Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2024, Vol. 50 ›› Issue (6): 1616-1627.doi: 10.3724/SP.J.1006.2024.33054

• RESEARCH NOTES • Previous Articles     Next Articles

Compensation mechanism of increased maize density on yield with water and nitrogen reduction supply in oasis irrigation areas

WANG Fei-Er1(), GUO Yao2, LI Pan1, WEI Jin-Gui1, FAN Zhi-Long1, HU Fa-Long1, FAN Hong1, HE Wei1, YIN Wen1,*(), CHEN Gui-Ping1,*()   

  1. 1State Key Laboratory of Arid Land Crop Science / College of Agronomy, Gansu Agricultural University, Lanzhou 730070, Gansu, China
    2College of Life Sciences, Northwest Normal University, Lanzhou 730070, Gansu, China
  • Received:2023-09-28 Accepted:2024-01-30 Online:2024-06-12 Published:2024-02-20
  • Contact: * E-mail: yinwen@gsau.edu.cn;E-mail: chengp@gsau.edu.cn
  • Supported by:
    National Key Research and Development Program of China(2023YED1900405);National Natural Science Foundation of China(32101857);National Natural Science Foundation of China(U21A20218);National Natural Science Foundation of China(32372238);Science and Technology Program of Gansu Province(23JRRA704);Science and Technology Program of Gansu Province(23JRRA1407);Fuxi Young Talents Fund of Gansu Agricultural University(Gaufx-03Y10)

Abstract:

Aiming at the production and ecological problems of the lack of water resources and excessive chemical nitrogen fertilizer input in arid oasis irrigation areas, the effect of increased planting density to compensate for the loss of maize yield caused by reducing water and nitrogen inputs was analyzed under reduced water and nitrogen inputs, which could provide theoretical and technical support for the efficient production of maize with water and nitrogen reduction. Based on a split-plot field experiment conducted in 2016, the main plot was divided into two irrigation quotas: reduced irrigation by 20% (W1, 3240 m3 hm-2) and traditional irrigation (W2, 4050 m3 hm-2), and the split-plot was divided into two nitrogen application rates: reduced nitrogen (N1, 270 kg hm-2) by 25% and traditional nitrogen (N2, 360 kg hm-2) were applied, and the sub-split plot was divided into three maize densities: traditional planting density (D1, 75,000 hm-2 plants), increased density by 30% (D2, 97, 500 hm-2 plants) and increased density by 60% (D3, 120,000 hm-2 plants). We measured grain yield and biological yield of maize in 2020 and 2021, analyzed the characteristics of dry matter accumulation, distribution, and transport characteristics, quantified the yield composition factors, and clarified the compensation effect and mechanism of densification on maize yield with water and nitrogen reduction. The study showed that water and nitrogen reduction inputs decreased the grain yield and biological yield in maize, but the increased density by 30% can compensate for the loss of yield due to reducing water and nitrogen inputs and improve maize yield under reduced water while maintaining traditional nitrogen. The grain yield and biological yield of W1N1D1 (reduced water and nitrogen and traditional density) was 9.1%-15.0% and 10.0%-11.0% lower than W2N2D1 (comparison: traditional irrigation, traditional nitrogen application, and traditional density), but there was no significant difference in W1N1D2 (reduced irrigation, reduced nitrogen, and increased density by 30%) compared with W2N2D1. Compared with W2N2D1, W1N2D2 (reduced irrigation, traditional nitrogen, and increased density by 30%) increased grain yield and biological yield by 12.9%-15.4% and 6.4%-12.0%, respectively. Increased density by 30% compensated for the negative effect of water and nitrogen reduction mainly attributed to improving spike number of W1N1D2, which further increased dry matter accumulation from the early-filling stage to the maturity stage in maize, population growth rate and dry matter remobilization at pre-anthesis from seeding stage to the flare opening stage. Increasing spike number of W1N2D2 improved dry matter accumulation and population growth rate, promoted dry matter distribution in the ear, and increased dry matter remobilization. In addition, the dry matter remobilization efficiency and contribution of dry matter remobilization to grain at pre-anthesis were the main reasons for increasing maize yield with the increased density by 30% under water and nitrogen reduction inputs. Therefore, increasing density by 30% was a feasible measure for simultaneous reduction of water and nitrogen in oasis irrigation area to stabilize and increase maize yield.

