Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2025, Vol. 51 ›› Issue (11): 2971-2982.doi: 10.3724/SP.J.1006.2025.54025

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Molecular mechanism of the MeERF6-MePAP2 module in response to low-temperature stress

AI Li1,2(), LI Meng-Tao1,2, LU Fa-Bao1,2, LIU Xiao-Chen1,2, MAI Wei-Tao1,2, ZHOU Xin-Cheng2,3,*(), CHEN Xin2,3,*()   

  1. 1 College of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, Hainan, China
    2 National Key Laboratory of Tropical Crop Biological Breeding / Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, Hainan, China
    3 Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya 572025, Hainan, China
  • Received:2025-02-21 Accepted:2025-07-09 Online:2025-11-12 Published:2025-07-14
  • Contact: *E-mail: zhouxincheng@itbb.org.cn; E-mail: chenxin@itbb.org.cn
  • Supported by:
    National Key Laboratory of Tropical Crop Biotechnology Innovation Team Research Project(NKLTCBCXTD07);China Agriculture Research System of MOF and MARA(CARS-11-HNCX)

Abstract:

Using a segregating population derived from the self-pollination of the cassava variety SC124, we employed Bulked Segregant Analysis (BSA) combined with genome re-sequencing to map and clone the MYB-family transcription factor MePAP2. Genetic analysis revealed an 84 bp insertion-deletion (InDel) in the promoter region of MePAP2, which was significantly associated with the segregation of the purple/green petiole trait and correlated with plant growth vigor under low-temperature conditions. A yeast one-hybrid assay using the MePAP2 promoter as bait identified the AP2/ERF-family transcription factor MeERF6. Dual-luciferase reporter assays and in vivo imaging demonstrated that MeERF6 directly binds to the MePAP2 promoter and positively regulates its transcription. Notably, MeERF6 responded to low-temperature stress earlier than MePAP2, and its transcriptional activity was significantly higher in petiole tissue compared to other organs. Collectively, these findings elucidate a hierarchical regulatory pathway involving the MeERF6-MePAP2 module in cassava’s response to low-temperature stress, providing valuable genetic targets for the molecular breeding of cold-tolerant cassava varieties.

Key words: cassava, low-temperature stress, MePAP2, MeERF6, yeast one-hybrid

Table 1

Primers used in this study"

引物名称
Primer name
上游引物
Forward primer (5′-3′)
下游引物
Reverse primer (5′-3′)
MePAP2-PCR
MePAP2-pAbAi
CAAGTTGGAGGGTCTTAGCTTGT
CTTGAATTCGAGCTCGGTACCACCCCTAACCATTTGCTTTCAT
GATGTCCAAGTTGGGTGGGTAT
AGCACATGCCTCGAGGTCGACTCCACTCCACACACTGCCTATTT
MeERF6-pGreen II62-sk CGCTCTAGAACTAGTGGATCCATGGCGGTAGAAACTGTAGCA GATAAGCTTGATATCGAATTCTCAGTTTGTCTTTGTCCGTTTGC
MePAP2-pGreen II0800 CTATAGGGCGAATTGGGTACCACC
CCTAACCATTTGCTTTCATC
AAGCTTATCGATACCGTCGACTCCACTCCACACACTGCCTATTT
qMeActin TCTTCTCAACTGAGGAGCTGCT CCTTCGTCTGGACCTTGCTG
qMeERF6 ATAAGAGACCCTAACCGGAAAG GCGTCATCTGTTACATCAGTATC

Fig. S1

Growth vigor of plants with purple and green petioles"

Fig. 1

Characterization of petiole color, growth potential, and InDel marker identification at key loci in the first self-generation of SC124 A: segregation of purple and green petioles in the first self-generation of SC124. B: segregation of purple and green juvenile leaves in the first self-generation of SC124. C: comparison of average stem diameter between purple-petiole and green-petiole plants. Lowercase letters above error bars indicate significant differences at the 5% level. D: comparison of average plant height between purple-petiole and green-petiole plants. Lowercase letters above error bars indicate significant differences at the 5% level. E: comparison of the promoter region sequences between plants with purple and green petioles. The red box indicates the differential sequence between purple and green petioles. F: schematic diagram of primer design based on the promoter region of purple petioles. G: verification of the differential sites in the promoter regions of purple and green petioles using PCR technology."

Table S1

Survey of plant height and stem diameter in SC124 self-separated population"

株系编号
Strain number
绿色叶柄Green petiole 株系编号
Strain number
紫色叶柄Purple petiole
株高
Plant height (cm)
茎粗
Stem diameter (cm)
株高
Plant height (cm)
茎粗
Stem diameter (cm)
AS0570 170 2.6 AS0581 128 1.5
Lb-25 140 1.5 AS0590 112 1.5
AS0565 150 2.0 AS0589 126 1.6
Lb-26 146 1.7 AS0587 167 1.9
AS0547 105 1.3 AS0585 189 1.7
AS0546 115 1.5 AS0583 152 1.9
AS0545 162 2.1 AS0554 174 1.7
Lb-32 93 1.6 AS0557 140 2.4
AS0560 108 1.0 Zb-13 180 2.0
AS0550 83 1.5 AS0568 177 2.0
AS0258 82 1.5 AS0535 110 1.5
AS0265 130 2.7 AS0540 150 2.0
AS0278 166 2.2 AS0138 180 2.1
AS0300 90 1.5 AS0505 130 1.9
Lb-35 153 1.9 AS0533 141 2.0
Lb-41 80 1.0 AS0192 127 1.7
Zb-22 189 2.2 AS0751 166 2.4
AS0161 92 1.3 AS002 115 1.9
AS0261 140 1.5 AS0768 190 2.0
AS0299 146 1.7 AS0549 114 1.6
AS0760 180 2.3 AS0543 187 2.2
AS0295 93 1.1 AS0060 165 1.9
AS0197 130 1.9 AS0553 112 1.6
AS0584 130 1.5 AS0566 155 2.0
AS0688 75 1.0 Zb-34 175 2.1
AS0694 140 1.5 AS0563 200 2.0
AS0576 125 1.7 AS0558 146 1.7
AS0201 176 1.9 AS0561 186 2.4
AS0136 164 2.0 AS0562 162 2.1
AS0249 160 1.7 AS0426 133 1.4
AS0245 124 1.7 AS0255 172 1.8
AS0458 86 1.2 SC0274 100 2.1
AS0242 75 0.9 Zb-48 118 1.3
AS0019 118 1.3 AS0092 168 2.1
AS0230 107 1.3 AS0209 121 1.8
AS0752 82 1.6 AS022 155 2.1
AS0188 100 1.0 AS0190 100 1.7
AS0687 90 1.1 AS0216 125 1.8
AS0059 140 1.9 AS0549 160 1.8
AS0062 57 0.7 AS0681 140 1.7
AS0342 73 0.9 Zb-46 127 1.6
AS0224 43 0.7 AS0104 160 2.7
AS0276 120 1.8 AS0053 197 2.5
AS0273 87 2.0 AS0514 168 2.4
AS0287 122 1.6 AS0080 167 1.8
AS0286 133 1.9 Zb-27 138 1.6
AS0269 100 1.6 AS0532 124 1.5
Lb-15 180 2.3 Zb-29 120 1.3
Lb-37 170 1.9 AS0081 70 1.3

Fig. 2

Characterization of MePAP2 A: phylogenetic analysis of MePAP2 and protein sequences of 10 representative anthocyanin-promoting MYB transcription factors from plant species. Accession numbers of other species: AtPAP1 (NP_176057.1), AtPAP2 (NP_176813.1), AtMYB113 (NP_176811.1), FaMYB10 (USN17647.1), MdMYB9 (NP_001280749.1), VvMYBA1 (XP_010664911.1), VvMYB5b (NP_001267854.1), VvMYB114 (XP_034707784.1), and MdMYB11 (NP_001280958.1). B: sequence alignment of MePAP2 with its homologs in other plant species. Gray boxes indicate the R2 domain, black boxes denote the R3 domain, and the red box highlights the bHLH-interacting motif."

