Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2024, Vol. 50 ›› Issue (6): 1628-1634.doi: 10.3724/SP.J.1006.2024.32041

• RESEARCH NOTES • Previous Articles    

Screening and validation of OsCYP22 interacting proteins in rice

ZHANG Xiao-Fang1,2(), ZHU Qi1,2, HUA Yun-Yan1,2, JIA Li-Hui-Ying1,2, QIU Shi-You1, CHEN Yu-Jie1, MA Tao1,*(), DING Wo-Na1,*()   

  1. 1College of Science and Technology, Ningbo University / Ningbo Key Laboratory of Agricultural Germplasm Resources Mining and Environmental Regulation, Ningbo 315300, Zhejiang, China
    2School of Marine Science, Ningbo University, Ningbo 315211, Zhejiang, China
  • Received:2023-09-27 Accepted:2024-01-31 Online:2024-06-12 Published:2024-02-21
  • Contact: * E-mail: matao08@163.com;E-mail: dwn@zju.edu.cn
  • Supported by:
    National Natural Science Foundation of China(32071981);Ningbo Natural Science Foundation(202003N4016)

Abstract:

In order to understand the function of cyclophilin family OsCYP22 from Oryza sativa L., the yeast two hybrid bait vector of OsCYP22 was constructed and proteins interacting with OsCYP22 were screened by yeast two hybrid. The results showed that noself-activating activity and toxicity of OsCYP22 bait vector to yeast cells were detected., among which 38 positive colonies were obtained by yeast two hybrid screening. Combining sequencing analysis and bioinformatics methods, 20 candidates that may interact with OsCYP22 were screened. Further validation of the full-length interactions between OsCYP22 and OsCSN5 and OsRUB1 related to the regulation of plant root growth was conducted. The results showed that OsCSN5 interacted with OsCYP22 in yeast. This study provides a theoretical basis for further study of the biological function of OsCYP22.

Key words: rice, OsCYP22, Yeast two-hybird, interaction protein

Table 1

Primer names and sequences"

引物名称
Primer name
引物序列
Primer sequence (5'-3')
限制性内切酶
Restriction endonuclease
BD-OsCYP22-Forward GCATATGGCCATGGAGGCCGAATTCATGGCGACGGCGAGC EcoR I
BD-OsCYP22-Reverse GCGGCCGCTGCAGGTCGACGGATCCTGTCTTTGGAACTGTAACGTTC BamH I
AD-OsCSN5-Forward TATGGCCATGGAGGCCAGTGAATTCATGGAGCCCACCTCGT EcoR I
AD-OsCSN5-Reverse TCTGCAGCTCGAGCTCGATGGATCCTCATGCTTCAACCATAGGC BamH I
AD-OsRUB1-Forward TATGGCCATGGAGGCCAGTGAATTCATGCAGATCTTCGTGA EcoR I
AD-OsRUB1-Reverse TCTGCAGCTCGAGCTCGATGGATCCCTAATAACCACCCCTC BamH I

Fig. 1

PCR product of OsCYP22 (A) and colony PCR of pGBKT7-OsCYP22 bait vector (B) M: 2000 bp DNA marker; 1-2: positive colonies; 3-12: negative colonies."

Fig. 2

Autoactivation and toxicity detection of pGBKT7-OsCYP22 bait protein"

Fig. 3

Growth diagram of yeast transformants A: colonies co-transformed Y2H gold with pGBKT7-OsCYP22 and pGADT7-cDNA library growing on SD/-Ade/-His/-Leu/-Trp; B: colonies co-transformed Y2H gold with pGBKT7-OsCYP22 and pGADT7-cDNA library growing on SD/-Ade/-His/-Leu/-Trp (X-α-gal); +: positive control; -: negative control."