Key words: water-nitrogen reduction, dense planting, maize, yield components, dry matter accumulation, dry matter distribution and transportation

Fig. 1

Temperature and precipitation during maize growing period at the experiment station in 2020 and 2021"

Fig. 2

Effect of increased density on grain yield of maize under reduced water and nitrogen inputs W1: traditional irrigation reduced by 20% of 3240 m3 hm-2; W2: traditional irrigation of 4050 m3 hm-2; N1: traditional nitrogen reduced by 25% of 270 kg hm-2; N2: traditional nitrogen of 360 kg hm-2; D1: traditional planting density of 75,000 plants hm-2; D2: traditional planting density increased by 30% of 97,500 plants hm-2; D3: traditional planting density increased by 60% of 120,000 plants hm-2. Different lowercase letters above the bars mean significant differences between treatments at P < 0.05. **: P < 0.01; *: P < 0.05; NS: no significant difference."

Fig. 3

Effect of increased density on biological yield of maize under reduced water and nitrogen inputs Different lowercase letters above the bars mean significant differences between treatments at P < 0.05. **: P < 0.01; *: P < 0.05; NS: no significant difference. Treatment abbreviations are the same as those given in Fig. 2."

Table 1

Dry matter accumulation and population growth rate of maize under different treatments"

年份
Year
灌水Irrigation 施氮Nitrogen 密度
Density
干物质积累量
Dry matter accumulation (kg hm-2)
群体生长速率
Population growth rate (kg hm-2 d-1)
P1-P2 P2-P3 P3-P4 P1-P2 P2-P3 P3-P4
2020 W1 N1 D1 2647 e 17,302 g 10,924 cd 62 f 303 f 102 g
D2 3605 d 20,008 ef 10,322 d 72 cd 333 de 127 e
D3 4768 c 22,641 bc 13,413 b 85 b 370 cd 201 a
N2 D1 5520 b 16,386 h 10,012 d 66 e 326 ef 142 d
D2 4553 c 20,671 de 11,783 c 76 c 377 c 157 c
D3 5367 b 24,747 a 14,332 ab 97 a 460 a 176 b
W2 N1 D1 6699 a 18,587 f 11,247 cd 63 ef 371 c 114 f
D2 3404 d 18,926 f 14,483 ab 68 e 354 d 154 c
D3 5714 b 22,938 b 15,183 a 102 a 427 b 199 a
N2 D1 2339 ef 20,359 ef 9969 d 68 de 347 d 121 ef
D2 2131 f 21,402 cd 13,635 b 71 cd 359 cd 204 a
D3 3371 d 26,095 a 13,845 ab 100 a 454 a 171 b
2021 W1 N1 D1 4323 bc 15,248 g 10,076 e 72 e 346 g 93 f
D2 3472 de 18,113 ef 12,352 cd 84 cd 382 f 104 d
D3 4778 a 21,247 bc 14,305 b 115 a 406 de 97 ef
N2 D1 3247 e 18,654 ef 12,155 d 78 de 378 f 109 cd
D2 2841 f 20,394 cd 13,166 c 85 cd 427 bc 112 c
D3 4238 bc 22,059 ab 15,638 a 102 b 442 b 114 c
W2 N1 D1 1841 g 17,687 f 12,262 cd 61 f 359 g 102 de
D2 3556 d 19,351 de 14,350 b 86 c 417 cd 84 g
D3 4393 b 21,706 abc 14,502 b 108 b 424 c 152 a
N2 D1 4071 c 19,002 ef 11,932 d 75 de 400 e 103 de
D2 3244 e 21,050 bc 13,177 c 78 e 429 bc 122 b
D3 4990 a 22,983 a 14,086 b 121 a 471 a 123 b
方差分析ANOVA
灌水W NS ** ** NS ** *
施氮N NS ** NS * ** **
密度D ** ** ** ** ** **
W×N * ** ** NS * **
W×D NS NS * ** NS NS
N×D * NS ** NS * **
W×N×D ** ** * NS * **

Fig. 4

Dry matter distribution of maize in the mature stage under different irrigation, nitrogen application, and densities Different lowercase letters above bars mean significant differences between treatments at P < 0.05. **: P < 0.01; *: P < 0.05; NS: no significant difference. Treatment abbreviations are the same as those given in Fig. 2."

Table 2

Dry matter transportation of maize under different water and nitrogen treatments"

年份
Year
灌水Irrigation 施氮Nitrogen 密度Density 花前转运量
Dry matter remobilization at pre-anthesis
(kg hm-2)
花前转运率
Dry matter
remobilization
efficiency at pre-anthesis (%)
花前转运贡献率
Contribution of dry matter remobilization to grain at pre-anthesis
(%)
花后积累量
Dry matter accumulation at post anthesis
(kg hm-2)
花后积累贡献率
Contribution of dry matter accumulation to grain at post anthesis
(%)
2020 W1 N1 D1 1419 ef 11.29 d 6.72 e 11,160 g 93.28 c
D2 1527 de 10.68 e 7.44 de 12,773 ef 92.56 cd
D3 1377 fg 9.84 fg 5.20 fg 12,428 f 94.80 ab
N2 D1 1793 c 11.73 cd 9.11 b 13,145 ef 90.89 f
D2 1834 c 10.29 f 8.21 cd 15,981 a 91.79 de
D3 2321 b 14.15 ab 8.14 cd 14,004 cd 91.86 de
W2 N1 D1 1608 d 12.26 c 5.85 f 11,444 g 94.15 b
D2 1277 g 9.19 g 5.75 f 12,535 f 94.25 b
D3 1448 ef 9.56 fg 4.66 g 13,400 de 95.34 a
N2 D1 1599 d 10.12 f 7.99 d 14,173 cd 92.01 d
D2 2619 a 14.75 a 13.37 a 15,289 ab 86.63 g
D3 2309 b 13.55 b 8.87 bc 14,735 bc 91.13 ef
2021 W1 N1 D1 1271 gh 8.87 f 6.85 d 12,409 de 93.15 d
D2 1601 de 10.99 d 7.43 c 12,985 cd 92.57 e
D3 1284 gh 8.98 ef 4.95 fg 12,971 cd 95.05 ab
N2 D1 1737 cd 12.71 c 7.90 bc 11,939 e 92.10 ef
D2 1926 c 11.82 cd 8.38 b 14,368 a 91.62 f
D3 1545 e 9.81 e 5.88 ef 13,775 b 94.12 bc
W2 N1 D1 1351 fg 9.83 e 6.93 d 12,262 de 93.07 d
D2 1751 cd 11.77 cd 7.64 bc 13,116 cd 92.36 ef
D3 1110 h 8.17 fg 4.32 g 12,502 de 95.68 a
N2 D1 1450 f 7.87 g 6.29 de 13,062 cd 93.71 cd
D2 2985 a 18.35 a 12.29 a 13,309 c 87.71 g
D3 2335 b 13.91 b 8.40 b 14,227 ab 91.60 f
方差分析ANOVA
灌水W ** * * NS *
施氮N ** ** ** ** **
密度D ** ** ** ** **
W×N ** * ** NS **
W×D * ** * * *
N×D * ** ** NS *
W×N×D ** ** ** * *

Table 3

Yield components of maize under different treatments"

灌水Irrigation 施氮Nitrogen 密度
Density
穗数
Spike number
(×104 spikes hm-2)
穗粒数
Kernel number per spike
(grain per ear)
千粒重
1000-kernel weight
(g)
2020 2021 2020 2021 2020 2021
W1 N1 D1 7.38 d 7.29 d 509 e 518 c 323 f 349 bc
D2 9.29 c 9.49 c 478 f 477 ef 311 g 332 cd
D3 11.43 b 11.32 b 456 g 440 h 292 h 293 e
N2 D1 7.66 d 7.53 d 558 bc 564 b 370 ab 367 ab
D2 9.46 c 9.34 c 543 cd 517 cd 366 b 364 ab
D3 11.88 a 11.55 b 484 f 465 fg 333 e 331 cd
W2 N1 D1 7.29 d 7.43 d 554 cd 557 b 369 ab 372 a
D2 9.40 c 9.49 c 539 d 508 d 351 c 346 bc
D3 11.45 b 11.36 b 477 f 453 hg 325 ef 316 d
N2 D1 7.53 d 7.54 d 598 a 585 a 376 a 378 a
D2 9.52 c 9.43 c 574 b 528 c 370 ab 367 ab
D3 11.98 a 12.03 a 510 e 481 e 342 d 334 cd
方差分析ANOVA
灌水W NS * ** ** ** **
施氮N ** ** ** ** ** **
密度D ** ** ** ** ** **
W×N NS NS NS * ** NS
W×D NS NS * NS NS NS
N×D NS ** NS NS * NS
W×N×D NS NS NS NS NS NS

Fig. 5

Path coefficient of maize between grain yield and yield components under different treatments The thick lines represent direct pathways and the fine lines represent indirect pathways. Values in bold are the correlation coefficient and fine values are the path coefficient. **: P < 0.01; *: P < 0.05; NS: no significant difference. CGR, DMRCG, DMAC, SN, KNS, and TKW indicate population growth rate, contribution of dry matter remobilization to grain at pre-anthesis, contribution of dry matter accumulation to grain at post-anthesis, spike number, kernel number per spike, and 1000-kernel weight, respectively."