Fig. 3

Screening and Identification of MeERF6 A: screening of AbA background concentration in yeast one-hybrid (Y1H) for green petiole and purple petiole. B: identification through streaking purification of yeast colonies from green petiole and purple petiole. C: prediction of the conserved domain of MeERF6 using the online conserved domain prediction website smart. D: subcellular localization of MeERF6 protein in tobacco. The scale bar is 50 μm."

Fig. 4

Expression profiles of MeERF6 and MePAP2 in response to low-temperature treatment A: transcriptional activity analysis of MePAP2 in three different tissue parts (petiole, stem, and leaf) under 4℃ low-temperature treatment. Lowercase letters above the error bars indicate significant differences at the 5% level. B: transcriptional activity analysis of MeERF6 in three different tissue parts (petiole, stem, and leaf) under 4℃ low-temperature treatment. Lowercase letters above the error bars indicate significant differences at the 5% level."

Fig. 5

Yeast one-hybrid, dual-luciferase assay, and in-vivo imaging were used to verify the interaction between promoters and transcription factors A: the yeast one-hybrid dot-blot experiment verified the interaction between MeERF6 and MePAP2pro in yeast. B: the in-vivo imaging (LCA) experiment verified the interaction between MeERF6 and the promoter region of the green-petiole MePAP2 in tobacco. MePAP2pro + MeERF6 was the experimental group. C: the in-vivo imaging (LCA) experiment verified the interaction between MeERF6 and the promoter region of the purple-petiole MePAP2 in tobacco. MePAP2pro + MeERF6 was the experimental group. D: dual-luciferase assay determined the regulatory mode of MeERF6 on the promoter regions of the green-petiole and purple-petiole MePAP2. MePAP2pro + MeERF6 was the experimental group. Data represent the mean of three independent biological replicates. Lowercase letters above the error bars indicate significant differences at the 5% level."

[1] 甘秀芹, 韦本辉, 陆柳英, 申章佑, 宁秀呈, 胡泊, 李艳英, 吴延勇, 刘斌. 广西木薯杂交选育系列株系GW08研究初报. 广东农业科学, 2011, 38(21): 16-17.
Gan X Q, Wei B H, Lu L Y, Shen Z Y, Ning X C, Hu P, Li Y Y, Wu Y Y, Liu B. Preliminary study on series single plant of GW08 of cassava crossbreeding in Guangxi. Guangdong Agric Sci, 2011, 38(21): 16-17 (in Chinese with English abstract).
[2] 庞祥宇. 木薯IAA/ARF基因家族预测、表达及功能分析. 广西大学硕士学位论文, 广西南宁, 2019.
Pang X Y. Prediction, Expression and Functional Analysis of Cassava IAA/ARF Gene Family. MS Thesis of Guangxi University, Nanning, Guangxi, China, 2019 (in Chinese with English abstract).
[3] 邢谷杨. 我国主要热带香料植物科研和生产概述. 热带农业科学, 2000, 20(3): 43-48.
Xing G Y. Summary of scientific research and production of main tropical perfume plants in China. Trop Agric Sci, 2000, 20(3): 43-48 (in Chinese).
[4] 于晓玲, 李文彬, 李智博, 阮孟斌. 木薯MeMYC2.2基因耐低温功能研究. 生物技术通报, 2023, 39(1): 224-231.
doi: 10.13560/j.cnki.biotech.bull.1985.2022-0461
Yu X L, Li W B, Li Z B, Ruan M B. Cold resistance function analysis of cassava MeMYC2.2. Biotechnol Bull, 2023, 39(1): 224-231 (in Chinese with English abstract).
[5] Marino D, Andrio E, Danchin E G J, Oger E, Gucciardo S, Lambert A, Puppo A, Pauly N. A Medicago truncatula NADPH oxidase is involved in symbiotic nodule functioning. New Phytol, 2011, 189: 580-592.
[6] Li X L, Meng D, Li M J, Zhou J, Yang Y Z, Zhou B B, Wei Q P, Zhang J K. Transcription factors MhDREB2A/MhZAT10 play a role in drought and cold stress response crosstalk in apple. Plant Physiol, 2023, 192: 2203-2220.
[7] Zhou L, He Y J, Li J, Liu Y, Chen H Y. CBFs function in anthocyanin biosynthesis by interacting with MYB113 in eggplant (Solanum melongena L.). Plant Cell Physiol, 2020, 61: 416-426.
doi: 10.1093/pcp/pcz209 pmid: 31725150
[8] Yang X H, Wang J R, Xia X Z, Zhang Z Q, He J, Nong B X, Luo T P, Feng R, Wu Y Y, Pan Y H, et al. OsTTG1, a WD40 repeat gene, regulates anthocyanin biosynthesis in rice. Plant J, 2021, 107: 198-214.
[9] 赵东鸣. 拟南芥AtGLKs调控花青素合成的分子机制研究. 江西农业大学硕士学位论文, 江西南昌, 2022.
Zhao D M. The Molecular Regulatory Mechanism of Anthocyanin Biosynthesis by AtGLKs in Arabidopsis thaliana. MS Thesis of Jiangxi Agricultural University, Nanchang, Jiangxi, China, 2022 (in Chinese with English abstract).
[10] Payne C T, Zhang F, Lloyd A M. GL3 encodes a bHLH protein that regulates trichome development in Arabidopsis through interaction with GL1 and TTG1. Genetics, 2000, 156: 1349-1362.
doi: 10.1093/genetics/156.3.1349 pmid: 11063707
[11] Xing M H, Xin P M, Wang Y T, Han C Y, Lei C B, Huang W Y, Zhang Y P, Zhang X Y, Cheng K, Zhang X. A negative feedback regulatory module comprising R3-MYB repressor MYBL2 and R2R3-MYB activator PAP1 fine-tunes high light-induced anthocyanin biosynthesis in Arabidopsis. J Exp Bot, 2024, 75: 7381-7400.
[12] 胡彦如, 黄兴连, 叶静文. 植物花青素合成及其调控因素研究进展. 生命科学研究, 2024, 28: 493-502.
Hu Y R, Huang X L, Ye J W. Research progress of anthocyanin synthesis and regulatory factors in plants. Life Sci Res, 2024, 28: 493-502 (in Chinese with English abstract).
[13] Huang C B, Zhao T, Li J H, Wang L, Tang Y J, Wang Y J, Li Y, Zhang C H. Glutathione transferase VvGSTU60 is essential for proanthocyanidin accumulation and cooperates synergistically with MATE in grapes. Plant J, 2025, 121: 1-17.
[14] Saito K, Yonekura-Sakakibara K, Nakabayashi R, Higashi Y, Yamazaki M, Tohge T, Fernie A R. The flavonoid biosynthetic pathway in Arabidopsis: structural and genetic diversity. Plant Physiol Biochem, 2013, 72: 21-34.
[15] 孙毅. 拟南芥GST蛋白TT19介导细胞内花青素转运的机理与镁离子转运蛋白MGT10调节光系统II活性的研究. 中国科学院大学博士学位论文, 北京, 2013.
Sun Y. Characterization of the Role of a GST Protein TRANSPARENT TESTA 19 in Intracellular Anthocyanin Transport in Arabidopsis, and Functional Analysis of a Magnesium Transporter MAGNESIUM TRANSPORT 10 in Regulating Photosystem II Activity in Arabidopsis. PhD Dissertation of University of Chinese Academy of Sciences, Beijing, China, 2013 (in Chinese with English abstract).
[16] 肖玉洁, 李泽明, 易鹏飞, 胡日生, 张先文, 朱列书. 转录因子参与植物低温胁迫响应调控机理的研究进展. 生物技术通报, 2018, 34(12): 1-9.
doi: 10.13560/j.cnki.biotech.bull.1985.2018-0240
Xiao Y J, Li Z M, Yi P F, Hu R S, Zhang X W, Zhu L S. Research progress on response mechanism of transcription factors involved in plant cold stress. Biotechnol Bull, 2018, 34(12): 1-9 (in Chinese with English abstract).
[17] Zlobin N, Lebedeva M, Monakhova Y, Ustinova V, Taranov V. An ERF 121 transcription factor from Brassica oleracea is a target for the conserved TAL-effectors from different Xanthomonas campestris pv. campestris strains. Mol Plant Pathol, 2021, 22: 618-624.
[18] 悦曼芳, 张春, 吴忠义. 植物转录因子AP2/ERF家族蛋白结构和功能的研究进展. 生物技术通报, 2022, 38(12): 11-26.
doi: 10.13560/j.cnki.biotech.bull.1985.2022-0432
Yue M F, Zhang C, Wu Z Y. Research progress in the structural and functional analysis of plant transcription factor AP2/ERF protein family. Biotechnol Bull, 2022, 38(12): 11-26 (in Chinese with English abstract).
[19] Yin F L, Zeng Y L, Ji J Y, Wang P J, Zhang Y F, Li W H. The halophyte Halostachys caspica AP2/ERF transcription factor HcTOE3 positively regulates freezing tolerance in Arabidopsis. Front Plant Sci, 2021, 12: 638788.
[20] Huang T D, Xin S C, Fang Y J, Chen T, Chang J, Ko N C K, Huang H S, Hua Y W. Use of a novel R2R3-MYB transcriptional activator of anthocyanin biosynthesis as visual selection marker for rubber tree (Hevea brasiliensis) transformation. Ind Crops Prod, 2021, 174: 114225.
[21] Zu X F, Luo L L, Wang Z, Gong J, Yang C, Wang Y, Xu C H, Qiao X H, Deng X, Song X W, et al. A mitochondrial pentatricopeptide repeat protein enhances cold tolerance by modulating mitochondrial superoxide in rice. Nat Commun, 2023, 14: 6789.
doi: 10.1038/s41467-023-42269-4 pmid: 37880207
[22] Li N, Wu H, Ding Q Q, Li H H, Li Z F, Ding J, Li Y. The heterologous expression of Arabidopsis PAP2 induces anthocyanin accumulation and inhibits plant growth in tomato. Funct Integr Genomics, 2018, 18: 341-353.
[23] Licausi F, Ohme-Takagi M, Perata P. APETALA2/Ethylene Responsive Factor (AP2/ERF) transcription factors: mediators of stress responses and developmental programs. New Phytol, 2013, 199: 639-649.
doi: 10.1111/nph.12291 pmid: 24010138
[24] Hichri I, Barrieu F, Bogs J, Kappel C, Delrot S, Lauvergeat V. Recent advances in the transcriptional regulation of the flavonoid biosynthetic pathway. J Exp Bot, 2011, 62: 2465-2483.
doi: 10.1093/jxb/erq442 pmid: 21278228
[25] Kobayashi S, Goto-Yamamoto N, Hirochika H. Retrotransposon- induced mutations in grape skin color. Science, 2004, 304: 982.
doi: 10.1126/science.1095011 pmid: 15143274
[26] Xie S, Lei Y J, Chen H W, Li J N, Chen H Z, Zhang Z W. R2R3- MYB transcription factors regulate anthocyanin biosynthesis in grapevine vegetative tissues. Front Plant Sci, 2020, 11: 527.
[27] Zhu Y F, Zhu G T, Xu R, Jiao Z X, Yang J W, Lin T, Wang Z, Huang S W, Chong L, Zhu J K. A natural promoter variation of SlBBX31 confers enhanced cold tolerance during tomato domestication. Plant Biotechnol J, 2023, 21: 1033-1043.
[28] Sun X M, Xiong H Y, Jiang C H, Zhang D M, Yang Z L, Huang Y P, Zhu W B, Ma S S, Duan J Z, Wang X, et al. Natural variation of DROT1 confers drought adaptation in upland rice. Nat Commun, 2022, 13: 4265.
[29] Zhang Y, Ming R H, Khan M, Wang Y, Dahro B, Xiao W, Li C L, Liu J H. ERF9 of Poncirus trifoliata (L.) Raf. undergoes feedback regulation by ethylene and modulates cold tolerance via regulating a glutathione S-transferase U17 gene. Plant Biotechnol J, 2022, 20: 183-200.
[30] 王欣悦, 赵楠, 王嫱, 杨森, 邵庆一, 曹佳昂, 王雪松, 刘丽杰. ERF转录因子在植物逆境响应中的作用. 高师理科学刊, 2025, 45(2): 63-67.
Wang X Y, Zhao N, Wang Q, Yang S, Shao Q Y, Cao J A, Wang X S, Liu L J. Role of ERF transcription factors in plant stress response. J Sci Teach Coll Univ, 2025, 45(2): 63-67 (in Chinese with English abstract).
[31] Tian Y, Zhang H W, Pan X W, Chen X L, Zhang Z J, Lu X Y, Huang R F. Overexpression of ethylene response factor TERF2 confers cold tolerance in rice seedlings. Transgenic Res, 2011, 20: 857-866.
doi: 10.1007/s11248-010-9463-9 pmid: 21136294
[32] Khan M, Hu J B, Dahro B, Ming R H, Zhang Y, Wang Y, Alhag A, Li C L, Liu J H. ERF108 from Poncirus trifoliata (L.) Raf. functions in cold tolerance by modulating raffinose synthesis through transcriptional regulation of PtrRafS. Plant J, 2021, 108: 705-724.
[33] Chinnusamy V, Ohta M, Kanrar S, Lee B H, Hong X H, Agarwal M, Zhu J K. ICE1: a regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis. Genes Dev, 2003, 17: 1043-1054.
[1] XIAO Ming-Kun, YAN Wei, SONG Ji-Ming, ZHANG Lin-Hui, LIU Qian, DUAN Chun-Fang, LI Yue-Xian, JIANG Tai-Ling, SHEN Shao-Bin, ZHOU Ying-Chun, SHEN Zheng-Song, XIONG Xian-Kun, LUO Xin, BAI Li-Na, LIU Guang-Hua. Comparative transcriptome profiling of leaf in curled-leaf cassava and its mutant [J]. Acta Agronomica Sinica, 2024, 50(8): 2143-2156.
[2] WANG Jia-Xiang, YU Xue-Ting, LI Meng-Tao, MAI Wei-Tao, CHEN Xin, WANG Wen-Quan. Preliminary study on the regulation of cassava plant type by MeLAZY1c gene [J]. Acta Agronomica Sinica, 2024, 50(6): 1514-1524.
[3] WANG Lian-Nan, LI Yuan-Chao, YU Nai-Tong, MAI Wei-Tao, LI Ya-Jun, CHEN Xin. Functional identification of MeTCP3a transcription factor in cassava leaf development [J]. Acta Agronomica Sinica, 2024, 50(11): 2720-2730.
[4] YU Xue-Ting, LI Ke, LI Meng-Tao, BAO Ru-Xue, CHEN Xin, WANG Wen-Quan. Interaction identification between protein kinase MeSnRK2.12 and transcription factor MebHLH1 and its relative expression level in cassava [J]. Acta Agronomica Sinica, 2023, 49(9): 2594-2600.
[5] XU Zi-Yin, YU Xiao-Ling, ZOU Liang-Ping, ZHAO Ping-Juan, LI Wen-Bin, GENG Meng-Ting, RUAN Meng-Bin. Expression pattern analysis and interaction protein screening of cassava MYB transcription factor MeMYB60 [J]. Acta Agronomica Sinica, 2023, 49(4): 955-965.
[6] CHEN Hui-Xian, LIANG Zhen-Hua, HUANG Zhen-Ling, WEI Wan-Ling, ZHANG Xiu-Fen, YANG Hai-Xia, LI Heng-Rui, HE Wen, LI Tian-Yuan, LAN Xiu, RUAN Li-Xia, CAI Zhao-Qin, NONG Jun-Xin. Transcriptomic profile of key stages of sex differentiation in cassava flowers and discovery of candidate genes related to female flower differentiation [J]. Acta Agronomica Sinica, 2023, 49(12): 3250-3260.
[7] LI Xiang-Chen, SHEN Xu, ZHOU Xin-Cheng, CHEN Xin, WANG Hai-Yan, WANG Wen-Quan. Identification and relative expression levels of PEPC gene family members in cassava [J]. Acta Agronomica Sinica, 2022, 48(12): 3108-3119.
[8] WANG Zhen, ZHANG Xiao-Li, MENG Xiao-Jing, YAO Meng-Nan, MIU Wen-Jie, YUAN Da-Shuang, ZHU Dong-Ming, QU Cun-Min, LU Kun, LI Jia-Na, LIANG Ying. Identification of upstream regulators for mitogen-activated protein kinase 7 gene (BnMAPK7) in rapeseed (Brassica napus L.) [J]. Acta Agronomica Sinica, 2021, 47(12): 2379-2393.
[9] SUN Qian, ZOU Mei-Ling, ZHANG Chen-Ji, JIANG Si-Rong, Eder Jorge de Oliveira, ZHANG Sheng-Kui, XIA Zhi-Qiang, WANG Wen-Quan, LI You-Zhi. Genetic diversity and population structure analysis by SNP and InDel markers of cassava in Brazil [J]. Acta Agronomica Sinica, 2021, 47(1): 42-49.
[10] Bo-Wen CHANG,Peng ZHONG,Jie LIU,Zhong-Hua TANG,Ya-Bing GAO,Hong-Jiu YU,Wei GUO. Effect of low-temperature stress and gibberellin on seed germination and seedling physiological responses in peanut [J]. Acta Agronomica Sinica, 2019, 45(1): 118-130.
[11] DENG Chang-Zhe,YAO Hui,AN Fei-Fei,LI Kai-Mian,CHEN Song-Bi. Chromoplast Isolation and Its Proteomic Analysis from Cassava Storage Roots [J]. Acta Agron Sin, 2017, 43(09): 1290-1299.
[12] YU Xiao-Ling,RUAN Meng-Bin,WANG Bin,YANG Yi-Ling,WANG Shu-Chang*,PENG Ming*. Cloning and Analysis of Structure and Expression of MeHDZ14 Gene in Cassava [J]. Acta Agron Sin, 2017, 43(08): 1181-1189.
[13] LI Xin-Yuan,YANG Ye,ZHANG Li-Fang,ZUO Shi-Yu,LI Li-Jie,JIAO Jian,LI Jing. Regulation on Contents of Endogenous Hormones and Asr1 Gene Expression of Maize Seedling by Exogenous ABA under Low-temperature Stress [J]. Acta Agron Sin, 2017, 43(01): 141-148.
[14] CHEN Hong, NIU Hai-Xia, WANG Wen-Jing, MA Hao-Ran,LI Jia-Na,CHAI You-Rong,ZHANG Hong-Bo. Screening of Promoter-Binding Factors of Tobacco PMT Gene Using a Modified Yeast Surface Display System [J]. Acta Agron Sin, 2014, 40(12): 2081-2089.
[15] JIA Shuang-Wei,GAO Ying,ZHAO Kai-Jun. Cloning and Characterization of Brassica juncea Zinc Finger Protein Transcription Factor Gene Bj26 [J]. Acta Agron Sin, 2014, 40(07): 1174-1181.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!