Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2025, Vol. 51 ›› Issue (9): 2341-2357.doi: 10.3724/SP.J.1006.2025.51011

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Cloning and functional analysis of HvERF039 gene in Qingke (Hordeum vulgare L. var. nudum Hook. f)

MA Juan-E(), YAO You-Hua, YAO Xiao-Hua, WU Kun-Lun*(), CUI Yong-Mei*()   

  1. Academy of Agriculture and Forestry Sciences, Qinghai University / State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University / Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources / Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Xining 810016, Qinghai, China
  • Received:2025-01-24 Accepted:2025-06-01 Online:2025-09-12 Published:2025-06-19
  • Contact: *E-mail: wklqaaf@sina.com; E-mail: 15251892177@163.com E-mail:18393567953@163.com;wklqaaf@sina.com;15251892177@163.com
  • Supported by:
    Open Project of State Key Laboratory of Plateau Ecology and Agriculture(2023-ZZ-01);Qinghai University Natural Science Foundation for Young Scholars(2022-QNY-3);Innovation Fund of Qinghai Academy of Agricultural and Forestry Sciences(2022-NKY-04);Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources(2025)

Abstract:

AP2/ERF (APETALA2/ethylene responsive factor) transcription factors play crucial roles in responses to abiotic stresses, but their functions remain poorly understood in Qingke (hulless barley). In this study, we cloned the HvERF039 gene and investigated its role in cold stress response through bioinformatics analysis, qRT-PCR, and heterologous expression in Arabidopsis thaliana. HvERF039 encoded a hydrophilic, unstable protein containing a typical AP2 conserved domain. The promoter region of HvERF039 contained various cis-acting elements, including those responsive to light, hormones and cold stress. Subcellular localization and transactivation assays revealed that HvERF039 protein was localized in both the membrane and nucleus and possessed transcriptional activation activity. qRT-PCR analysis showed that HvERF039 expression was significantly upregulated under cold treatment, with the highest expression observed in leaves and detectable levels in most other tissues. Functional analysis demonstrated that transgenic Arabidopsis plants overexpressing HvERF039 exhibited significantly higher germination and survival rates under cold stress compared to wild-type plants. These transgenic lines also showed enhanced physiological resistance, including lower ion leakage, reduced H2O2 and MDA contents, and increased CAT activity. Furthermore, HvERF039 was found to physically interact with multiple stress-related proteins. Collectively, these findings suggest that HvERF039 plays a positive regulatory role in cold stress tolerance and represents a promising genetic resource for improving cold resistance in Qingke cultivars.

Key words: Qingke, HvERF039, transcription factors, heterologous overexpression, cold stress

Table 1

Primers used in this study"

引物名称
Primer name
引物序列
Primer sequence (5′-3′)
目的
Purpose
AT3G18780-F
AT3G18780-R
CTCCTGAAGAGCACCCTG
CCCTCGTAGATTGGCACA
拟南芥扩增内参引物
Internal reference primer for Arabidopsis
XM_045099138.1-F
XM_045099138.1-R
GCGGCGTGAGATGAACCT
CGTGGAGCAAGTCGTGTAAGA
青稞扩增内参引物
Internal reference primer for barley
ERF039-F
ERF039-R
ATGGACGACATCGCCGAGCCGA
TCAGTACTCCCACAGGAGTG
ERF039 CDS序列扩增引物
Primers for clone HvERF039 CDS sequence
ERF039-RT-F
ERF039-RT-R
ATGGACGACATCGCCGAGC
CAGATGCGCGACTTCTTGC
荧光定量扩增引物
Primers for qRT-PCR
ERF039-gateway-F

ERF039-gateway-R
GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGGACGACATCGCCGAGC
GGGGACCACTTTGTACAAGAAAGCTGGGTCTCAGTACTCCCACAGGAGT
ERF039拟南芥过表达和亚细胞定位载体构建引物
Primers for Arabidopsis overexpression gernation and subcellular localization assay
P2YN-ERF039-F
P2YN-ERF039-R
CATTTACGAACGATAGTTAATTAATGTCTCGTGCGCACCTTCT
CACTGCCACCTCCTCCACTAGTCTTGGCCATCATGACCTTGA
BiFC载体构建引物
Primers for BiFC assays
P2YC-CRK2-F
P2YC-CRK2-R
CATTTACGAACGATAGTTAATTAAATGGGGCAGTGCTAC
CACTGCCACCTCCTCCACTAGT ATGTCGTCTTGTGTTTG
BiFC载体构建引物
Primers for BiFC assays
P2YC-CRK3-F
P2YC-CRK3-R
CATTTACGAACGATAGTTAATTAAATGGGGGGCTGCCAC CACTGCCACCTCCTCCACTAGTTCTCATCTTTGACAG BiFC载体构建引物
Primers for BiFC assays
P2YC-CRK4-F
P2YC-CRK4-R
CATTTACGAACGATAGTTAATTAAATGGGTCTCTGTCACG
CACTGCCACCTCCTCCACTAGTGGCTTTCGGGATCGAC
BiFC载体构建引物
Primers for BiFC assays
P2YC-MYB15-F
P2YC-MYB15-R
CATTTACGAACGATAGTTAATTAA ATGGGGAGGGCGCCGTGC
CACTGCCACCTCCTCCACTAGTCTGTGGCAAGTCTAGCGCGC
BiFC载体构建引物
Primers for BiFC assays
P2YN-CAMTA4-F
P2YN-CAMTA4-R
CATTTACGAACGATAGTTAATTAAATGAGCCAGAGTTTTGACA
CACTGCCACCTCCTCCACTAGTGCACGTGAATTTGTCGATTT
BiFC载体构建引物
Primers for BiFC assays
P2YN-SOS3-F
P2YN-SOS3-R
CATTTACGAACGATAGTTAATTAA ATGGGCTGCGTGTCGTCGT
CACTGCCACCTCCTCCACTAGTTTTGCTGATTCCGCTGTAATC
BiFC载体构建引物
Primers for BiFC assays
P2YN-HKT1;5-F
P2YN-HKT1;5-R
CATTTACGAACGATAGTTAATTAA ATGGGTTCTTTGCATGTC
CACTGCCACCTCCTCCACTAGTCACTATCCTCCATGCCTG
BiFC载体构建引物
Primers for BiFC assays
ERF039-BD-F
ERF039-BD-R
ATGGCCATGGAGGCCGAATTCATGGACGACATCGCCGAGCCGA
CCGCTGCAGGTCGACGGATCCTCAGTACTCCCACAGGAGTG
转录自激活活性验证载体构建引物
Primers for transactivation activity assays

Fig. S1

Flowchart of HvERF039 vector construction"

Table 2

Physicochemical properties of the HvERF039 protein in hulless barely"

理化性质
Physicochemical property
HvERF039 理化性质
Physicochemical property
HvERF039
分子质量
Molecular weight (Da)
22,527.19 脂溶指数
Aliphatic index
71.56
总原子数
Total number of atoms
3134 α 螺旋比例
Proportions of α helix (%)
18.87
分子式
Formula
C993H1546N280O310S5 延伸链比例
Proportions of extended strand (%)
7.08
亲水系数
GRAVY
-0.375 无规则卷曲比例
Proportions of random coil (%)
74.06
理论等电点
Theoretical pI
5.49 跨膜结构
Transmembrane structures
无 NO
不稳定指数
Instability index (II)
55.40 亚细胞定位预测
Prediction of subcellular localization
细胞膜, 细胞核
Cell membrane, nucleus

Fig. S2

Bioinformatics analysis of HvERF039 gene A: protein secondary structure; B: protein tertiary structure; C: conserved domain prediction; D: transmembrane structure prediction; E: protein hydrophobicity prediction."

Fig. 1

Phylogenetic tree of the HvERF039 protein from hulless barley and its homologs in other plant species"

Fig. 2

Multiple sequence alignment of the HvERF039 protein from hulless barley and its homologs in other plant species"

Table 3

Predicted cis-acting elements in the promoter region of the HvERF039 gene from hulless barley"

元件名称
Site name
序列
Sequence
功能
Function
数量
Number
GATA-motif GATAGGA / CCATATCCAAT / GGATAAGGTG / CCACGTGGC 光响应元件
Part of a light responsive element
7
ARE AAACCA 对厌氧诱导调节顺作用元件
Cis-acting regulatory element essential for the anaerobic induction
4
TGACG-motif TGACG / CGTCA / CGTCA 参与MeJA反应性的顺式作用调节元件
Cis-acting regulatory element involved in the MeJA-responsiveness
6
TCA-element CCATCTTTTT 参与水杨酸反应性的顺式作用元件
Cis-acting element involved in salicylic acid responsiveness
1
CAAT-box CAAAT / CCCAATTT / CCAAT 启动子和增强子区域中常见的顺式作用元件
Common cis-acting element in promoter and enhancer regions
9
GC-motif CCCCCG 参与缺氧特异性诱导的增强子样元件
Enhancer-like element involved in anoxic specific inducibility
2
LTR CCGAAA 参与低温响应性的顺式作用元件
Cis-acting element involved in low-temperature responsiveness
1
G-Box CACGTG / GCCACGTGGA 参与光响应的顺式作用调节元件
Cis-acting regulatory element involved in light responsiveness
8
TATA-box ATATAT / TATAAAA 启动子核心元件
Core promoter element around -30 of transcription start
31
A-box CCGTCC 顺式作用调节元件
Cis-acting regulatory element
2
ATCT-motif AATCTAATCC 参与光响应的保守 DNA 模块的一部分
Part of a conserved DNA module involved in light responsiveness
1
ABRE CACGTG / ACGTG / CACGTG 参与脱落酸反应的顺式作用元件
Cis-acting element involved in the abscisic acid responsiveness
5

Fig. 3

Expression pattern analysis of HvERF039 A: expression pattern of HvERF039 genes in response to drought treatment; B: expression pattern of HvERF039 genes in response to salt treatment; C: expression pattern of HvERF039 genes in response to low temperature treatment; D: expression pattern of HvERF039 genes in response to ABA treatment; E: tissue specific expression analysis of HvERF039 in ‘Kunlun 14’. Data represent the means ± standard deviation (SD) of three biological replicates. Statistical significance was determined using Student’s t-test: P < 0.05 (*), P < 0.01 (**), and ns indicates no significant difference. Three independent experiments were carried out with similar results."

Fig. 4

Subcellular localization and transactivation activity of HvERF039 A: subcellular localization assay of HvERF039; B: transactivation activity assay of HvERF039. GFP: green fluorescence protein channel; BF: bright field channel; Chlorophyll: chloroplast channel; Merged: merge of GFP, chlorophyll and bright channel."

Fig. 5

Germination rate analysis of HvERF039 in response to chilling stress A: identification of T3 generation transgenic HvERF039-overexpressing lines in Arabidopsis thaliana (M: DL2000 DNA marker; P: positive control; W: water control); B: germination phenotypes of wild type and transgenic HvERF039-overexpressing lines in Arabidopsis thaliana under normal and low-temperature conditions; C: germination rate statistics of wild type and transgenic HvERF039-overexpressing lines in Arabidopsis thaliana under normal conditions; D: germination rate statistics of wild type and transgenic HvERF039-overexpressing lines in Arabidopsis thaliana under low-temperature conditions. Data represent the means ± standard deviation (SD) of three biological replicates. Statistical significance was determined using Student’s t-test: P < 0.05 (*), P < 0.01 (**). Three independent experiments were carried out with similar results."

Fig. 6

Survival rate analysis of HvERF039 in response to freezing stress A: growth phenotypes of wild type and transgenic HvERF039-overexpressing lines in Arabidopsis thaliana after freezing treatment; B: survival rates of wild type and transgenic HvERF039-overexpressing lines in Arabidopsis thaliana after freezing treatment; C: growth phenotypes of wild type and transgenic HvERF039-overexpressing lines in Arabidopsis thaliana with (CA) or without cold acclimation (NA) treatment; D: survival rates of wild type and transgenic HvERF039-overexpressing lines in Arabidopsis thaliana after NA and CA treatment at seedling stage. Data represent the means ± standard deviation (SD) of three biological replicates. Statistical significance was determined using Student’s t-test: P < 0.01 (**). Three independent experiments were carried out with similar results."

Fig. 7

Analysis of physiological indicators of HvERF039-overexpressing lines with cold stress treatment Ion leakage rate (A), H2O2 content (B), MDA content (C), and CAT activity (D) are measured in the rosette leaves of three-week-old seedlings wild type and transgenic HvERF039-overexpression lines in Arabidopsis thaliana before and after cold treatment. CK: control; CT: cold treatment. Data represent the means ± standard deviation (SD) of three biological replicates. Statistical significance was determined using Student’s t-test: P < 0.05 (*), P < 0.01 (**), and ns indicates no significant difference. Three independent experiments were carried out with similar results."

Fig. 8

Bimolecular fluorescence complementation assay of HvERF039 Interactions between HvERF039 and other proteins isoforms by bimolecular fluorescent complimentary assay in Nicotiana benthamiana. NE indicates the N-terminal half of YFP, and CE indicates the C-terminal half of YFP. YFP: yellow fluorescence protein channel; BF: bright field channel; Merged: yellow fluorescence protein channel and bright field channel."

[1] 李婷婷, 姚有华, 安立昆, 白羿雄, 杨雪, 姚晓华, 吴昆仑. 青稞HvnWAK基因的克隆及其在条纹病胁迫下的表达. 麦类作物学报, 2024, 44: 26-35.
Li T T, Yao Y H, An L K, Bai Y X, Yang X, Yao X H, Wu K L. Isolation of HvnWAK gene and its expression pattern under leaf stripe disease in hulless barley. J Triticeae Crops, 2024, 44: 26-35 (in Chinese with English abstract).
[2] 郝帅, 宋艳玲, 孙爽, 王春乙. 气候变化对青藏高原青稞生产影响的研究综述. 中国农业气象, 2023, 44: 398-409.
Hao S, Song Y L, Sun S, Wang C Y. Review on the impacts of climate change on highland barley production in Tibet Plateau. Chin J Agrometeorol, 2023, 44: 398-409 (in Chinese with English abstract).
doi: 10.3969/j.issn.1000-6362.2023.05.005
[3] Jahed K R, Saini A K, Sherif S M. Coping with the cold: unveiling cryoprotectants, molecular signaling pathways, and strategies for cold stress resilience. Front Plant Sci, 2023, 14: 1246093.
[4] Ruelland E, Vaultier M N, Zachowski A, Hurry V. Chapter 2 cold signalling and cold acclimation in plants. Adv Bot Res, 2009, 49: 35-150.
[5] 周艳华, 曹红利, 岳川, 王璐, 郝心愿, 王新超, 杨亚军. 冷驯化不同阶段茶树DNA甲基化模式的变化. 作物学报, 2015, 41: 1047-1055.
doi: 10.3724/SP.J.1006.2015.01047
Zhou Y H, Cao H L, Yue C, Wang L, Hao X Y, Wang X C, Yang Y J. Changes of DNA methylation levels and patterns in tea plant (Camellia sinensis) during cold acclimation. Acta Agron Sin, 2015, 41: 1047-1055 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2015.01047
[6] Chinnusamy V, Zhu J K, Sunkar R. Gene regulation during cold stress acclimation in plants. Methods Mol Biol, 2010, 639: 39-55.
doi: 10.1007/978-1-60761-702-0_3 pmid: 20387039
[7] 赵杨, 杨永青, 丁杨林, 张蘅, 谢彦杰, 赵春钊, 刘林川, 王鹏程. 植物非生物逆境学科发展综述. 植物生理学报, 2024, 60: 248-270.
Zhao Y, Yang Y Q, Ding Y L, Zhang H, Xie Y J, Zhao C Z, Liu L C, Wang P C. Plant abiotic stress biology: a decade update. Plant Physiol J, 2024, 60: 248-270 (in Chinese with English abstract).
[8] 悦曼芳, 张春, 吴忠义. 植物转录因子AP2/ERF家族蛋白结构和功能的研究进展. 生物技术通报, 2022, 38(12): 11-26.
doi: 10.13560/j.cnki.biotech.bull.1985.2022-0432
Yue M F, Zhang C, Wu Z Y. Research progress in the structural and functional analysis of plant transcription factor AP2/ERF protein family. Biotechnol Bull, 2022, 38(12): 11-26 (in Chinese with English abstract).
[9] 苟艳丽, 张乐, 郭欢, 马红萍, 包爱科. 植物AP2/ERF类转录因子研究进展. 草业科学, 2020, 37: 1150-1159.
Gou Y L, Zhang L, Guo H, Ma H P, Bao A K. Research progress on the AP2/ERF transcription factor in plants. Pratac Sci, 2020, 37: 1150-1159 (in Chinese with English abstract).
[10] 卞云迪, 张驰, 王雪晴, 杨晨晓, 王光钰, 刘晓颖, 王颖, 方芳, 王振英. 小麦AP2/ERF转录因子家族生物信息学分析. 天津师范大学学报(自然科学版), 2022, 42(4): 39-45.
Bian Y D, Zhang C, Wang X Q, Yang C X, Wang G Y, Liu X Y, Wang Y, Fang F, Wang Z Y. Bioinformatics analysis of TaAP2/ERF transcription factor family in wheat. J Tianjin Norm Univ (Nat Sci Edn), 2022, 42(4): 39-45 (in Chinese with English abstract).
[11] 陈宇姝, 张军保, 于梦迪, 田诗, 王雪松, 刘丽杰. AP2/ERF转录因子家族在植物逆境响应中的作用. 高师理科学刊, 2023, 43(5): 78-81.
Chen Y S, Zhang J B, Yu M D, Tian S, Wang X S, Liu L J. Role of AP2/ERF transcription factor family in plant stress response. J Sci Teach Coll Univ, 2023, 43(5): 78-81 (in Chinese with English abstract).
[12] 董婷婷, 张冬菊, 杨再强, 赵安琪, 王月悦, 伊冬梅. AP2/ERF转录因子响应植物涝渍胁迫的研究进展. 分子植物育种, 2022, 20: 4665-4676.
Dong T T, Zhang D J, Yang Z Q, Zhao A Q, Wang Y Y, Yin D M. Advances of AP2/ERF transcription factor response to waterlogging stress in plants. Mol Plant Breed, 2022, 20: 4665-4676 (in Chinese with English abstract).
[13] 崔喜艳, 张莹莹, 周莹. 植物响应干旱胁迫转录因子研究进展. 吉林农业大学学报, 2022, 44: 505-511.
Cui X Y, Zhang Y Y, Zhou Y. Research progress of plant transcription factors in response to drought stress. J Jilin Agric Univ, 2022, 44: 505-511 (in Chinese with English abstract).
[14] 兰孟焦, 后猛, 肖满秋, 李臣, 潘皓, 张允刚, 卢凌志, 侯隆英, 葛瑞华, 吴问胜, 李强. AP2/ERF转录因子参与植物次生代谢和逆境胁迫响应的研究进展. 植物遗传资源学报, 2023, 24: 1223-1235.
doi: 10.13430/j.cnki.jpgr.20230322001
Lan M J, Kou M, Xiao M Q, Li C, Pan H, Zhang Y G, Lu L Z, Hou L Y, Ge R H, Wu W S, Li Q. Research progress of AP2/ERF transcription factors participating in plant secondary metabolism and stress response. J Plant Genet Resour, 2023, 24: 1223-1235 (in Chinese with English abstract).
doi: 10.13430/j.cnki.jpgr.20230322001
[15] Feng K, Hou X L, Xing G M, Liu J X, Duan A Q, Xu Z S, Li M Y, Zhuang J, Xiong A S. Advances in AP2/ERF super-family transcription factors in plant. Crit Rev Biotechnol, 2020, 40: 750-776.
doi: 10.1080/07388551.2020.1768509 pmid: 32522044
[16] Nie J, Wen C, Xi L, Lyu S H, Zhao Q C, Kou Y P, Ma N, Zhao L J, Zhou X F. The AP2/ERF transcription factor CmERF053 of Chrysanthemum positively regulates shoot branching, lateral root, and drought tolerance. Plant Cell Rep, 2018, 37: 1049-1060.
[17] 王艺, 陈明堃, 欧悦, 柯玉洁, 马山虎, 郑清冬, 刘仲健, 艾叶. AP2/ERF转录因子调控兰科植物生长发育和非生物胁迫响应的研究进展. 分子植物育种, 2022, 20: 7778-7784.
Wang Y, Chen M K, Ou Y, Ke Y J, Ma S H, Zheng Q D, Liu Z J, Ai Y. Advances in AP2/ERF transcription factors of Orchidaceae in regulating growth and development and abiotic stress response. Mol Plant Breed, 2022, 20: 7778-7784 (in Chinese with English abstract).
[18] Ni J B, Bai S L, Zhao Y, Qian M J, Tao R Y, Yin L, Gao L, Teng Y W. Ethylene response factors Pp4ERF24 and Pp12ERF96 regulate blue light-induced anthocyanin biosynthesis in ‘Red Zaosu’pear fruits by interacting with MYB114. Plant Mol Biol, 2019, 99: 67-78.
[19] Koyama T, Sato F. The function of ETHYLENE RESPONSE FACTOR genes in the light-induced anthocyanin production of Arabidopsis thaliana leaves. Plant Biotechnol, 2018, 35: 87-91.
[20] Chung M Y, Vrebalov J, Alba R, Lee J, McQuinn R, Chung J D, Klein P, Giovannoni J. A tomato (Solanum lycopersicum) APETALA2/ERF gene, SlAP2a, is a negative regulator of fruit ripening. Plant J, 2010, 64: 936-947.
[21] Hawku M D, Goher F, Islam M A, Guo J, He F X, Bai X X, Yuan P, Kang Z S, Guo J. TaAP2-15, an AP2/ERF transcription factor, is positively involved in wheat resistance to Puccinia striiformis f.sp. tritici. Int J Mol Sci, 2021, 22: 2080.
[22] 陈忠良. 玉米转录因子EREB58在虫害应答中的功能分析. 中国农业科学院硕士学位论文, 北京, 2016.
Chen Z L. Functional Analysis of Maize Transcription Factor EREB58 in Pest Response. MS Thesis of Chinese Academy of Agricultural Sciences, Beijing, China, 2016 (in Chinese with English abstract).
[23] Scarpeci T E, Frea V S, Zanor M I, Valle E M. Overexpression of AtERF019 delays plant growth and senescence, and improves drought tolerance in Arabidopsis. J Exp Bot, 2017, 68: 673-685.
doi: 10.1093/jxb/erw429 pmid: 28204526
[24] Oliveira P N, Matias F, Martínez-Andújar C, Martinez-Melgarejo P A, Prudencio Á S, Galeano E, Pérez-Alfocea F, Carrer H. Overexpression of TgERF1, a transcription factor from Tectona grandis, increases tolerance to drought and salt stress in tobacco. Int J Mol Sci, 2023, 24: 4149.
[25] 强小林, 巴桑玉珍, 扎西罗布. 青藏高原区域青稞生产现状调研考察初报. 西藏农业科技, 2011, 33(1): 36-38.
Qiang X L, Ba Sang Y Z, Zha X L B. Preliminary study of analysis on highland barley production in Qinghai-Tibet plateau area Suggested countermeasure. Tibet J Agric Sci, 2011, 33(1): 36-38 (in Chinese with English abstract).
[26] 姚晓华, 吴昆仑. 青稞脂质转运蛋白基因blt4.9的克隆及其对非生物胁迫的响应. 作物学报, 2016, 42: 399-406.
doi: 10.3724/SP.J.1006.2016.00399
Yao X H, Wu K L. Isolation of blt4.9 gene encoding LTP protein in hulless barley and its response to abiotic stresses. Acta Agron Sin, 2016, 42: 399-406 (in Chinese with English abstract).
[27] 弓开元, 何亮, 邬定荣, 吕昌河, 李俊, 周文彬, 杜军, 于强. 青藏高原高寒区青稞光温生产潜力和产量差时空分布特征及其对气候变化的响应. 中国农业科学, 2020, 53: 720-733.
doi: 10.3864/j.issn.0578-1752.2020.04.005
Gong K Y, He L, Wu D R, Lyu C H, Li J, Zhou W B, Du J, Yu Q. Spatial-temporal variations of photo-temperature potential productivity and yield gap of highland barley and its response to climate change in the cold regions of the Tibetan Plateau. Sci Agric Sin, 2020, 53: 720-733 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2020.04.005
[28] Chang T L, Zhao Y, He H Y, Xi Q Q, Fu J Y, Zhao Y W. Exogenous melatonin improves growth in hulless barley seedlings under cold stress by influencing the expression rhythms of circadian clock genes. Peer J, 2021, 9: e10740.
[29] Yuan H J, Zeng X Q, Ling Z H, Wei Z X, Wang Y L, Zhuang Z H, Xu Q J, Tang Y W, Tashi N. Transcriptome profiles reveal cold acclimation and freezing tolerance of susceptible and tolerant hulless barley genotypes. Acta Physiol Plant, 2017, 39: 275.
[30] Wang Z A, An L K, Cui Y M, Bai Y X, Du G P, Wu K L. Assessment of tolerance of different varieties of hulless barley seedlings to low-temperature stress. Phyton Int J Exp Bot, 2024, 93: 2755-2766.
[31] 洛桑曲珍. 高寒地区青稞种植技术的应用与推广. 种子科技, 2019, 37(14): 50.
Luo Sang Q Z. Application and promotion of highland barley cultivation techniques in alpine regions. Seed Sci Technol, 2019, 37(14): 50 (in Chinese with English abstract).
[32] Chang T L, Xi Q Q, Wei X Y, Xu L, Wang Q Q, Fu J Y, Ling C, Zuo Y, Zhao Y, He H Y, et al. Rhythmical redox homeostasis can be restored by exogenous melatonin in hulless barley (Hordeum vulgare L. var. nudum) under cold stress. Environ Exp Bot, 2022, 194: 104756.
[33] 周彪, 邵陈禹, 朱倩, 刘仲华, 刘硕谦, 田娜. 茶树CsDREB2C基因的克隆、生物信息学及低温表达分析. 分子植物育种, 网络首发[2025-03-03]. http://kns.cnki.net/kcms/detail/46.1068.S.20250228.0944.003.
Zhou B, Shao C Y, Zhou Q, Liu Z H, Liu S Q, Tian N. Cloning, bioinformatics, and low-temperature expression analysis of CsDREB2C gene in camellia sinensis. Mol Plant Breed, Published online [2025-03-03], http://kns.cnki.net/kcms/detail/46.1068.S.20250228.0944.003 (in Chinese with English abstract).
[34] Pfaffl M W. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res, 2001, 29: e45.
[35] Zhang L, Cui Y M, An L K, Li J, Yao Y H, Bai Y X, Li X, Yao X H, Wu K L. Genome-wide identification of the CNGC gene family and negative regulation of drought tolerance by HvCNGC3 and HvCNGC16 in transgenic Arabidopsis thaliana. Plant Physiol Biochem, 2024, 210: 108593.
[36] Hao D, Ohme-Takagi M, Sarai A. Unique mode of GCC box recognition by the DNA-binding domain of ethylene-responsive element-binding factor (ERF domain) in plant. J Biol Chem, 1998, 273: 26857-26861.
doi: 10.1074/jbc.273.41.26857 pmid: 9756931
[37] Zhang Z J, Huang R F. Enhanced tolerance to freezing in tobacco and tomato overexpressing transcription factor TERF2/LeERF2 is modulated by ethylene biosynthesis. Plant Mol Biol, 2010, 73: 241-249.
doi: 10.1007/s11103-010-9609-4 pmid: 20135196
[38] Sun X M, Zhu Z F, Zhang L L, Fang L C, Zhang J S, Wang Q F, Li S H, Liang Z C, Xin H P. Overexpression of ethylene response factors VaERF080 and VaERF087 from Vitis amurensis enhances cold tolerance in Arabidopsis. Sci Hortic, 2019, 243: 320-326.
[39] Zhang H W, Zhang J F, Quan R D, Pan X W, Wan L Y, Huang R F. EAR motif mutation of rice OsERF3 alters the regulation of ethylene biosynthesis and drought tolerance. Planta, 2013, 237: 1443-1451.
[40] Zhao M J, Yin L J, Liu Y, Ma J, Zheng J C, Lan J H, Fu J D, Chen M, Xu Z S, Ma Y Z. The ABA-induced soybean ERF transcription factor gene GmERF75 plays a role in enhancing osmotic stress tolerance in Arabidopsis and soybean. BMC Plant Biol, 2019, 19: 506.
[41] Zhou M Q, Shen C, Wu L H, Tang K X, Lin J. CBF-dependent signaling pathway: a key responder to low temperature stress in plants. Crit Rev Biotechnol, 2011, 31: 186-192.
doi: 10.3109/07388551.2010.505910 pmid: 20919819
[42] Chinnusamy V, Zhu J H, Zhu J K. Cold stress regulation of gene expression in plants. Trends Plant Sci, 2007, 12: 444-451.
doi: 10.1016/j.tplants.2007.07.002 pmid: 17855156
[43] Kim Y, Park S, Gilmour S J, Thomashow M F. Roles of CAMTA transcription factors and salicylic acid in configuring the low-temperature transcriptome and freezing tolerance of Arabidopsis. Plant J, 2013, 75: 364-376.
[44] Lissarre M, Ohta M, Sato A, Miura K. Cold-responsive gene regulation during cold acclimation in plants. Plant Signal Behav, 2010, 5: 948-952.
doi: 10.4161/psb.5.8.12135 pmid: 20699657
[45] Zhen Y, Ungerer M C. Relaxed selection on the CBF/DREB1 regulatory genes and reduced freezing tolerance in the southern range of Arabidopsis thaliana. Mol Biol Evol, 2008, 25: 2547-2555.
[46] Bernardo A N, Ma H X, Zhang D D, Bai G H. Single nucleotide polymorphism in wheat chromosome region harboring Fhb1 for Fusarium head blight resistance. Mol Breed, 2012, 29: 477-488.
[47] Li Y H, Zhang C, Gao Z S, Smulders M J M, Ma Z L, Liu Z X, Nan H Y, Chang R Z, Qiu L J. Development of SNP markers and haplotype analysis of the candidate gene for rhg1, which confers resistance to soybean cyst nematode in soybean. Mol Breed, 2009, 24: 63-76.
[48] Zhu J, Zhang Y H, Zhang M N, Hong Y, Sun C Q, Guo Y, Yin H X, Lyu C, Guo B J, Wang F F, et al. Natural variation and CRISPR/Cas9 gene editing demonstrate the potential for a group VII ethylene response factor HvERF62 in regulating barley (Hordeum vulgare L.) waterlogging tolerance. J Exp Bot, 2025, 76: eraf101.
[49] Mei F M, Chen B, Du L Y, Li S M, Zhu D H, Chen N, Zhang Y F, Li F F, Wang Z X, Cheng X X, et al. A gain-of-function allele of a DREB transcription factor gene ameliorates drought tolerance in wheat. Plant Cell, 2022, 34: 4472-4494.
[50] Jeong J S, Kim Y S, Baek K H, Jung H, Ha S H, Choi Y D, Kim M, Reuzeau C, Kim J K. Root-specific expression of OsNAC10 improves drought tolerance and grain yield in rice under field drought conditions. Plant Physiol, 2010, 153: 185-197.
doi: 10.1104/pp.110.154773 pmid: 20335401
[1] WANG Mu, ZHUO Ga, ZHA Sang, XIRUO Qu-Zong, DAWA Dondup, GUO Gang-Gang, ZHANG Jing, ZHUO Ga, LHUNDRUP Namgyal. Genetic diversity analysis and comprehensive evaluation of Qingke germplasm based on six phenotypic traits [J]. Acta Agronomica Sinica, 2025, 51(6): 1526-1537.
[2] YANG Jing-Fa, YU Xin-Lian, YAO You-Hua, YAO Xiao-Hua, WANG Lei, WU Kun-Lun, LI Xin. QTL mapping of tiller angle in qingke (Hordeum vulgare L.) [J]. Acta Agronomica Sinica, 2025, 51(1): 260-272.
[3] YAN Feng, DONG Yang, LI Qing-Quan, ZHAO Fu-Yang, HOU Xiao-Min, LIU Yang, LI Qing-Chao, ZHAO Lei, FAN Guo-Quan, LIU Kai. Comprehensively evaluation on cold tolerance of foxtail millet varieties at germination stage [J]. Acta Agronomica Sinica, 2024, 50(9): 2207-2218.
[4] SHE Meng, ZHENG Deng-Yu, KE Zhao, WU Zhong-Yi, ZOU Hua-Wen, ZHANG Zhong-Bao. Cloning and functional analysis of ZmGRAS13 gene in maize [J]. Acta Agronomica Sinica, 2024, 50(6): 1420-1434.
[5] LIU Kai, CHEN Ji-Jin, LIU Shuai, CHEN Xu, ZHAO Xin-Ru, SUN Shang, XUE Chao, GONG Zhi-Yun. Dynamic change profile of histone H3K18cr on rice whole genome under cold stress [J]. Acta Agronomica Sinica, 2023, 49(9): 2398-2411.
[6] JIA Yu-Ku, GAO Hong-Huan, FENG Jian-Chao, HAO Zi-Rui, WANG Chen-Yang, XIE Ying-Xin, GUO Tian-Cai, MA Dong-Yun. Genome-wide identification and expression analysis of G2-like transcription factors family genes in wheat [J]. Acta Agronomica Sinica, 2023, 49(5): 1410-1425.
[7] SHEN Qing-Qing, WANG Tian-Ju, WANG Jun-Gang, ZHANG Shu-Zhen, ZHAO Xue-Ting, HE Li-Lian, LI Fu-Sheng. Functional identification of Saccharum spontaneum transcription factor SsWRKY1 to improve drought tolerance in sugarcane [J]. Acta Agronomica Sinica, 2023, 49(10): 2654-2664.
[8] MA Li, BAI Jing, ZHAO Yu-Hong, SUN Bo-Lin, HOU Xian-Fei, FANG Yan, WANG Wang-Tian, PU Yuan-Yuan, LIU Li-Jun, XU Jia, TAO Xiao-Lei, SUN Wan-Cang, WU Jun-Yan. Protein and physiological differences under cold stress, and identification and analysis of BnGSTs in Brassica napus L. [J]. Acta Agronomica Sinica, 2023, 49(1): 153-166.
[9] BAI Dong-Mei, XUE Yun-Yun, HUANG Li, HUAI Dong-Xin, TIAN Yue-Xia, WANG Peng-Dong, ZHANG Xin, ZHANG Hui-Qi, LI Na, JIANG Hui-Fang, LIAO Bo-Shou. Assessment of cold tolerance of different peanut varieties and screening of evaluation indexes at germination stage [J]. Acta Agronomica Sinica, 2022, 48(8): 2066-2079.
[10] CHEN Yue, SUN Ming-Zhe, JIA Bo-Wei, LENG Yue, SUN Xiao-Li. Research progress regarding the function and mechanism of rice AP2/ERF transcription factor in stress response [J]. Acta Agronomica Sinica, 2022, 48(4): 781-790.
[11] XUE Xiao-Meng, WU JIE, WANG Xin, BAI Dong-Mei, HU Mei-Ling, YAN Li-Ying, CHEN Yu-Ning, KANG Yan-Ping, WANG Zhi-Hui, HUAI Dong-Xin, LEI Yong, LIAO Bo-Shou. Effects of cold stress on germination in peanut cultivars with normal and high content of oleic acid [J]. Acta Agronomica Sinica, 2021, 47(9): 1768-1778.
[12] SHI Lei, MIAO Li-Juan, HUANG Bing-Yan, GAO Wei, ZHANG Zong-Xin, QI Fei-Yan, LIU Juan, DONG Wen-Zhao, ZHANG Xin-You. Characterization of the promoter and 5'-UTR intron in AhFAD2-1 genes from peanut and their responses to cold stress [J]. Acta Agronomica Sinica, 2021, 47(9): 1703-1711.
[13] YIN Ming, YANG Da-Wei, TANG Hui-Juan, PAN Gen, LI De-Fang, ZHAO Li-Ning, HUANG Si-Qi. Genome-wide identification of GRAS transcription factor and expression analysis in response to cadmium stresses in hemp (Cannabis sativa L.) [J]. Acta Agronomica Sinica, 2021, 47(6): 1054-1069.
[14] GAO Yun, ZHANG Yu-Xue, MA Quan, SU Sheng-Nan, LI Chun-Yan, DING Jin-Feng, ZHU Min, ZHU Xin-Kai, GUO Wen-Shan. Effects of low temperature in spring on fertility of pollen and formation of grain number in wheat [J]. Acta Agronomica Sinica, 2021, 47(1): 104-115.
[15] LI Xu-Kai,LI Ren-Jian,ZHANG Bao-Jun. Identification of rice stress-related gene co-expression modules by WGCNA [J]. Acta Agronomica Sinica, 2019, 45(9): 1349-1364.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[2] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[3] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[4] Wang Yiqun. Infection of Rhizobia to Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 32 -35 .
[5] KE Li-Ping;ZHENG Tao;WU Xue-Long;HE Hai-Yan;CHEN Jin-Qing. Analysis of Self-Incompatibility Locus Gene in Brassica napus[J]. Acta Agron Sin, 2008, 34(05): 764 -769 .
[6] CUI Xiu-Hui. Male Sterility Induced by Chemical Hybridizing Agent SQ-1 in Common Millet[J]. Acta Agron Sin, 2008, 34(01): 106 -110 .
[7] A JIA La-Tie;ZENG Long-Jun;XUE Da-Wei;HU Jiang;ZENG Da-Li;GAO Zhen-Yu;GUO Long-Biao;LI Shi-Gui;QIAN Qian
. QTL Analysis for Chlorophyll Content in Four Grain-Filling Stage in Rice[J]. Acta Agron Sin, 2008, 34(01): 61 -66 .
[8] YANG Wen-Xiong;YANG Fang-Ping;LIANG Dan;HE Zhong-Hu;SHANG Xun-Wu;XIA Xian-Chun. Molecular Characterization of Slow-Rusting Genes Lr34/Yr18 in Chinese Wheat Cultivars[J]. Acta Agron Sin, 2008, 34(07): 1109 -1113 .
[9] WANG Ying;WU Cun-Xiang;ZHANG Xue-Ming;WANG Yun-Peng;HAN Tian-Fu. Effects of Soybean Major Maturity Genes under Different Photoperiods[J]. Acta Agron Sin, 2008, 34(07): 1160 -1168 .
[10] WANG Guo-Li;GUO Zhen-Fei. Effects of Phosphorus Nutrient on the Photosynthetic Characteristics in Rice Cultivars with Different Cold-Sensitivity[J]. Acta Agron Sin, 2007, 33(08): 1385 -1389 .