Table 2

Candidate OsCYP22-interacting proteins screened by Y2H"

编号
Number
基因序列号
DNA sequence number
编码蛋白
Coding protein
包含结构域
Domain
1 XM_015770516.2 death-inducer obliterator 1 TFIIS central
2 XM_015771759.2 proliferating cell nuclear antigen Proliferating cell nuclear antigen PCNA
3 XM_015792790.2 dihydroneopterin aldolase 2 Dihydroneopterin aldolase
4 XM_015781704.1 COP9 signalosome complex subunit 5 CSN5 MPN
5 XM_015769167.2 probable splicing factor 3A subunit 1 Ubiquitin-like
6 XM_015756511.2 ubiquitin-NEDD8-like protein RUB1 Ubiquitin-like
7 XM_015789576.2 BTB/POZ domain-containing protein At4g08455 BTB
8 XM_015761445.2 suppressor of mec-8 and unc-52 protein homolog 2 protein RED C-terminal,
9 XM_015762019.2 probable serine/threonine-protein kinase SIS8 PAS
10 XM_015793158.1 peptidyl-prolyl cis-trans isomerase PPIase cyclophilin-type
11 XM_015767492.2 ADP-ribosylation factor GTPase-activating protein AGD12 Arf-GAP
12 XM_015765721.2 AMSH-like ubiquitin thioesterase 2 MPN
13 XM_026025881.1 pyruvate decarboxylase 1 Thiamine pyrophosphate enzyme central
14 XM_015784162.2 chaperone protein dnaJ A7A Saposin B-type
15 XM_015773025.2 probable ADP-ribosylation factor GTPase-activating protein Arf-GAP
16 XM_015784479.2 stromal 70 kD heat shock-related protein
17 XM_052311061.1 mitochondrial outer membrane protein porin 1
18 XM_015769697.2 DExH-box ATP-dependent RNA helicase DExH12
19 XM_015794278.1 tricin synthase 1
20 XM_015766015.2 raffinose synthase

Fig. 4

PCR validation of positive colonies of candidate interacting gene prey vectors A: colony PCR of pGADT7-OsCSN5; B: colony PCR of pGADT7-OsRUB1, M: 2000 bp DNA marker."

Fig. 5

Yeast two-hybrid confirmed the interaction between OsCYP22 and OsCSN5 or OsRUB1"

[1] Fischer G, Wittmann-Liebold B, Lang K, Kiefhaber T, Schmid F X. Cyclophilin and peptidyl-prolyl cis-trans isomerase are probably identical proteins. Nature, 1989, 337: 476-478.
[2] Singh H, Kaur K, Singh M, Kaur G, Singh P. Plant cyclophilins: multifaceted proteins with versatile roles. Front Plant Sci, 2020, 11: 585212.
[3] Gasser C S, Gunning D A, Budelier K A, Brown S M. Structure and expression of cytosolic cyclophilin/peptidyl-prolyl cis-trans isomerase of higher plants and production of active tomato cyclophilin in Escherichia coli. Proc Natl Acad Sci USA, 1990, 87: 9519-9523.
pmid: 1702215
[4] 童惠姗, 汪珊珊, 朱馨妮, 丁沃娜. 植物亲环素基因功能研究进展. 西北植物学报, 2017, 37: 830-838.
Tong H S, Wang S S, Zhu X N, Ding W N. Research progress of cyclophilin gene function. Acta Bot Boreali-Occident Sin, 2017, 37: 830-838. (in Chinese with English abstract)
[5] Li H, He Z Y, Lu G H, Lee S C, Alonso J, Ecker J R, Luan S. A WD40 domain cyclophilin interacts with histone H3 and functions in gene repression and organogenesis in Arabidopsis. Plant Cell, 2007, 19: 2403-2416.
[6] Sirpiö S, Khrouchtchova A, Allahverdiyeva Y, Hansson M, Fristedt R, Vener A V, Scheller H V, Jensen P E, Haldrup A, Aro E M. AtCYP38 ensures early biogenesis, correct assembly and sustenance of photosystem II. Plant J, 2008, 55: 639-651.
[7] Wang Q Q, Wang Y, Chai W B, Song N N, Wang J, Cao L M, Jiang H Y, Li X Y. Systematic analysis of the maize cyclophilin gene family reveals ZmCYP15 involved in abiotic stress response. Plant Cell Tissue Organ Cult, 2017, 128: 543-561.
[8] Jing H W, Yang X L, Zhang J, Liu X H, Zheng H K, Dong G J, Nian J Q, Feng J, Xia B, Qian Q, Li J Y, Zuo J R. Peptidyl-prolyl isomerization targets rice Aux/IAAs for proteasomal degradation during auxin signaling. Nat Commun, 2015, 6: 7395.
[9] Kumari S, Joshi R, Singh K, Roy S, Tripathi A K, Singh P, Singla-Pareek S L, Pareek A. Expression of a cyclophilin OsCyp2-P isolated from a salt-tolerant landrace of rice in tobacco alleviates stress via ion homeostasis and limiting ROS accumulation. Funct Integr Genomics, 2015, 15: 395-412.
[10] Kang B, Zhang Z C, Wang L L, Zheng L B, Mao W H, Li M F, Wu Y R, Wu P, Mo X R. OsCYP2, a chaperone involved in degradation of auxin-responsive proteins, plays crucial roles in rice lateral root initiation. Plant J, 2013, 74: 86-97.
[11] Fields S, Song O. A novel genetic system to detect protein- protein interactions. Nature, 1989, 340: 245-246.
[12] 沈竹, 曹勤红. 酵母双杂交及其衍生技术应用研究进展. 农业生物技术学报, 2022, 30: 2425-2433.
Shen Z, Cao Q H. Research progress on application of yeast two hybrid system and Y2H-derivated techniques. J Agric Biotechnol, 2022, 30: 2425-2433. (in Chinese with English abstract)
[13] 周非凡, 刘瑜, 常鑫磊, 林拥军. OsCPK12基因功能研究和互作蛋白筛选. 华中农业大学学报, 2019, 38(6): 48-55.
Zhou F F, Liu Y, Chang X L, Lin Y J. Gene function of OsCPK12 and screening of its interaction proteins. J Huazhong Agric Univ, 2019, 38(6): 48-55. (in Chinese with English abstract)
[14] 孔兰, 王锋, 蔡正正, 邱荣华, 吴春燕, 段远霖, 吴为人. 酵母双杂交筛选水稻OsJAG互作蛋白. 基因组学与应用生物学, 2019, 38: 4572-4579.
Kong L, Wang F, Cai Z Z, Qiu R H, Wu C Y, Duan Y L, Wu W R. Screening of OsJAG-interacting proteins by yeast two-hybrid in rice. Genomics Appl Biol, 2019, 38: 4572-4579. (in Chinese with English abstract)
[15] 郝小花, 戴佳利, 暨文劲, 黄丹, 李东屏, 田连福. 水稻籽粒低镉蛋白LCD互作蛋白的筛选与鉴定. 生物技术通报, 2020, 36(11): 21-29.
doi: 10.13560/j.cnki.biotech.bull.1985.2020-0510
Hao X H, Dai J L, Ji W J, Huang D, Li D P, Tian L F. Screening and identification of LCD-interacting proteins in rice. Biotechnol Bull, 2020, 36(11): 21-29. (in Chinese with English abstract)
[16] 王子颖, 龙晨洁, 范兆宇, 张蕾. 利用酵母双杂交系统筛选与OsCRK5互作蛋白. 生物技术通报, 2023, 39(10): 25-33.
Wang Z Y, Long C J, Fan Z Y, Zhang L. Screening of OsCRK5 interactive proteins in rice using yeast two-hybrid system. Biotechnol Bull, 2023, 39(10): 25-33 (in Chinese with English abstract).
[17] Dohmann E M N, Kuhnle C, Schwechheimer C. Loss of the CONSTITUTIVE PHOTOMORPHOGENIC9 signalosome subunit 5 is sufficient to cause the cop/det/fus mutant phenotype in Arabidopsis. Plant Cell, 2005, 17: 1967-1978.
pmid: 15923347
[18] Pozo J C, Dharmasiri S, Hellmann H, Walker L, Gray W M, Estelle M. AXR1-ECR1-dependent conjugation of RUB1 to the Arabidopsis Cullin AtCUL1 is required for auxin response. Plant Cell, 2002, 14: 421-433.
[19] 郭睿, 刘全忠. 蛋白质相互作用研究技术的新进展. 天津医科大学学报, 2015, 21: 542-544.
Guo R, Liu Q Z. New progress in protein interaction research technology. J Tianjin Med Univ, 2015, 21: 542-544. (in Chinese with English abstract)
[20] 何龙, 羊健, 张松柏, 张恒木, 刘勇, 陈剑平. 水稻CSN5B蛋白抗血清的制备及其应用. 生物技术通讯, 2016, 27: 525-528.
He L, Yang J, Zhang S B, Zhang H M, Liu Y, Chen J P. Preparation and application of antiserum against CSN5B protein from rice plant. Lett Biotechnol, 2016, 27: 525-528. (in Chinese with English abstract)
[21] Qin N X, Xu D Q, Li J G, Deng X W. COP9 signalosome: discovery, conservation, activity, and function. J Integr Plant Biol, 2020, 62: 90-103.
doi: 10.1111/jipb.12903
[22] Lozano-Duran R, Rosas-Diaz T, Gusmaroli G, Luna A P, Taconnat L, Deng X W, Bejarano E R. Geminiviruses subvert ubiquitination by altering CSN-mediated derubylation of SCF E3 ligase complexes and inhibit jasmonate signaling in Arabidopsis thaliana. Plant Cell, 2011, 23: 1014-1032.
[23] He L, Chen X, Yang J, Zhang T Y, Li J, Zhang S B, Zhong K L, Zhang H M, Chen J P, Yang J. Rice black-streaked dwarf virus- encoded P5-1 regulates the ubiquitination activity of SCF E3 ligases and inhibits jasmonate signaling to benefit its infection in rice. New Phytol, 2020, 225: 896-912.
[1] FU Jing, MA Meng-Juan, ZHANG Qi-Fei, DUAN Ju-Qi, WANG Yue-Tao, WANG Fu-Hua, WANG Sheng-Xuan, BAI Tao, YIN Hai-Qing, WANG Ya. Effects of alternate wetting and drying irrigation and different nitrogen application levels on photosynthetic characteristics and nitrogen absorption and utilization of japonica rice [J]. Acta Agronomica Sinica, 2024, 50(7): 1787-1804.
[2] CHENG Shuang, XING Zhi-Peng, TIAN Chao, HU Qun, WEI Hai-Yan, ZHANG Hong-Cheng. Effects of an integrated dryland tillage and soaking pattern on the reducing substances in rice field and early growth of machine transplanted rice [J]. Acta Agronomica Sinica, 2024, 50(7): 1762-1775.
[3] PEI Fa-Jing, ZHANG Wen-Xuan, ZHANG Xiao, WANG Xin-Yu, PENG Shao-Bing, MI Jia-Ming. Developing new rice lines with ultrashort-duration, long-grain, and fragrance [J]. Acta Agronomica Sinica, 2024, 50(7): 1684-1698.
[4] TANG Qing-Yun, YANG Jing-Jing, ZHAO Lei, SONG Zhi-Wen, WANG Guo-Dong, LI Yu-Xiang. Effect of nitrogen application on morphological conformation and fractal characteristics of drip irrigated rice roots [J]. Acta Agronomica Sinica, 2024, 50(6): 1540-1553.
[5] ZHU Zhong-Lin, WEN Yue, ZHOU Qi, WU Yan-Fei, DU Xue-Zhu, SHENG Feng. Mechanism of loding residence and drought tolerance of OsCNGC10 gene in rice [J]. Acta Agronomica Sinica, 2024, 50(5): 1351-1360.
[6] HU Ming-Ming, DING Feng, PENG Zhi-Yun, XIANG Kai-Hong, LI Yu, ZHANG Yu-Jie, YANG Zhi-Yuan, SUN Yong-Jian, MA Jun. Effects of straw returning to field combined with water and N management on rice yield formation and N uptake and utilization under diversified cropping patterns [J]. Acta Agronomica Sinica, 2024, 50(5): 1236-1252.
[7] GENG Xiao-Yu, ZHANG Xiang, LIU Yang, ZUO Bo-Yuan, ZHU Wang, MA Wei-Yi, WANG Lu-Lu, MENG Tian-Yao, GAO Ping-Lei, CHEN Ying-Long, XU Ke, DAI Qi-Gen, WEI Huan-He. Grain yield and its characteristics of japonica/indica hybrids rice in coastal saline-alkali lands [J]. Acta Agronomica Sinica, 2024, 50(5): 1253-1270.
[8] WAN Ying-Chun, BAN Yi-Jie, JIANG Yu-Dong, WANG Ya-Xin, LIU Jing-Jing, LIU Xiao-Qing, CHENG Yu-Lin, WANG Nan, FENG Ping. Phenotypic identification and fine mapping of male sterile mutant tpa1 in rice [J]. Acta Agronomica Sinica, 2024, 50(5): 1104-1114.
[9] CAO Xin-Yuan, DU Ming-Li, WANG Yu-Cheng, CHEN Xin-Hua, CHEN Jia-Xin, LING Xiao-Xia, HUANG Jian-Liang, PENG Shao-Bing, DENG Nan-Yan. Evaluation of annual yield gap and yield limiting facters in rice-rapeseed cropping system: an example from Wuxue city, Hubei province, China [J]. Acta Agronomica Sinica, 2024, 50(5): 1287-1299.
[10] YU Yao, WANG Zi-Yao, ZHOU Si-Rui, LIU Peng-Cheng, YE Ya-Feng, MA Bo-Jun, LIU Bin-Mei, CHEN Xi-Feng. Phenotypic identification and disease resistance mechanism analysis of rice lesion mutant lms1 [J]. Acta Agronomica Sinica, 2024, 50(4): 857-870.
[11] WANG Lyu, WU Yu-Hong, QIN Yu-Hang, DAN Ya-Bin, CHEN Hao, HAO Xing-Shun, TIAN Xiao-Hong. Effects of rice straw mulching combined with green manure retention and nitrogen reduction applications on dry matter quality accumulation, nitrogen transport and grain yield of rice [J]. Acta Agronomica Sinica, 2024, 50(3): 756-770.
[12] ZHANG Li-Jie, ZHOU Hai-Yu, MUHAMMAD Zeshan, MUNSIF Ali Shad, YANG Ming-Chong, LI Bo, HAN Shi-Jian, ZHANG Cui-Cui, HU Li-Hua, WANG Ling-Qiang. Functional analysis of OsFLZ13, the gene encoding a small peptide zinc finger protein in rice [J]. Acta Agronomica Sinica, 2024, 50(3): 543-555.
[13] WEI Huan-He, ZHANG Xiang, ZHU Wang, GENG Xiao-Yu, MA Wei-Yi, ZUO Bo-Yuan, MENG Tian-Yao, GAO Ping-Lei, CHEN Ying-Long, XU Ke, DAI Qi-Gen. Effects of salinity stress on grain-filling characteristics and yield of rice [J]. Acta Agronomica Sinica, 2024, 50(3): 734-746.
[14] XIAO Zheng-Wu, HU Li-Qin, LI Xing, XIE Jia-Xin, LIAO Cheng-Jing, KANG Yu-Ling, Hu Yu-Ping, ZHANG Ke-Qian, FANG Sheng-Liang, CAO Fang-Bo, CHEN Jia-Na, HUANG Min. Quality differences between noodle rice grown in early and late seasons [J]. Acta Agronomica Sinica, 2024, 50(2): 451-463.
[15] WU Hao, ZHANG Ying, WANG Chen, GU Han-Zhu, ZHOU Tian-Yang, ZHANG Wei-Yang, GU Jun-Fei, LIU Li-Jun, YANG Jian-Chang, ZHANG Hao. Effects of cultivation optimization on root characteristics and starch properties of rice at grain filling stage in the lower reaches of the Yangtze River [J]. Acta Agronomica Sinica, 2024, 50(2): 478-492.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .