. 土壤通报, 2018, 49: 133-139.
Liu H Y, Liu H Y, Lou C R, et al. Effects of straw incorporation modes on characteristics of maize growth and labile organic carbon and nitrogen in sandy soil. Chin J Soil Sci, 2018, 49: 133-139 (in Chinese with English abstract).
doi: 10.1046/j.1365-2389.1998.00139.x
[15] 孙加威, 李娜, 王春雨, 等. 栽插方式和施钾量对杂交籼稻抗倒伏能力的影响. 核农学报, 2017, 31: 2408-2417.
doi: 10.11869/j.issn.100-8551.2017.12.2408
Sun J W, Li N, Wang C Y, et al. Effects of transplanting methods and potassium rates on lodging resistance of hybrid rice. J Nucl Agric Sci, 2017, 31: 2408-2417 (in Chinese with English abstract).
doi: 10.11869/j.issn.100-8551.2017.12.2408
[16] Wu W, Ma B L, Fan J J, et al. Management of nitrogen fertilization to balance reducing lodging risk and increasing yield and protein content in spring wheat. Field Crops Res, 2019, 241: 107584.
doi: 10.1016/j.fcr.2019.107584
[17] 袁圆, 汪波, 周广生, 等. 播期和种植密度对油菜产量和茎秆抗倒性的影响. 中国农业科学, 2021, 54: 1613-1626.
doi: 10.3864/j.issn.0578-1752.2021.08.004
Yuan Y, Wang B, Zhou G S, et al. Effects of different sowing dates and planting densities on the yield and stem lodging resistance of rapeseed. Sci Agric Sin, 2021, 54: 1613-1626 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2021.08.004
[18] Wu W, Shah F, Duncan R W, et al. Grain yield, root growth habit and lodging of eight oilseed rape genotypes in response to a short period of heat stress during flowering. Agric For Meteor, 2020, 287: 107954.
doi: 10.1016/j.agrformet.2020.107954
[19] 陈慧, 高丽萍, 陈勇, 等. 机械直播同步深施肥对冬油菜茎秆抗倒性和产量的影响. 农业工程学报, 2022, 38(5): 20-27.
Chen H, Gao L P, Chen Y, et al. Effects of mechanical direct seeding synchronous deep fertilization on winter rapeseed stem lodging resistance and yield. Trans CSAE, 2022, 38(5): 20-27 (in Chinese with English abstract).
[20] 李方一, 黄璜, 官梅, 等. 油菜理想株型研究进展. 中国油料作物学报, 2023, 45: 4-16.
doi: 10.19802/j.issn.1007-9084.2022210
Li F Y, Huang H, Guan M, et al. Research progress toward the ideal type of rapeseed plant. Chin J Oil Crop Sci, 2023, 45: 4-16 (in Chinese with English abstract).
[21] Lou H X, Peng Y, Wang C Y, et al. Utilizing auxin dwarf genes to optimize seed yield and lodging resistance in rapeseed. Crop J, 2024, 12: 1208-1221.
doi: 10.1016/j.cj.2024.07.008
[22] 孙盈盈. 不同栽培措施对油菜产量及抗倒性的影响. 华中农业大学硕士学位论文, 湖北武汉, 2016.
Sun Y Y. Effects of Different Cultivation Measures on Rape Yield and Lodging Resistance. MS Thesis of Huazhong Agricultural University, Wuhan, Hubei, China, 2016 (in Chinese with English abstract).
[23] 李小勇, 周敏, 王涛, 等. 种植密度对油菜机械收获关键性状的影响. 作物学报, 2018, 44: 278-287.
doi: 10.3724/SP.J.1006.2018.00278
Li X Y, Zhou M, Wang T, et al. Effects of planting density on the mechanical harvesting characteristics of semi-winter rapeseed. Acta Agron Sin, 2018, 44: 278-287 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2018.00278
[24] Shi Z L, Mao T Y, Ma L, et al. Effects of delayed application of nitrogen fertilizer on yield, canopy structure, and microenvironment of winter wheat with different planting densities. Agronomy, 2025, 15: 502.
doi: 10.3390/agronomy15020502
[25] 胡雅杰, 朱大伟, 邢志鹏, 等. 改进施氮运筹对水稻产量和氮素吸收利用的影响. 植物营养与肥料学报, 2015, 21: 12-22.
Hu Y J, Zhu D W, Xing Z P, et al. Modifying nitrogen fertilization ratio to increase the yield and nitrogen uptake of super Japonica rice. J Plant Nutr Fert, 2015, 21: 12-22 (in Chinese with English abstract).
[26] 周洁, 王旭, 朱玉磊, 等. 氮肥运筹模式对小麦茎秆抗倒性能与产量的影响. 麦类作物学报, 2019, 39: 979-987.
Zhou J, Wang X, Zhu Y L, et al. The effect of nitrogen fertilizer operation and research mode on the lodging resistance and yield of wheat stalk. J Triticeae Crops, 2019, 39: 979-987 (in Chinese with English abstract).
[27] Tan X Q, Bai M Q, Wang Z K, et al. Simple-efficient cultivation for rapeseed under UAV-sowing: developing a high-density and high-light-efficiency population via tillage methods and seeding rates. Field Crops Res, 2025, 327: 109887.
doi: 10.1016/j.fcr.2025.109887
[28] McKenzie R R, Deyholos M K. Effects of plant growth regulator treatments on stem vascular tissue development in linseed (Linum usitatissimum L.). Ind Crops Prod, 2011, 34: 1119-1127.
doi: 10.1016/j.indcrop.2011.03.028
[29] Tan X Q, Wang Z K, Zhang Y J, et al. Biochar-based pelletized seed enhances the yield of late-sown rapeseed by improving the relative growth rate and cold resistance of seedlings. Ind Crops Prod, 2025, 223: 119993.
doi: 10.1016/j.indcrop.2024.119993
[30] Eticha D, Stass A, Horst W J. Cell-wall pectin and its degree of methylation in the maize root-apex: significance for genotypic differences in aluminium resistance. Plant Cell Environ, 2005, 28: 1410-1420.
doi: 10.1111/pce.2005.28.issue-11
[31] Taylor K A, Buchanan-Smith J G. A colorimetric method for the quantitation of uronic acids and a specific assay for galacturonic acid. Anal Biochem, 1992, 201: 190-196.
pmid: 1621959
[32] 贾雨薇, 杨瑞林, 张洋, 等. 一种优化的测定水稻硅含量的方法. 植物学报, 2016, 51: 679-683.
doi: 10.11983/CBB15181
Jia Y W, Yang R L, Zhang Y, et al. An optimized method to determine silicon content in rice. Chin Bull Bot, 2016, 51: 679-683 (in Chinese with English abstract).
[33] 汤秀梅, 李崇宗, 尹家元, 等. 蔬菜中钙铝元素存在形态分析. 微量元素与健康研究, 2001, 18(4): 49-50.
Tang X M, Li C Z, Yin J Y, et al. Speciation analysis of calcium and aluminum in vegetables. Stud Trace Elem Health, 2001, 18(4): 49-50 (in Chinese with English abstract).
[34] Liu C H, Yan H H, Wang W Y, et al. Layered application of phosphate fertilizer increased winter wheat yield by promoting root proliferation and phosphorus accumulation. Soil Tillage Res, 2023, 225: 105546.
doi: 10.1016/j.still.2022.105546
[35] 张万锋, 杨树青, 娄帅, 等. 耕作方式与秸秆覆盖对夏玉米根系分布及产量的影响. 农业工程学报, 2020, 36(7): 117-124.
Zhang W F, Yang S Q, Lou S, et al. Effects of tillage methods and straw mulching on the root distribution and yield of summer maize. Trans CSAE, 2020, 36(7): 117-124 (in Chinese with English abstract).
[36] 李喆豪, 姬米源, 吕梦, 等. 长期定位条件下不同氮肥运筹对春玉米根冠发育的影响. 作物杂志, 2025(4): 135-141.
Li Z H, Ji M Y, Lyu M, et al. Analysis of the effects of different nitrogen fertilizer management strategies on the root and shoot development of spring Maize under long-term positioning conditions. Crops, 2025(4): 135-141 (in Chinese with English abstract).
[37] 郑杰, 于颖, 贺卓熙, 等. 白桦木质部原生质体初生细胞壁再生过程转录组分析. 北京林业大学学报, 2022, 44(8): 12-22.
Zheng J, Yu Y, He Z X, et al. Transcriptome analysis of regeneration process of primary cell wall in xylem protoplast of Betula platyphylla. J Beijing For Univ, 2022, 44(8): 12-22 (in Chinese with English abstract).
[38] Robertson D J, Brenton Z W, Kresovich S, et al. Maize lodging resistance: stalk architecture is a stronger predictor of stalk bending strength than chemical composition. Biosyst Eng, 2022, 219: 124-134.
doi: 10.1016/j.biosystemseng.2022.04.010
[39] 徐红敏. Sporosarcina sp. N2的筛选及木质素降解功能基因的转录组学研究. 黑龙江八一农垦大学硕士学位论文, 黑龙江大庆, 2023.
Xu H M. Screening and the Transcriptomic Studies of Lignin Degrading Functional Genes of Sporosarcina sp. N2. MS Thesis of Heilongjiang August First Agricultural University, Daqing, Heilongjiang, China, 2023 (in Chinese with English abstract).
[40] 刘红芳, 宋阿琳, 范分良, 等. 高供氮水平下不同硅肥对水稻茎秆特征的影响. 植物营养与肥料学报, 2018, 24: 758-768.
Liu H F, Song A L, Fan F L, et al. Characteristics of rice stem in response to different silicon fertilizers under high nitrogen supply level. J Plant Nutr Fert, 2018, 24: 758-768 (in Chinese with English abstract).
[41] 温银元, 郭之瑶, 郑志强, 等. 不同施氮水平下硅肥对谷子抗倒伏能力、产量和品质的影响. 植物营养与肥料学报, 2024, 30: 641-654.
Wen Y Y, Guo Z Y, Zheng Z Q, et al. Effects of silicon fertilizers on lodging resistance, yield and quality of foxtail millet under different nitrogen application levels. J Plant Nutr Fert, 2024, 30: 641-654 (in Chinese with English abstract).
[42] 高钰, 闫耀廷, 赵刚, 等. 氮肥运筹对黄土高原春玉米产量形成和氮代谢的调控效应. 中国土壤与肥料, 2023(6): 186-195.
Gao Y, Yan Y T, Zhao G, et al. Regulation effects of nitrogen fertilizer management on grain yield formation and nitrogen transportation of spring maize in the Loess Plateau China. Soil Fert Sci China, 2023(6): 186-195 (in Chinese with English abstract).
[43] 张刚, 王德建, 俞元春, 等. 秸秆全量还田与氮肥用量对水稻产量、氮肥利用率及氮素损失的影响. 植物营养与肥料学报, 2016, 22: 877-885.
Zhang G, Wang D J, Yu Y C, et al. Effects of straw incorporation plus nitrogen fertilizer on rice yield, nitrogen use efficiency and nitrogen loss. J Plant Nutr Fert, 2016, 22: 877-885 (in Chinese with English abstract).
[44] Kong E Y, Liu D C, Guo X L, et al. Anatomical and chemical characteristics associated with lodging resistance in wheat. Crop J, 2013, 1: 43-49.
doi: 10.1016/j.cj.2013.07.012
[45] Dai J, Wiersma J J. Agronomic responses and lodging of three spring wheat cultivars to trinexapac-ethyl. Crop Manag, 2012, 11: 1-9.
[1] Yang Rui, Chen Jing-Dong, Huang Ying, Zhang Xue-Kun, Zhou Deng-Wen, Liu Qing-Yun, Xu Jing-Song, Xie Ling-Li, Xu Ben-Bo. Region-specific yield optimization strategies for rapeseed (Brassica napus L.) in the middle Yangtze Basin across the 30°N latitude [J]. Acta Agronomica Sinica, 2026, 52(1): 99-117.
[2] FAN You-Zhong, WANG Xian-Ling, WANG Zong-Kai, WANG Chun-Yun, WANG Tian-Yao, XIE Jie, KUAI Jie, WANG Bo, WANG Jing, XU Zheng-Hua, ZHAO Jie, ZHOU Guang-Sheng. Effects of straw incorporation combined with nitrogen management on photosynthetic efficiency and yield of rapeseed following rice [J]. Acta Agronomica Sinica, 2025, 51(8): 2139-2151.
[3] LI Shi-Peng, CHEN Cai-Wu, ZHANG Jing, LYU Tian, FU Ting-Dong, YI Bin. Identification of fertility levels and quantification of the temperature-fertility relationship in rapeseed pol TCMS lines using an improved U-Net++ model [J]. Acta Agronomica Sinica, 2025, 51(6): 1423-1434.
[4] CUI Xin, GU He-He, SONG Yi, ZHANG Zhe, LIU Shi-Shi, LU Zhi-Feng, REN Tao, LU Jian-Wei. Effects of potassium fertilizer application rates on rapeseed yield and potassium absorption and yield reduction caused by frost damage [J]. Acta Agronomica Sinica, 2025, 51(6): 1629-1642.
[5] WANG Jia-Jie, WANG Zheng-Nan, BATOOL Maria, WANG Wang-Nian, WEN Jing, REN Chang-Zhong, HE Feng, WU You-You, XU Zheng-Hua, WANG Jing, KUAI Jie, WANG Bo, ZHOU Guang-Sheng, FU Ting-Dong. Comparison of physiological characteristics of salt and alkali tolerance between rapeseed and wheat [J]. Acta Agronomica Sinica, 2025, 51(5): 1215-1229.
[6] SHE Hui-Jie, SUN Ming-Zhu, LI Shi-Gang, WANG Dong-Xian, CHENG Tai, JIANG Bo, CHEN Ai-Wu, WANG Jing, ZHAO Jie, WANG Bo, KUAI Jie, XU Zheng-Hua, ZHOU Guang-Sheng. Effect of coating with fulvic acid and alginate oligosaccharide on emergence and yield of late-sown rapeseed [J]. Acta Agronomica Sinica, 2025, 51(4): 1022-1036.
[7] SU Qing-Fang, SUN Xiao-Zhao, LIN Yang, FU Yan-Ping, CHENG Jia-Sen, XIE Jia-Tao, JIANG Dao-Hong, CHEN Tao. Serratia nematodiphila TG10 enhanced salt-alkali tolerance in rapeseed [J]. Acta Agronomica Sinica, 2025, 51(2): 358-369.
[8] QIN Meng-Qian, HUANG Wei, CHEN Min, NING Ning, HE De-Zhi, HU Bing, XIA Qi-Xin, JIANG Bo, CHENG Tai, CHANG Hai-Bin, WANG Jing, ZHAO Jie, WANG Bo, KUAI Jie, XU Zheng-Hua, ZHOU Guang-Sheng. Effect of nitrogen fertilizer management on yield and resistance of late-seeded rapeseed [J]. Acta Agronomica Sinica, 2025, 51(2): 432-446.
[9] WANG Chong-Ming, LU Zhi-Feng, YAN Jin-Yao, SONG Yi, WANG Kun-Kun, FANG Ya-Ting, LI Xiao-Kun, REN Tao, CONG Ri-Huan, LU Jian-Wei. Effect of phosphorus fertilizer rates on crop yield, phosphorus uptake and its stability in rapeseed-rice rotation system [J]. Acta Agronomica Sinica, 2025, 51(2): 447-458.
[10] CHEN Yu-Ting, DING Xiao-Yu, XU Ben-Bo, ZHANG Xue-Kun, XU Jin-Song, YIN Yan. Effects of climate warming on yield, quality-related and agronomic traits of winter rapeseed (Brassica napus L.) [J]. Acta Agronomica Sinica, 2025, 51(2): 516-525.
[11] ZHUANG Yue-Ming, SONG Yi, CHEN Hang-Hang, LU Zhi-Feng, LIAO Shi-Peng, LI Xiao-Kun, CONG Ri-Huan, REN Tao, LU Jian-Wei. Effects of application of nitrogen on endophytic microbiota and seed quality in rapeseed (Brassica napus L.) seeds [J]. Acta Agronomica Sinica, 2025, 51(12): 3357-3368.
[12] QIN Meng-Qian, NING Ning, CHENG Tai, LI Kang-Li, ZHANG Xin-Bei, ZHAO Xin-Yue, ZHANG Zhe, ZHAO Jie, KUAI Jie, WANG Jing, WANG Bo, XU Zheng-Hua, ZHOU Guang-Sheng. Effects of phosphorus application on yield formation and phosphorus use efficiency in late-sown rapeseed [J]. Acta Agronomica Sinica, 2025, 51(12): 3304-3316.
[13] YANG Shu-Ting, HE Sheng-Hao, ZHAO Bi-Yun, HE Jia, LIU Jing, YANG Meng-Yao, CHEN Ai-Wu, WANG Jing, ZHAO Jie, KUAI Jie, WANG Bo, XU Zheng-Hua, ZHOU Guang-Sheng. Effects of spraying exogenous substances at seedling stage on cold resistance and yield of late-seeded rapeseed during overwintering [J]. Acta Agronomica Sinica, 2025, 51(10): 2788-2804.
[14] HU Zhi-Kang, SHU Yu, WANG Hui, YANG Ying-Ying, LIAO Jun-Yu, LIU Jia, CHENG Hong-Tao, GUO Chen, ZHANG Yuan-Yuan, LIU Sheng-Yi, HU Qiong, MEI De-Sheng, LI Chao. Comprehensive evaluation of alkaline tolerance in Brassica napus at the seedling stage [J]. Acta Agronomica Sinica, 2025, 51(10): 2681-2692.
[15] ZHANG Qi-Qi, CHEN Jie-Chang, KUAI Jie, WANG Bo, WANG Jing, XU Zheng-Hua, ZHAO Jie, ZHAO Si-Ming, JIA Cai-Hua, ZHOU Guang-Sheng. Effect of high density planting on the quality of cold pressed rapeseed oil [J]. Acta Agronomica Sinica, 2024, 50(9): 2358-2370.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!