[1] Davis K F, Gephart J A, Emery K A, Leach A M, Galloway J N, D Odorico P. Meeting future food demand with current agricultural resources. Glob Environ Change, 2016, 39: 125-132.
[2] Davis K F, Rulli M C, Seveso A, D’Odorico P. Increased food production and reduced water use through optimized crop distribution. Nat Geosci, 2017, 10: 919-924.
[3] Lu J S, Geng C M, Cui X L, Li M Y, Chen S H, Hu T T. Response of drip fertigated wheat-maize rotation system on grain yield, water productivity and economic benefits using different water and nitrogen amounts. Agric Water Manag, 2021, 258: 107220.
[4] Li Y, Huang G H, Chen Z J, Xiong Y W, Huang Q Z, Xu X, Huo Z L. Effects of irrigation and fertilization on grain yield, water and nitrogen dynamics and their use efficiency of spring wheat farmland in an arid agricultural watershed of northwest China. Agric Water Manag, 2022, 260: 107277.
[5] 殷文, 郭瑶, 范虹, 樊志龙, 胡发龙, 于爱忠, 赵财, 柴强. 西北干旱灌区不同地膜覆盖利用方式对玉米水分利用的影响. 中国农业科学, 2021, 54: 4750-4760.
doi: 10.3864/j.issn.0578-1752.2021.22.004
Yin W, Guo Y, Fan H, Fan Z L, Hu F L, Yu A Z, Zhao C, Chai Q. Effects of different plastic film mulching and using patterns on soil water use of maize in the arid irrigated area of northwestern China. Sci Agric Sin, 2021, 54: 4750-4760. (in Chinese with English abstract)
[6] 张喜军, 魏廷邦, 樊志龙, 柴强. 绿洲灌区水氮减施密植玉米的光合源动态和产量表现. 核农学报, 2020, 34: 1302-1310.
doi: 10.11869/j.issn.100-8551.2020.06.1302
Zhang X J, Wei T B, Fan Z L, Chai Q. Photosynthetic source dynamics and yield performance of high density maize with reduced amount of water and nitrogen in oasis irrigation region. Acta Agric Nucl Sin, 2020, 34: 1302-1310 (in Chinese with English abstract).
[7] Meng Q F, Yue S C, Hou P, Cui Z L, Chen X P. Improving yield and nitrogen use efficiency simultaneously for maize and wheat in China: a review. Pedosphere, 2016, 26: 137-147.
[8] 李嘉, 吕慎强, 杨泽宇, 李惠通, 王吕, 阳婷, 王筱斐, 王林权. 氮肥运筹对黄土塬区春玉米产量、效益和氮肥利用率的综合效应. 植物营养与肥料学报, 2020, 26: 32-41.
Li J, Lyu S Q, Yang Z Y, Li H T, Wang L, Yang T, Wang X F, Wang L Q. Comprehensive effects of nitrogen fertilizer management on yield, economic performance and nitrogen use efficiency of spring maize in Loess Plateau, China. J Plant Nutr Fert, 2020, 26: 32-41. (in Chinese with English abstract)
[9] Wang Z Q, Zhang W Y, Beebout S S, Zhang H, Liu L J, Yang J C, Zhang J H. Grain yield, water and nitrogen use efficiencies of rice as influenced by irrigation regimes and their interaction with nitrogen rates. Field Crops Res, 2016, 193: 54-69.
[10] 魏廷邦, 柴强, 王伟民, 王军强. 水氮耦合及种植密度对绿洲灌区玉米光合作用和干物质积累特征的调控效应. 中国农业科学, 2019, 52: 428-444.
doi: 10.3864/j.issn.0578-1752.2019.03.004
Wei T B, Chai Q, Wang W M, Wang J Q. Effects of coupling of irrigation and nitrogen application as well as planting density on photosynthesis and dry matter accumulation characteristics of maize in oasis irrigated areas. Sci Agric Sin, 2019, 52: 428-444. (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2019.03.004
[11] 殷文, 柴强, 于爱忠, 赵财, 樊志龙, 胡发龙, 范虹, 郭瑶. 间作小麦秸秆还田对地膜覆盖玉米灌浆期冠层温度及光合生理特性的影响. 中国农业科学, 2020, 53: 4764-4776.
doi: 10.3864/j.issn.0578-1752.2020.23.004
Yin W, Chai Q, Yu A Z, Zhao C, Fan Z L, Hu F L, Fan H, Guo Y. Effects of intercropped wheat straw retention on canopy temperature and photosynthetic physiological characteristics of intercropped maize mulched with plastic during grain filling stage. Sci Agric Sin, 2020, 53: 4764-4776. (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2020.23.004
[12] 赵财, 王巧梅, 郭瑶, 殷文, 樊志龙, 胡发龙, 于爱忠, 柴强. 水氮耦合对地膜玉米免耕轮作小麦干物质积累及产量的影响. 作物学报, 2018, 44: 1694-1703.
doi: 10.3724/SP.J.1006.2018.01694
Zhao C, Wang Q M, Guo Y, Yin W, Fan Z L, Hu F L, Yu A Z, Chai Q. Effects of water-nitrogen coupling patterns on dry matter accumulation and yield of wheat under no-tillage with previous plastic mulched maize. Acta Agron Sin, 2018, 44: 1694-1703. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2018.01694
[13] Kodur S, Shrestha U B, Maraseni T N, Deo R C. Environmental and economic impacts and trade-offs from simultaneous management of soil constraints, nitrogen and water. J Clean Prod, 2019, 222: 960-970.
[14] 陈磊, 宋书会, 云鹏, 周磊, 高翔, 卢昌艾, 刘荣乐, 汪洪. 连续三年减施氮肥对潮土玉米生长及根际土壤氮素供应的影响. 植物营养与肥料学报, 2019, 25: 1482-1494.
Chen L, Song S H, Yun P, Zhou L, Gao X, Lu C A, Liu R L, Wang H. Effects of reduced nitrogen fertilizer for three consecutive years on maize growth and rhizosphere nitrogen supply in fluvo-aquic soil. J Plant Nutr Fert, 2019, 25: 1482-1494. (in Chinese with English abstract)
[15] 郭瑶, 柴强, 殷文, 冯福学, 赵财, 于爱忠. 绿洲灌区小麦免耕秸秆还田对后作玉米产量性能指标的影响. 中国生态农业学报, 2017, 25: 69-77.
Guo Y, Chai Q, Yin W, Feng F X, Zhao C, Yu A Z. Effect of wheat straw return to soil with zero-tillage on maize yield in irrigated oases. Chin J Eco-Agric, 2017, 25: 69-77. (in Chinese with English abstract)
[16] 杨明达, 关小康, 刘影, 崔静宇, 丁超明, 王静丽, 韩静丽, 王怀苹, 康海平, 王同朝. 滴灌模式和水分调控对夏玉米干物质和氮素积累与分配及水分利用的影响. 作物学报, 2019, 45: 443-459.
doi: 10.3724/SP.J.1006.2019.83026
Yang M D, Guan X K, Liu Y, Cui J Y, Ding C M, Wang J L, Han J L, Wang H P, Kang H P, Wang T C. Effects of drip irrigation pattern and water regulation on the accumulation and allocation of dry matter and nitrogen, and water use efficiency in summer maize. Acta Agron Sin, 2019, 45: 443-459. (in Chinese with English abstract)
[17] 王宜伦, 李潮海, 谭金芳, 韩燕来, 张许. 超高产夏玉米植株氮素积累特征及一次性施肥效果研究. 中国农业科学, 2010, 43: 3151-3158.
Wang Y L, Li C H, Tan J F, Han Y L, Zhang X. Studies on plant nitrogen accumulation characteristics and the effect of single application of base fertilizer on super-high-yield summer maize. Sci Agric Sin, 2010, 43: 3151-3158 (in Chinese with English abstract).
[18] 薛吉全, 张仁和, 马国胜, 路海东, 张兴华, 李凤艳, 郝引川, 邰书静. 种植密度、氮肥和水分胁迫对玉米产量形成的影响. 作物学报, 2010, 36: 1022-1029.
doi: 10.3724/SP.J.1006.2010.01022
Xue J Q, Zhang R H, Ma G S, Lu H D, Zhang X H, Li F Y, Hao Y C, Tai S J. Effects of plant density, nitrogen application, and water stress on yield formation of maize. Acta Agron Sin, 2010, 36: 1022-1029. (in Chinese with English abstract)
[19] Yan W M, Zhong Y Q, Liu W Z, Shangguan Z P. Asymmetric response of ecosystem carbon components and soil water consumption to nitrogen fertilization in farmland. Agric Ecosyst Environ, 2021, 305: 107166.
[20] Zhang Y H, Yin J D, Guo Z H, Li J, Wang R. Simulation of soil water balance and crop productivity of long-term continuous maize cropping under high planting density in rainfed agroecosystems. Agric For Meteorol, 2022, 312: 108740.
[21] Lu J S, Hu T T, Geng C M, Cui X L, Fan J L, Zhang F C. Response of yield, yield components and water-nitrogen use efficiency of winter wheat to different drip fertigation regimes in northwest China. Agric Water Manag, 2021, 255: 107034.
[22] 王一帆, 秦亚洲, 冯福学, 赵财, 于爱忠, 刘畅, 柴强. 根间作用与密度协同作用对小麦间作玉米产量及产量构成的影响. 作物学报, 2017, 43: 754-762.
Wang Y F, Qin Y Z, Feng F X, Zhao C, Yu A Z, Liu C, Chai Q. Synergistic effect of root interaction and density on yield and yield components of wheat/maize intercropping system. Acta Agron Sin, 2017, 43: 754-762. (in Chinese with English abstract)
[23] 王旭敏, 雒文鹤, 刘朋召, 张琦, 王瑞, 李军. 节水减氮对夏玉米干物质和氮素积累转运及产量的调控效应. 中国农业科学, 2021, 54: 3183-3197.
doi: 10.3864/j.issn.0578-1752.2021.15.004
Wang X M, Luo W H, Liu P Z, Zhang Q, Wang R, Li J. Regulation effects of water saving and nitrogen reduction on dry matter and nitrogen accumulation, transportation and yield of summer maize. Sci Agric Sin, 2021, 54: 3183-3197. (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2021.15.004
[24] 明博, 谢瑞芝, 侯鹏, 李璐璐, 王克如, 李少昆.2005-2016 年中国玉米种植密度变化分析. 中国农业科学, 2017, 50: 1960-1972.
Ming B, Xie R Z, Hou P, Li L L, Wang K R, Li S K. Analysis of maize planting density in China from 2005 to 2016. Sci Agric Sin, 2017, 50: 1960-1972. (in Chinese with English abstract)
[25] Zhang G Q, Shen D P, Xie R Z, Ming B, Hou P, Xue J, Li R F, Chen J L, Wang K R, Li S K. Optimizing planting density to improve nitrogen use of super high-yield maize. Agron J, 2020, 112: 4147-4158.
[26] 毛圆圆, 薛军, 翟娟, 张园梦, 张国强, 明博, 谢瑞芝, 王克如, 侯鹏, 李召锋, 李少昆. 水肥一体化条件下密植高产玉米适宜追氮次数研究. 植物营养与肥料学报, 2022, 28: 2227-2238.
Mao Y Y, Xue J, Zhai J, Zhang Y M, Zhang G Q, Ming B, Xie R Z, Wang K R, Hou P, Li Z F, Li S K. Optimum times of nitrogen topdressing in high-yield maize under high plant density and fertigation. J Plant Nutr Fert, 2022, 28: 2227-2238. (in Chinese with English abstract)
[27] Sun Y, Zang H, Splettstößer T, Kumar A, Xu X L, Kuzyakov Y, Pausch J. Plant intraspecific competition and growth stage alter carbon and nitrogen mineralization in the rhizosphere. Plant Cell Environ, 2021, 44: 1231-1242.
[28] Calviño P A, Andrade F H, Sadras V O. Maize yield as affected by water availability, soil depth, and crop management. Agron J, 2003, 95: 275-281.
[29] Sheshbahreh M J, Dehnavi M M, Salehi A, Bahreininejad B. Effect of irrigation regimes and nitrogen sources on biomass production, water and nitrogen use efficiency and nutrients uptake in coneflower (Echinacea purpurea L.). Agric Water Manag, 2019, 213: 358-367.
[30] Wang F, Xie R Z, Ming B, Wang K R, Hou P, Chen J L, Liu G Z, Zhang G Q, Xue J, Li S K. Dry matter accumulation after silking and kernel weight are the key factors for increasing maize yield and water use efficiency. Agric Water Manag, 2021, 254: 106938.
[31] 杨吉顺, 高辉远, 刘鹏, 李耕, 董树亭, 张吉旺, 王敬锋. 种植密度和行距配置对超高产夏玉米群体光合特性的影响. 作物学报, 2010, 36: 1226-1233.
doi: 10.3724/SP.J.1006.2010.01226
Yang J S, Gao H Y, Liu P, Li G, Dong S T, Zhang J W, Wang J F. Effects of planting density and row spacing on canopy apparent photosynthesis of high-yield summer corn. Acta Agron Sin, 2010, 36: 1226-1233. (in Chinese with English abstract)
[32] 韦金贵, 郭瑶, 柴强, 殷文, 樊志龙, 胡发龙. 水氮减量密植玉米的产量及产量构成. 作物学报, 2023, 49: 1919-1929.
Wei J G, Guo Y, Chai Q, Yin W, Fan Z L, Hu F L. Yield and yield components of maize response to high plant density under reduced water and nitrogen supply. Acta Agron Sin, 2023, 49: 1919-1929. (in Chinese with English abstract)
[33] Wei J G, Chai Q, Yin W, Fan H, Guo Y, Hu F L, Fan Z L, Wang Q M. Grain yield and N uptake of maize in response to increased plant density under reduced water and nitrogen supply conditions. J Integr Agric, 2024, 23: 122-140.
doi: 10.1016/j.jia.2023.05.006
[34] 陈国平, 高聚林, 赵明, 董树亭, 李少昆, 杨祁峰, 刘永红, 王立春, 薛吉全, 柳京国, 李潮海, 王永宏, 王友德, 宋慧欣, 赵久然. 近年我国玉米超高产田的分布、产量构成及关键技术. 作物学报, 2012, 38: 80-85.
doi: 10.3724/SP.J.1006.2012.00080
Chen G P, Gao J L, Zhao M, Dong S T, Li S K, Yang Q F, Liu Y H, Wang L C, Xue J Q, Liu J G, Li C H, Wang Y H, Wang Y D, Song H X, Zhao J R. Distribution, yield structure, and key cultural techniques of maize superhigh yield plots in recent years. Acta Agron Sin, 2012, 38: 80-85 (in Chinese with English abstract).
[35] Guo Y, Yin W, Fan H, Fan Z L, Hu F L, Yu A Z, Zhao C, Chai Q, Aziiba E A, Zhang X J. Photosynthetic physiological characteristics of water and nitrogen coupling for enhanced high-density tolerance and increased yield of maize in arid irrigation regions. Front Plant Sci, 2021, 12: 726568.
[36] Marchiori P E R, Machado E C, Ribeiro R V. Photosynthetic limitations imposed by self-shading in field-grown sugarcane varieties. Field Crops Res, 2014, 155: 30-37.
[1] FANG Yu-Hui, QI Xue-Li, LI Yan, ZHANG Yu, PENG Chao-Jun, HUA Xia, CHEN Yan-Yan, GUO Rui, HU Lin, XU Wei-Gang. Effects of high light stress on photosynthesis and physiological characteristics of wheat with C4-type ZmPEPC+ZmPPDK gene#br# [J]. Acta Agronomica Sinica, 2024, 50(7): 1647-1657.
[2] WANG Rui, SUN Bo, ZHANG Yun-Long, ZHANG Ming-Qi, FAN Ya-Ming, TIAN Hong-Li, ZHAO Yi-Kun, YI Hong-Mei, KUANG Meng, WANG Feng-Ge. Application analysis of chloroplast markers on rapid classification in maize germplasm [J]. Acta Agronomica Sinica, 2024, 50(7): 1867-1876.
[3] SHE Meng, ZHENG Deng-Yu, KE Zhao, WU Zhong-Yi, ZOU Hua-Wen, ZHANG Zhong-Bao. Cloning and functional analysis of ZmGRAS13 gene in maize [J]. Acta Agronomica Sinica, 2024, 50(6): 1420-1434.
[4] ZHENG Xue-Qing, WANG Xing-Rong, ZHANG Yan-Jun, GONG Dian-Ming, QIU Fa-Zhan. Mapping of QTL for ear-related traits and prediction of key candidate genes in maize [J]. Acta Agronomica Sinica, 2024, 50(6): 1435-1450.
[5] HAN Jie-Nan, ZHANG Ze, LIU Xiao-Li, LI Ran, SHANG-GUAN Xiao-Chuan, ZHOU Ting-Fang, PAN Yue, HAO Zhuan-Fang, WENG Jian-Feng, YONG Hong-Jun, ZHOU Zhi-Qiang, XU Jing-Yu, LI Xin-Hai, LI Ming-Shun. Analysis of differential accumulation of starch in waxy maize grain caused by the o2 mutation gene [J]. Acta Agronomica Sinica, 2024, 50(5): 1207-1222.
[6] WANG Yong-Liang, XU Zi-Hang, LI Shen, LIANG Zhe-Ming, BAI Ju, YANG Zhi-Ping. Effects of different mulching measures on moisture and temperature of soil and yield and water use efficiency of spring maize [J]. Acta Agronomica Sinica, 2024, 50(5): 1312-1324.
[7] TIAN Hong-Li, YANG Yang, FAN Ya-Ming, YI Hong-Mei, WANG Rui, JIN Shi-Qiao, JIN Fang, ZHANG Yun-Long, LIU Ya-Wei, WANG Feng-Ge, ZHAO Jiu-Ran. Development of an optimal core SNP loci set for maize variety genuineness identification [J]. Acta Agronomica Sinica, 2024, 50(5): 1115-1123.
[8] SU Shuai, LIU Xiao-Wei, NIU Qun-Kai, SHI Zi-Wen, HOU Yu-Wei, FENG Kai-Jie, RONG Ting-Zhao, CAO Mo-Ju. Identification and gene cloning of leafy dwarf mutant lyd1 in maize [J]. Acta Agronomica Sinica, 2024, 50(5): 1124-1135.
[9] ZOU Jia-Qi, WANG Zhong-Lin, TAN Xian-Ming, CHEN Liao-Yuan, YANG Wen-Yu, YANG Feng. Estimation of maize grain yield under drought stress based on continuous wavelet transform [J]. Acta Agronomica Sinica, 2024, 50(4): 1030-1042.
[10] LOU Fei, ZUO Yi-Ping, LI Meng, DAI Xin-Meng, WANG Jian, HAN Jin-Ling, WU Shu, LI Xiang-Ling, DUAN Hui-Jun. Effects of organic fertilizer substituting chemical fertilizer nitrogen on yield, quality, and nitrogen efficiency of waxy maize [J]. Acta Agronomica Sinica, 2024, 50(4): 1053-1064.
[11] ZHANG Zhen, ZHAO Jun-Ye, SHI Yu, ZHANG Yong-Li, YU Zhen-Wen. Effects of different sowing space on photosynthetic characteristics after anthesis and grain yield of wheat [J]. Acta Agronomica Sinica, 2024, 50(4): 981-990.
[12] YUE Hai-Wang, WEI Jian-Wei, LIU Peng-Cheng, CHEN Shu-Ping, BU Jun-Zhou. Comprehensive evaluation of maize hybrids in the mega-environments of Huanghuaihai plain based on GYT biplot analysis [J]. Acta Agronomica Sinica, 2024, 50(4): 836-856.
[13] XUE Ming, WANG Chen-Chen, JIANG Lu-Guang, LIU Hao, ZHANG Lu-Yao, CHEN Sai-Hua. Mapping and functional analysis of maize inflorescence development gene AFP1 [J]. Acta Agronomica Sinica, 2024, 50(3): 603-612.
[14] WANG Lyu, WU Yu-Hong, QIN Yu-Hang, DAN Ya-Bin, CHEN Hao, HAO Xing-Shun, TIAN Xiao-Hong. Effects of rice straw mulching combined with green manure retention and nitrogen reduction applications on dry matter quality accumulation, nitrogen transport and grain yield of rice [J]. Acta Agronomica Sinica, 2024, 50(3): 756-770.
[15] ZHAO Rong-Rong, CONG Nan, ZHAO Chuang. Optimal phase selection for extracting distribution of winter wheat and summer maize over central subregion of Henan Province based on Landsat 8 imagery [J]. Acta Agronomica Sinica, 2024, 50(3): 721-733.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .