Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2025, Vol. 51 ›› Issue (11): 2958-2970.doi: 10.3724/SP.J.1006.2025.51050

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Comprehensive evaluation of agronomic traits and seed yield of 21 Bromus inermis germplasm and screening of superior germplasm

JIANG Ang-Chen1,2(), LI Yan1,3, LI Yu-Chen1,3, ZHANG Jing4, CHEN Ai-Ping1,2,3,*()   

  1. 1 College of Grassland Science, Xinjiang Agricultural University, Urumqi 830052, Xinjiang, China
    2 Ministry of Education Key Laboratory for Western Arid Region Grassland Resources and Ecology, Urumqi 830052, Xinjiang, China
    3 Xinjiang Key Laboratory of Grassland Resources and Ecology, Urumqi 830052, Xinjiang, China
    4 Grassland General Station of Xinjiang Uygur Autonomous Region, Urumqi 830049, Xinjiang, China
  • Received:2025-05-26 Accepted:2025-08-13 Online:2025-11-12 Published:2025-08-25
  • Contact: *E-mail: xjauchenaiping@sina.com
  • Supported by:
    China Agriculture Research System of MOF and MARA(CARS-34)

Abstract:

In this study, 21 Bromus inermis accessions from different regions were evaluated for their agronomic traits and seed yield. A combination of correlation analysis, path analysis, principal component analysis, and membership function analysis was employed to comprehensively assess these accessions, providing a foundation for selecting B. inermis varieties that are well adapted to the ecological conditions of the Xinjiang region and capable of producing high seed yields. Results showed a highly significant positive correlation between seed yield and the number of grains per spike, spike length, spikelet number, and spikelet length (P < 0.01), and a significant negative correlation with spikelet width (P < 0.05). Path analysis indicated that spikelet length had the strongest direct effect on seed yield (path coefficient = 0.618), with a notably high correlation coefficient of 0.97, suggesting it could serve as a key indicator for evaluating seed yield. Principal component analysis revealed that the first three principal components collectively explained 81.57% of the total variance, with the first component mainly associated with spikelet length, spike length, and seed yield. Based on membership function values and D-value analysis, three high-yielding germplasm lines—X20, X13, and X14—were identified. These lines exhibit strong adaptability and high yield potential, making them suitable candidates for cultivation and promotion in the Xinjiang region.

Key words: Bromus inermis, agronomic traits, seed yield, analysis of relationship, comprehensive evaluation

Table 1

Sources of the 21 B. inermis accessions"

编号
Code
材料来源
Source
原产地
Origin
X1 新疆乌苏市草原工作站
Grassland Station of Wusu city, Xinjiang
新疆乌苏市Wusu city, Xinjiang
X2 野外采集Field collection 内蒙古凉城县蛮汉山
Liangcheng county Manhan mountain, Inner Mongolia
X3 野外采集Field collection 山西省大同市左云县Zuoyun county, Datong city, Shanxi
X4 中国农业科学院北京畜牧所Institute of Animal Sciences, Chinese Academy of Agricultural Sciences 河北省Hebei
X5 中国农业科学院北京畜牧所Institute of Animal Sciences, Chinese Academy of Agricultural Sciences 内蒙古锡林郭勒盟多伦县
Duolun county, Xilin Gol league, Inner Mongolia
X6 野外采集Field collection 新疆伊犁哈萨克自治州Yili Kazak Autonomous Prefecture, Xinjiang
X7 野外采集Field collection 内蒙古赤峰市巴林右旗罕山乡
Balin Right Banner Hanshan township, Chifeng city, Inner Mongolia
X8 甘肃农业大学草业学院
Pratacultural College, Gansu Agricultural University
内蒙古锡林郭勒盟多伦县
Duolun county, Xilin Gol league, Inner Mongolia
X9 中国农业科学院北京畜牧所Institute of Animal Sciences, Chinese Academy of Agricultural Sciences 河北省Hebei
X10 中国农业科学院北京畜牧所Institute of Animal Sciences, Chinese Academy of Agricultural Sciences 青海省祁连县Qilian county, Qinghai
X11 野外采集Field collection 新疆伊犁州昭苏县昭苏镇加曼台村Jiamantai village, Zhaosu town, Zhaosu county, Yili prefecture, Xinjiang
X12 野外采集Field collection 新疆塔城地区托里县Toli county, Tacheng prefecture, Xinjiang
X13 野外采集Field collection 新疆阿勒泰市北屯镇Beitun town, Altai city, Xinjiang
X14 野外采集Field collection 吉林省公主岭市Gongzhuling city, Jilin
X15 中国农业科学院草原研究所Grassland Research Institute, Chinese Academy of Agricultural Sciences 新疆伊犁州伊宁县Yining county, Yili prefecture, Xinjiang
X16 中国农业科学院草原研究所Grassland Research Institute, Chinese Academy of Agricultural Sciences 中国农业科学院草原研究所Grassland Research Institute, Chinese Academy of Agricultural Sciences
X17 野外采集Field collection 新疆伊犁州新源县Xinyuan county, Yili prefecture, Xinjiang
X18 野外采集Field collection 新疆伊犁州察布查尔县Qapqal county, Yili prefecture, Xinjiang
X19 野外采集Field collection 甘肃省武威市天祝藏族自治县
Tianzhu Tibetan Autonomous county, Wuwei city, Gansu
X20 野外采集Field collection 新疆塔城市塔尔巴哈台山Talbahatai Mountain, Tacheng city, Xinjiang
X21 中国农业科学院北京畜牧所Institute of Animal Sciences, Chinese Academy of Agricultural Sciences 中国农业科学院北京畜牧所Institute of Animal Sciences, Chinese Academy of Agricultural Sciences

Table 2

Measurement items and recording standards for stem and leaf traits of B. inermis"

农艺性状
Agronomic traits
测定标准
Recording standards
株高Plant height (cm) 从地表面到植株最高部位的自然高度
The natural height from the ground surface to the highest part of the plant
穗下茎长 Stem length under spike (cm) 穗下第一节节间长The length of the first internode under the ear
旗叶长 Flag leaf length (cm) 植株顶部发育完全的小叶的长度Length of fully developed leaflets at the top of the plant
旗叶宽 Flag leaf width (cm) 植株顶部发育完全的小叶的宽度Width of fully developed leaflets at the top of the plant
倒二叶长 Inverted second leaf length (cm) 花序下第二叶叶舌到叶尖的长度
Length from ligule to tip of second leaf under inflorescence
倒二叶宽Inverted second leaf width (cm) 花序下第二叶叶鞘的长度Length of second leaf sheath under inflorescence

Table 3

Measurement items and recording standards for spike traits of B. inermis"

农艺性状
Agronomic traits
测定标准
Recording standards
穗长Spike length (cm) 花序的绝对长度The absolute length of inflorescence
小穗长Spikelet length (cm) 小穗的基部到顶部的绝对长度The absolute length from base to top spikelets
小穗宽Spikelet width (mm) 小穗最宽处的宽度Width of the widest spikelet
小穗数Spikelet number 每生殖枝小穗数Number of spikelets per reproductive branch
单序籽粒数Number of single-sequence grains 成熟期单个花序上的籽粒总数Total number of grains on a single inflorescence at maturity stage

Table 4

Comparison of stem and leaf traits of 21 B. inermis in 2023 and 2024"

编号
Code
株高Plant height (cm) 穗下茎长Stem length under spike (cm) 旗叶长Flag leaf length (cm)
2023 2024 2023 2024 2023 2024
X1 107.03±4.13 abc 129.19±3.243 b* 40.10±1.17 ab 37.52±0.64 de 11.05±0.50 d 12.46±0.35 ef
X2 103.86±3.25 bc 133.76±1.37 b** 36.83±0.63 bcd 45.95±1.34 ab** 10.36±0.30 d 14.44±0.86 bcdef*
X3 109.20±6.02 abc 124.71±3.092 b 35.86±1.75 cd 44.75±1.28 abc* 9.65±0.06 d 15.91±1.24 abcd**
X4 103.13±2.86 bc 131.82±6.27 b* 39.30±1.28 abc 45.26±2.67 abc 11.92±1.17 cd 16.32±0.72 abc*
X5 100.60±3.53 c 125.15±5.40 b* 34.93±0.66 d 46.44±0.18 a** 10.02±0.65 d 16.28±0.34 abc**
X6 107.13±2.57 abc 127.47±6.54 b* 38.73±0.51 abc 44.84±1.45 abc* 11.92±0.78 cd 14.36±1.53 bcdef
X7 117.03±2.45 a 132.65±1.09 b** 40.83±1.51 a 43.28±2.63 abcd 12.68±1.71 cd 15.65±0.71 abcde
X8 109.30±2.61 abc 123.35±3.01 b* 39.50±1.17 abc 46.84±0.94 a** 10.13±0.43 d 15.97±1.08 abcd**
X9 107.40±2.07 abc 109.65±6.86 b 39.26±1.37 abc 37.84±4.51 de 16.45±2.78 b 17.67±0.69 ab
X10 107.63±4.33 abc 113.08±3.16 b 39.53±0.52 abc 32.63±1.94 e* 21.51±1.49 a 18.93±0.75 a
X11 101.43±4.71 c 123.71±2.48 b* 40.06±0.81 ab 38.06±3.96 de 11.04±0.85 d 15.50±2.21 bcde
X12 99.76±1.68 c 127.77±3.04 b** 39.60±1.49 abc 41.73±1.73 abcd 10.72±0.75 d 13.40±0.39 cdef *
X13 109.46±2.71 abc 124.27±5.92 b 39.13±0.61 abc 39.94±0.88 bcd 11.80±0.57 cd 14.40±1.32 bcdef
X14 114.76±4.98 abc 130.92±1.04 b* 41.93±0.53 a 41.74±0.35 abcd 15.16±1.11 bc 13.23±0.89 cdef
X15 98.56±2.13 c 123.98±2.01 b** 39.16±0.72 abc 37.33±0.86 de 10.30±0.92 d 12.71±0.90 def
X16 108.43±1.63 abc 127.37±4.01 b* 36.73±0.63 bcd 45.63±0.72 ab** 12.56±0.72 cd 16.62±0.68 abc*
X17 109.66±3.06 abc 160.07±32.63 a 40.26±1.19 ab 39.29±0.27 cd 10.15±1.20 d 13.37±1.01 cdef
X18 108.66±1.37 abc 124.71±2.79 b** 38.96±1.31 abc 37.50±0.29 de 12.72±0.95 cd 11.44±0.91 f
X19 107.33±6.98 abc 134.01±2.62 b* 39.80±1.06 ab 41.11±0.70 abcd 11.67±0.90 cd 13.39±0.84 cdef
X20 109.90±3.78 abc 131.31±4.48 b* 39.70±1.28 ab 42.26±0.32 abcd 11.29±0.73 d 15.48±0.96 bcde*
X21 103.86±1.04 bc 128.78±2.17 b** 38.56±1.68 abc 38.60±1.06 d 11.08±0.69 d 14.94±0.82 bcde*
编号
Code
旗叶宽Flag leaf width (cm) 倒二叶长Inverted second leaf length (cm) 倒二叶宽Inverted second leaf width (cm)
2023 2024 2023 2024 2023 2024
X1 0.41±0.02 cdefgh 0.41±0.01 abcd 13.15±0.44 bc 17.17±0.63 abc** 0.48±0.01 bcdefg 0.53±0.04 abcde
X2 0.34±0.01 ghi 0.27±0.02 cd 15.51±0.93 bc 17.46±0.96 abc 0.39±0.01 fghij 0.41±0.01 fj
X3 0.28±0.00 i 0.26±0.02 d 13.64±0.72 bc 18.76±2.08 ab 0.36±0.02 ij 0.38±0.01 fj
X4 0.37±0.06 de1fghi 0.29±0.01 cd 14.21±0.98 bc 19.06±0.71 ab* 0.42±0.03 defghij 0.43±0.01 defg
X5 0.28±0.01 i 0.26±0.02 cd 15.08±1.59 bc 18.22±0.46 ab 0.37±0.02 ghij 0.38±0.01 j
X6 0.47±0.04 abcd 0.50±0.04 ab 14.95±0.75 bc 18.98±1.45 ab 0.49±0.04 bcdef 0.62±0.03 a
X7 0.41±0.06 cdefgh 0.29±0.01 cd 15.74±0.64 bc 19.09±1.21 ab 0.40±0.03 efghij 0.39±0.01 fj
X8 0.28±0.01 i 0.29±0.01 cd 13.52±0.74 bc 19.75±1.29 ab* 0.35±0.005 j 0.39±0.01 fj**
X9 0.53±0.05 ab 0.56±0.19 a 16.01±1.88 bc 22.30±1.31 a 0.46±0.02 cdefgh 0.53±0.02 abcd
X10 0.56±0.02 a 0.46±0.08 abc 22.29±2.45 a 21.74±0.69 ab 0.65±0.08 a 0.62±0.06 a
X11 0.40±0.04 cdefgh 0.45±0.08 abc 12.23±0.74 c 19.17±1.85 ab* 0.47±0.02 cdefgh 0.59±0.07 ab
X12 0.46±0.02 bcde 0.37±0.01 bcd 13.95±0.52 bc 18.08±0.84 ab* 0.54±0.05 bc 0.55±0.01 abc
X13 0.44±0.00 bedef 0.35±0.05 bcd 14.78±1.05 bc 19.77±1.35 ab* 0.51±0.01 bcde 0.45±0.02 cdefg
X14 0.49±0.01 abc 0.37±0.03 bcd* 16.83±2.52 b 12.76±5.22 c* 0.58±0.02 ab 0.49±0.03bcdef
X15 0.41±0.01 cdefgh 0.34±0.02 bcd 13.73±0.98 bc 18.16±0.50 ab 0.52±0.01 bcd 0.51±0.05abcde
X16 0.35±0.01 fghi 0.38±0.01 abcd 15.73±0.37 bc 19.56±1.79 ab 0.40±0.01 efghij 0.42±0.01 efg
X17 0.47±0.01 abcde 0.42±0.02 abcd 13.76±0.79 bc 19.05±1.17 ab* 0.52±0.03 bcd 0.48±0.01 cdefg
X18 0.44±0.02 bcdefg 0.33±0.04 bcd 16.88±0.93 b 16.21±1.03 bc 0.48±0.03 bcdefg 0.47±0.05 cdefg
X19 0.44±0.01 bcdefg 0.39±0.01 abcd 15.11±1.23 bc 18.61±1.03 ab 0.51±0.02 bcd 0.54±0.01 abcd
X20 0.32±0.00 hi 0.29±0.02 cd 16.02±0.26 bc 18.69±0.68 ab* 0.37±0.01 hij 0.37±0.03 j
X21 0.36±0.01 efghi 0.40±0.01 abcd* 14.76±1.24 bc 20.63±1.30 ab* 0.45±0.03 cdefghi 0.56±0.02 abc

Table 5

Comparison of spike traits of 21 B. inermis in 2023 and 2024"

编号
Code
小穗长
Spike length
(cm)
小穗宽
Spikelet length
(cm)
穗长
Spikelet width
(cm)
小穗数
Spikelet
number
单序籽粒数
Number of
single-sequence grains
2023 2024 2023 2024 2023 2024 2023 2024 2023 2024
X1 2.48±
0.10 abc
2.03±
0.06 de
0.35±
0.02 bc
0.35±
0.05 abcd
15.52±
0.20 abc
15.27±
3.50 bc
18.19±
0.69 ab
27.75±
2.14 hijk*
104.92±
1.54 abc
112.10±
15.12 de**
X2 1.90±
0.24 de
2.01±
0.21 de
0.44±
0.03 a
0.36±
0.04 abc
12.35±
0.47 d
14.90±
1.60 bc
12.66±
1.08 cd
22.67±
1.06 k**
44.60±
1.34 ef
106.93±
2.86 de**
X3 1.92±
0.13 de
2.16±
0.07 cde
0.31±
0.03 cd
0.30±
0.02 abcd
13.21±
1.00 cd
15.33±
4.74 bc
7.93±
0.93 e
41.77±
2.04 defg**
29.62±
1.26 fg
139.32±
12.40 cd**
X4 1.98±
0.14 cde
2.15±
0.10 cde
0.39±
0.01 ab
0.33±
0.06 abcd**
16.57±
1.41 ab
15.85±
0.76 bc
7.33±
1.02 ef
39.87±
2.24 efgh**
29.95±
1.51 fg
138.39±
11.68 cd**
X5 1.41±
0.10 f
1.95±
0.15 e**
0.27±
0.06 bcd
0.38±
0.02 ab
12.77±
0.68 cd
13.60±
1.30 c
4.86±
0.72 f
18.63±
2.73 k**
19.98±
1.52 g
74.24±
10.45 e**
X6 2.38±
0.06 abcd
2.31±
0.27 bcde
0.33±
0.02 d
0.28±
0.05 cd
15.12±
1.27 abcd
16.93±
3.28 bc
16.22±
0.98 ab
56.05±
5.05 bc**
109.81±
3.86 abc
150.29±
7.78 bcd**
X7 2.08±
0.09 bcde
2.15±
0.08 cde
0.44±
0.02 a
0.32±
0.01 abcd**
15.30±
1.14 abcd
17.48±
1.63 bc
14.99±
0.69 bc
35.93±
1.67 fghij**
48.62±
1.93 ef
133.50±
3.97 cd**
X8 2.23±
0.02 abcde
2.08±
0.22 cde
0.43±
0.03 a
0.33±
0.01 abcd
13.51±
0.84 bcd
15.27±
2.55 bc
9.86±
0.72 de
26.11±
1.79 ijk**
36.85±
1.34 fg
117.16±
17.51 de**
X9 1.80±
0.25 ef
2.14±
0.08 cde
0.38±
0.01 abc
0.33±
0.01 abcd**
12.89±
0.85 cd
15.22±
1.32 bc
18.18±
0.88 ab
36.41±
2.85 fghi**
119.19±
3.66 ab
131.39±
9.50 cd**
X10 2.27±
0.08 abcde
2.12±
0.22 cde
0.35±
0.01 bc
0.33±
0.02 abcd**
12.82±
0.93 cd
15.70±
1.40 bc
14.93±
1.61 bc
29.78±
2.87 ghijk*
67.93±
2.14 de
117.27±
16.68 de**
X11 1.99±
0.06 cde
2.21±
0.35 cde
0.38±
0.01 abc
0.30±
0.01 bcd
15.09±
1.07 abcd
15.67±
3.43 bc
19.39±
1.72 a
46.63±
1.61 cdef**
129.19±
3.95 a
143.71±
13.88 cd**
X12 2.10±
0.11 abcde
2.26±
0.43 cde
0.34±
0.01 bcd
0.29±
0.03 bcd*
13.83±
0.41 bcd
16.23±
1.50 a
17.15±
0.94 ab
41.70±
11.64 defg**
112.33±
3.56 ab
145.05±
16.41 cd**
X13 2.54±
0.12 ab
2.69±
0.10 ab
0.34±
0.02 bcd
0.27±
0.03 d
14.95±
0.69 abcd
21.93±
2.27bc**
16.19±
0.69 ab
64.23±
4.91 ab**
109.29±
3.86 abc
198.83±
13.05 ab**
X14 2.63±
0.08 a
2.42±
0.26 bcd
0.37±
0.02 abc
0.28±
0.12 cd
16.58±
1.04 ab
18.63±
1.70 ab
16.19±
0.8 ab
54.82±
4.85 bc**
104.19±
3.17 abc
152.82±
10.4 bcd**
X15 2.29±
0.15 abcde
2.46±
0.19 bc
0.44±
0.03 a
0.28±
0.07 cd*
14.55±
0.41 abcd
18.93±
2.25 ab*
16.00±
0.7 ab
56.18±
3.24 bc**
107.78±
3.12 abc
184.98±
12.69 abc**
X16 2.46±
0.36 abc
2.02±
0.10 de
0.36±
0.01 bc
0.34±
0.04 abcd
17.02±
0.82 a
15.10±
1.32 bc
11.52±
0.63 d
24.63±
2.14 ijk**
41.18±
1.38 fg
108.39±
3.66 de**
X17 2.46±
0.15 abc
1.98±
0.22 e
0.39±
0.01 ab
0.38±
0.02 a**
13.70±
0.21 bcd
16.47±
3.07 bc
17.75±
1.01 ab
23.02±
2.63 jk
85.52±
34.18 cd
105.17±
24.18 de
X18 2.23±
0.17 abcde
2.35±
0.10 bcde
0.37±
0.02 abc
0.28±
0.04 cd*
15.10±
0.89 abcd
16.67±
2.25 bc
16.63±
0.5 ab
53.87±
1.36 bcd**
108.28±
2.27 abc
150.40±
16.98 bcd**
X19 2.45±
0.09 abc
1.98±
0.25 e*
0.39±
0.01 ab
0.34±
0.01 abcd
14.96±
0.84 abcd
14.70±
0.40 bc
19.15±
1.43 a
19.47±
3.54 k
120.93±
1.66 ab
103.88±
13.87 de
X20 2.24±
0.14 abcde
2.99±
0.24 a
0.34±
0.00 bcd
0.27±
0.02 d**
14.39±
0.65 abcd
22.03±
2.42 a**
18.73±
1.10 a
70.29±
6.18 a**
100.48±
5.05 bc
231.82±
12.28 a**
X21 2.41±
0.20 abcd
2.31±
0.41 bcde
0.34±
0.01 bcd
0.29±
0.03 cd**
13.79±
1.77 bcd
16.37±
2.97 bc
18.52±
1.29 a
50.32±
2.86 cde**
117.52±
2.60 ab
145.86±
18.91 bcd**

Table 6

Comparison of seed yield of 21 B. inermis"

产量
Yield (kg hm-2)
X1 X2 X3 X4 X5 X6
2023 610.6±57.7 c 243.0±41.1 defg 155.4±8.1 fg 168.2±34.8 fg 62.1±8.7 g 599.3±105.7 c
2024 1121.0±151.2 de** 1069.3±28.6 de** 1393.2±124.0 cd 1383.9±116.8 cd** 742.4±104.5 e** 1502.9±77.8 bcd**
产量
Yield (kg hm-2)
X7 X8 X9 X10 X11 X12
2023 262.6±19.2 def 182.4±16.5 efg 736.5±43.7 abc 387.1±7.0 d 905.0±55.4 a 597.9±121.8 c
2024 1335.0±39.7 cd** 1171.6±175.1 de** 1313.9±95.0 cd* 1172.7±16.7 de** 1437.1±138.8 cd* 1450.5±164.1 cd**
产量
Yield (kg hm-2)
X13 X14 X15 X16 X17 X18
2023 618.0±63.9 bc 678.5±46.9 bc 658.9±49.7 bc 212.8±38.3 defg 806.1±59.5 ab 614.4±45.9 c
2024 1988.3±130.5 ab** 1528.2±104.0 bcd** 1849.8±126.9 abc** 1083.9±36.6 de** 1051.7±241.8 de 1504.0±169.8 bcd**
产量
Yield (kg hm-2)
X19 X20 X21
2023 745.7±77.3 abc 365.1±52.0 de 769.8±54.9 abc
2024 1038.8±138.7 de 2318.2±122.8 a** 1458.6±189.1 bcd*

Fig. 1

Correlation analysis between seed yield and yield-related traits in B. inermis PH: plant height; SS: stem length under spike; FL: flag leaf length; FW: flag leaf width; IL: inverted second leaf length; IW: inverted second leaf width; SPL: spikelet length; SPW: spikelet width; SL: spike length; SPN: spikelet number; NG: number of single-sequence grains; SY: seed yield. ** indicates a highly significant correlation (P < 0.01); * indicates a significant correlation (P < 0.05)."

Table 7

Path analysis between seed yield and yield-related traits of B. inermis"

因子
Factor
相关系数
Correlation coeffcient
直接作用
Direct effect
间接作用 Indirect effect
小穗数
Spikelet number
单序籽粒数
Number of grains per spike
小穗长
Spikelet length
穗长
Spike length
小穗宽
Spikelet width
小穗数Spikelet number 0.878 0.432 0.038 0.568 0.132 -0.294
单序籽粒数Number of grains per spike 0.827 0.050 0.331 0.518 0.133 -0.206
小穗长Spikelet length 0.972 0.618 0.397 0.041 0.154 -0.239
穗长Spike length 0.907 0.169 0.339 0.039 0.564 -0.204
小穗宽 Spikelet width -0.685 0.319 -0.398 -0.032 -0.464 0.108

Table 8

Eigenvalue and cumulative contribution rates of principal components"

指标
Index
PC1 PC2 PC3
株高Plant height 0.09 0.86 -0.27
穗下茎长Stem length under spike 0.11 0.57 0.17
旗叶长Flag leaf length -0.04 0.72 0.62
旗叶宽Flag leaf width -0.53 -0.39 0.57
倒二叶长Inverted second leaf length -0.17 0.26 0.75
倒二叶宽Inverted second leaf width -0.67 -0.52 0.40
小穗长Spikelet length 0.97 -0.03 0.15
小穗宽Spikelet width -0.77 0.52 -0.01
穗长Spike length 0.94 0.13 0.10
小穗数Spikelet number 0.89 -0.35 0.19
单序籽粒数Number of single-sequence grains 0.89 0.05 0.09
种子产量Seed yield 0.94 -0.05 0.25
特征值Eigenvalue 5.66 2.46 1.65
方差贡献率Variance contribution 47.18 20.57 13.81
累计贡献率Accumulative contribution 47.18 67.75 81.57

Table 9

Comprehensive ranking of 21 B. inermis"

材料
Material
PC1 PC2 PC3 U(X1) U(X2) U(X3) D
D-value
综合排名
Comprehensive rank
X1 -0.68 0.19 -1.57 0.24 0.39 0.05 0.25 17
X2 -1.09 -1.20 -0.03 0.14 0 0.56 0.17 19
X3 -0.05 -0.76 1.08 0.41 0.12 0.93 0.42 12
X4 -0.25 -0.67 0.85 0.36 0.15 0.81 0.57 5
X5 -1.61 -0.97 0.89 0 0.06 0.87 0.16 20
X6 0.63 0.83 -0.52 0.59 0.56 0.40 0.55 6
X7 -0.05 -0.78 0.72 0.41 0.12 0.81 0.40 13
X8 -0.80 -0.63 1.20 0.21 0.16 0.97 0.33 15
X9 -0.34 2.21 1.03 0.33 0.95 0.11 0.43 11
X10 -0.52 2.40 0.70 0.29 1.00 0.86 0.39 14
X11 0.26 1.22 -0.38 0.49 0.67 0.45 0.53 7
X12 0.35 0.07 -0.64 0.51 0.35 0.36 0.44 10
X13 1.68 -0.03 0.63 0.86 0.33 0.78 0.70 2
X14 1.00 -0.82 -1.39 0.69 0.11 0.92 0.60 3
X15 1.22 0.10 -0.56 0.74 0.36 0.39 0.58 4
X16 -0.99 -0.16 0.82 0.16 0.29 0.85 0.31 16
X17 -1.08 -0.51 -1.72 0.14 0.19 0 0.13 21
X18 0.82 -0.39 -1.18 0.64 0.23 0.18 0.45 9
X19 -1.01 0.08 -1.09 0.16 0.36 0.21 0.22 18
X20 2.20 -0.97 1.28 1.00 0.06 1.00 0.75 1
X21 0.32 0.81 -0.12 0.51 0.56 0.53 0.53 7
权重Weight 0.56 0.27 0.17
[1] 陈志宏, 李新一, 洪军. 我国草种质资源的保护现状、存在问题及建议. 草业科学, 2018, 35: 186-191.
Chen Z H, Li X Y, Hong J. Current situation, problems and suggestions on protection of forage germplasm resources in China. Pratac Sci, 2018, 35: 186-191 (in Chinese with English abstract).
[2] 常春. 羊草种质资源农艺性状与品质综合评价及分布格局研究. 内蒙古农业大学博士学位论文, 内蒙古呼和浩特, 2020.
Chang C. Study on Agronomic Traits, Quality Comprehensive Evaluation and Distribution Pattern of Leymus chinensis Germplasm Resources. PhD Dissertation of Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 2020 (in Chinese with English abstract).
[3] Tian H Y, Channa S A, Hu S W. Relationships between genetic distance, combining ability and heterosis in rapeseed (Brassica napus L.). Euphytica, 2016, 213: 1.
[4] Rout S, Roy S K, Mandal R, Singla S, Rahimi M, Sur B, Umamaheswar N, Chakraborty M, Hijam L, Nath S, et al. Genetic analysis and heterosis breeding of seed yield and yieldattributing traits in Indian mustard (Brassica juncea (L.) Czern & Coss.). Sci Rep, 2025, 15: 2911.
[5] Trupp C R, Carlson I T. Improvement of seedling vigor of smooth bromegrass (Bromus inermis leyss.) by recurrent selection for high seed weight. Crop Sci, 1971, 11: 225-228.
[6] 刘慢, 秦燕, 刘文辉, 张永超, 吴雨涵, 起惠芳. 青藏高原高寒地区无芒雀麦种质资源生产性能评价筛选. 草地学报, 2023, 31: 1469-1480.
doi: 10.11733/j.issn.1007-0435.2023.05.022
Liu M, Qin Y, Liu W H, Zhang Y C, Wu Y H, Qi H F. Evaluation and screening of production performance of Bromus inermis germplasm resources in alpine regions of the Qinghai-Tibet Plateau. Acta Agrestia Sin, 2023, 31: 1469-1480 (in Chinese with English abstract).
[7] 周艳春. 无芒雀麦种质资源遗传多样性分析及其核心种质的构建. 东北师范大学博士学位论文, 吉林长春, 2020.
Zhou Y C. Genetic Diversity Analysis and Core Germplasm Construction of Bromus inermis Germplasm Resources. PhD Dissertation of Northeast Normal University, Changchun, Jilin, China, 2020 (in Chinese with English abstract).
[8] 吴雨涵, 刘文辉, 刘凯强, 秦燕, 刘慢. 13份无芒雀麦种质资源生产性能的综合评价及筛选. 草地学报, 2023, 31: 3472-3483.
doi: 10.11733/j.issn.1007-0435.2023.11.026
Wu Y H, Liu W H, Liu K Q, Qin Y, Liu M. Comprehensive evaluation and screening of production performance of 13 Bromus inermis germplasm resources. Acta Agrestia Sin, 2023, 31: 3472-3483 (in Chinese with English abstract).
[9] 黄薇, 常巍, 余淑艳, 李小云, 高雪芹, 伏兵哲. 16份无芒雀麦种质资源生产性能与营养品质的综合评价. 草业科学, 2021, 38: 2237-2246.
Huang W, Chang W, Yu S Y, Li X Y, Fu B Z. Comprehensive evaluation of production performance and nutritional quality of 16 Bromus inermis germplasm resources. Pratac Sci, 2021, 38: 2237-2246 (in Chinese with English abstract).
[10] 刘慢, 秦燕, 刘文辉, 张永超, 吴雨涵, 起惠芳. 青藏高原高寒区不同无芒雀麦种质资源种子产量评价. 中国草地学报, 2024, 46(3): 70-80.
Liu M, Qin Y, Liu W H, Zhang Y C, Wu Y H, Qi H F. Seed yield evaluation of different Bromus inermis germplasm resources in alpine regions of the Qinghai-Tibet Plateau. Chin J Grassland, 2024, 46(3): 70-80 (in Chinese with English abstract).
[11] 马均, 马文波, 田彦华, 杨建昌, 周开达, 朱庆森. 重穗型水稻植株抗倒伏能力的研究. 作物学报, 2004, 30: 143-148.
Ma J, Ma W B, Tian Y H, Yang J C, Zhou K D, Zhu Q S. Study on lodging resistance of heavy-panicle rice plants. Acta Agron Sin, 2004, 30: 143-148 (in Chinese with English abstract).
[12] 南铭, 赵桂琴, 李晶, 柴继宽, 刘彦明. 不同燕麦品种茎秆形态特征与抗倒伏性的关系. 草地学报, 2018, 26: 1382-1391.
doi: 10.11733/j.issn.1007-0435.2018.06.014
Nan M, Zhao G Q, Li J, Chai J K, Liu Y M. Relationship between stem morphological characteristics and lodging resistance of different oat varieties. Acta Agrestia Sin, 2018, 26: 1382-1391 (in Chinese with English abstract).
[13] 张东旗, 高小丽, 赵涛, 王睿豪, 黄贵斌, 宋艳丽, 梁鸡保. 不同播期糜子抽穗后干物质积累及转运特性. 西北农业学报, 2016, 25: 849-856.
Zhang D Q, Gao X L, Zhao T, Wang R H, Huang G B, Song Y L, Liang J B. Characteristics of dry matter accumulation and translocation after heading in proso millet under different sowing dates. Acta Agric Boreali-Occident Sin, 2016, 25: 849-856 (in Chinese with English abstract).
[14] 刘慢. 青藏高原高寒地区无芒雀麦种质资源生产性能评价及优异材料筛选. 青海大学硕士学位论文, 青海西宁, 2023.
Liu M. Evaluation of Production Performance and Screening of Elite Materials of Bromus inermis Germplasm Resources in Alpine Regions of the Qinghai-Tibet Plateau. MS Thesis of Qinghai University, Xining, Qinghai, China, 2023 (in Chinese with English abstract).
[15] 石国庆, 吉尔尔格, 隋晓青, 杨静, 张勇娟, 王鑫尧, 刘毅, 乌兰, 张博. 叶面喷施微肥对无芒雀麦种子生产的影响. 中国草地学报, 2024, 46(6): 66-76.
Shi G Q, Ji E E G, Sui X Q, Yang J, Zhang Y J, Wang X Y, Liu Y, Wu L, Zhang B. Effects of foliar application of micro-fertilizers on seed production of Bromus inermis. Chin J Grassland, 2024, 46(6): 66-76 (in Chinese with English abstract).
[16] 陈映霞, 杜雨, 于秀明, 张磊, 王玉祥, 张博, 陆倩, 汪鹏. 无芒雀麦幼穗分化及种子产量对种植密度的响应. 草业科学, 2023, 40: 1358-1367.
Chen Y X, Du Y, Yu X M, Zhang L, Wang Y X, Zhang B, Lu Q, Wang P. Response of young panicle differentiation and seed yield of Bromus inermis to planting density. Pratac Sci, 2023, 40: 1358-1367 (in Chinese with English abstract).
[17] 陈映霞, 杜雨, 王玉祥, 张博, 阿迪莱·阿布都热合曼. 生境对无芒雀麦幼穗分化进程及生殖格局的影响. 草业学报, 2023, 32(1): 112-121.
doi: 10.11686/cyxb2022014
Chen Y X, Du Y, Wang Y X, Zhang B, Abudureheman A. Effects of habitat on young panicle differentiation process and reproductive pattern of Bromus inermis. Acta Pratac Sin, 2023, 32(1): 112-121 (in Chinese with English abstract).
[18] 吉尔尔格, 隋晓青, 石国庆, 王鑫尧, 杨静, 孙凌子寅, 刘沂欣, 周一凡, 郎梦卿, 武强. 氮水平和丛枝菌根真菌对无芒雀麦生长指标和种子产量的影响. 草地学报, 2024, 32: 3507-3515.
doi: 10.11733/j.issn.1007-0435.2024.11.019
Ji E E G, Sui X Q, Shi G Q, Wang X Y, Yang J, Sun L Z Y, Liu Y X, Zhou Y F, Lang M Q, Wu Q. Effects of nitrogen level and arbuscular mycorrhizal fungi on growth indices and seed yield of Bromus inermis. Acta Agrestia Sin, 2024, 32: 3507-3515 (in Chinese with English abstract).
[19] 周艳春, 刘建, 徐安凯, 邱红梅, 王英哲, 任伟. 93份无芒雀麦种质资源产量性状的全基因组关联分析. 草地学报, 2020, 28: 623-632.
doi: 10.11733/j.issn.1007-0435.2020.03.005
Zhou Y C, Liu J, Xu A K, Qiu H M, Wang Y Z, Ren W. Genome-wide association analysis of yield traits in 93 Bromus inermis germplasm resources. Acta Agrestia Sin, 2020, 28: 623-632 (in Chinese with English abstract).
[20] 刘雨晴, 孙娜娜, 高艳梅, 张震, 刘洋, 姚春生, 王志敏, 张英华. 不同基因型冬小麦穗粒数与粒重生理差异分析. 中国农业大学学报, 2021, 26(2): 1-15.
Liu Y Q, Sun N N, Gao Y M, Zhang Z, Liu Y, Yao C S, Wang Z M, Zhang Y H. Analysis of physiological differences in grain number per spike and grain weight of different winter wheat genotypes. J China Agric Univ, 2021, 26(2): 1-15 (in Chinese with English abstract).
[21] 范子培, 李龙, 史雨刚, 孙黛珍, 李超男, 景蕊莲. 小麦TabHLH112-2B基因克隆及每穗小穗数相关功能标记开发. 作物学报, 2024, 50: 403-413.
doi: 10.3724/SP.J.1006.2024.31016
Fan Z P, Li L, Shi Y G, Sun D Z, Li C N, Jing R L. Cloning of wheat TabHLH112-2B gene and development of functional markers related to spikelet number per spike. Acta Agron Sin, 2024, 50: 403-413 (in Chinese with English abstract).
[22] 贺飞燕, 闫建俊, 张忠梁, 冯瑞云, 白云凤. 籽粒苋光合特性与环境因子的相关和通径分析. 山西农业科学, 2016, 44: 303-305.
He F Y, Yan J J, Zhang Z L, Feng R Y, Bai Y F. Correlation and path analysis between photosynthetic characteristics and environmental factors of grain amaranth. J Shanxi Agric Sci, 2016, 44: 303-305 (in Chinese with English abstract).
[23] 蔡丽艳, 宋志萍, 徐静, 杜宝红, 李志勇. 18份燕麦属牧草种质材料的鉴定与评价. 中国草地学报, 2007, 29(4): 21-27.
Cai L Y, Song Z P, Xu J, Du B H, Li Z Y. Identification and evaluation of 18 Avena germplasm materials. Chin J Grassland, 2007, 29(4): 21-27 (in Chinese with English abstract).
[24] 常巍. 无芒雀麦种质资源性状评价与遗传多样性分析. 宁夏大学硕士学位论文, 宁夏银川, 2020.
Chang W. Trait Evaluation and Genetic Diversity Analysis of Bromus inermis Germplasm Resources. MS Thesis of Ningxia University, Yinchuan, Ningxia, China, 2020 (in Chinese with English abstract).
[25] 赵方媛, 曲广鹏, 田新会, 杜文华. 饲料型小黑麦品系籽粒产量及其营养价值研究. 草地学报, 2018, 26: 1374-1381.
doi: 10.11733/j.issn.1007-0435.2018.06.013
Zhao F Y, Qu G P, Tian X H, Du W H. Study on grain yield and nutritional value of forage Triticale lines. Acta Agrestia Sin, 2018, 26: 1374-1381 (in Chinese with English abstract).
[26] 温丽, 毕盛楠, 徐兴健, 高欣梅, 其格其, 候伟峰, 赵力兴, 姜昕禹, 孙乌日娜, 李凤娇. 饲用燕麦种子产量与产量相关性状相关性分析及综合评价. 土壤与作物, 2023, 12: 69-75.
Wen L, Bi S N, Xu X J, Gao X M, Qi G Q, Hou W F, Zhao L X, Jiang X Y, Sun W R N, Li F J. Correlation analysis and comprehensive evaluation of oat seed yield and yield-related traits. Soil Crop, 2023, 12: 69-75 (in Chinese with English abstract).
[27] 姚琦馥, 周界光, 王健, 陈黄鑫, 杨瑶瑶, 刘倩, 闫磊, 王瑛, 周景忠, 崔凤娟, 等. 小麦穗长QTL鉴定及其遗传分析. 中国农业科学, 2023, 56: 4814-4825.
doi: 10.3864/j.issn.0578-1752.2023.24.002
Yao Q F, Zhou J G, Wang J, Chen H X, Yang Y Y, Liu Q, Yan L, Wang Y, Zhou J Z, Cui F J, et al. Identification and genetic analysis of QTL for spike length in wheat. Sci Agric Sin, 2023, 56: 4814-4825 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2023.24.002
[28] 李冬梅, 田新会, 杜文华. 5个小黑麦新品系的种子产量及产量构成因素分析. 草地学报, 2016, 24: 241-244.
doi: 10.11733/j.issn.1007-0435.2016.01.036
Li D M, Tian X H, Du W H. Analysis of seed yield and yield components of five new triticale lines. Acta Agrestia Sin, 2016, 24: 241-244 (in Chinese with English abstract).
[29] 于爱萍, 蒋昂辰, 张浩浩, 陈爱萍. 14份无芒雀麦种质农艺性状与生产性能的比较及综合评价. 草地学报, 2024, 32: 3205-3214.
doi: 10.11733/j.issn.1007-0435.2024.10.021
Yu A P, Jiang A C, Zhang H H, Chen A P. Comparison and comprehensive evaluation of agronomic traits and production performance of 14 Bromus inermis germplasm. Acta Agrestia Sin, 2024, 32: 3205-3214 (in Chinese with English abstract).
[1] HU Run-Hui, WANG Jun-Cheng, SI Er-Jing, ZHANG Hong, LI Xing-Mao, MA Xiao-Le, MENG Ya-Xiong, WANG Hua-Jun, LIU Qing, YAO Li-Rong, LI Bao-Chun. Screening of drought and salt tolerant germplasm during wheat seedling stage and comprehensive evaluation of drought and salt tolerance [J]. Acta Agronomica Sinica, 2025, 51(9): 2371-2386.
[2] MENG Ran, LI Zhao-Jia, FENG Wei, CHEN Yue, LIU Lu-Ping, YANG Chun-Yan, LU Xue-Lin, WANG Xiu-Ping. Comprehensive evaluation of salt tolerance at different growth stages of soybean and screening of salt-tolerant germplasm [J]. Acta Agronomica Sinica, 2025, 51(8): 1991-2008.
[3] CUI Xin, GU He-He, SONG Yi, ZHANG Zhe, LIU Shi-Shi, LU Zhi-Feng, REN Tao, LU Jian-Wei. Effects of potassium fertilizer application rates on rapeseed yield and potassium absorption and yield reduction caused by frost damage [J]. Acta Agronomica Sinica, 2025, 51(6): 1629-1642.
[4] YAN Shang-Long, WANG Qi-Ming, CHAI Qiang, YIN Wen, FAN Zhi-Long, HU Fa-Long, LIU Zhi-Peng, WEI Jin-Gui. Grain yield and quality of maize in response to dense density and intercropped peas in oasis irrigated areas [J]. Acta Agronomica Sinica, 2025, 51(6): 1665-1675.
[5] WANG Mu, ZHUO Ga, ZHA Sang, XIRUO Qu-Zong, DAWA Dondup, GUO Gang-Gang, ZHANG Jing, ZHUO Ga, LHUNDRUP Namgyal. Genetic diversity analysis and comprehensive evaluation of Qingke germplasm based on six phenotypic traits [J]. Acta Agronomica Sinica, 2025, 51(6): 1526-1537.
[6] JIN Xin-Xin, SONG Ya-Hui, SU Qiao, YANG Yong-Qing, LI Yu-Rong, WANG Jin. Identification and comprehensive evaluation of drought resistance in high oleic acid Jihua peanut varieties [J]. Acta Agronomica Sinica, 2025, 51(3): 797-811.
[7] QIN Jin-Hua, HONG Wei-Yuan, FENG Xiang-Qian, LI Zi-Qiu, ZHOU Zi-Yu, WANG Ai-Dong, LI Rui-Jie, WANG Dan-Ying, ZHANG Yun-Bo, CHEN Song. Analysis of agronomic and physiological indicators of rice yield and grain quality under nitrogen fertilization management [J]. Acta Agronomica Sinica, 2025, 51(2): 485-502.
[8] CHEN Yu-Ting, DING Xiao-Yu, XU Ben-Bo, ZHANG Xue-Kun, XU Jin-Song, YIN Yan. Effects of climate warming on yield, quality-related and agronomic traits of winter rapeseed (Brassica napus L.) [J]. Acta Agronomica Sinica, 2025, 51(2): 516-525.
[9] GUI Ling-Xing, LING Xi-Tie, TANG Zhao-Cheng, LUO Wen-Zhen, ZHU Pan-Zhen, QIU Ze-Yu, ZHANG Bao-Long. Identification and agronomic characterization of imazamox-resistant dwarf mutants in Ningmai 36 [J]. Acta Agronomica Sinica, 2025, 51(11): 2923-2932.
[10] GE Jia-Hao, LEI Xin-Yue, WANG Qing-Ming, HAN Hui-Bing, LI Shao-Fei, WANG Qi-Xuan, FENG Bai-Li, GAO Jin-Feng. Screening of low-phosphorus tolerant germplasm and comprehensive evaluation of low phosphorus tolerance in Tartary buckwheat at seedling stage [J]. Acta Agronomica Sinica, 2025, 51(11): 2911-2922.
[11] JIANG Xiao, ZHAO Jian-Xin, BI Jing-Nan, XU Jing, YIN Xiang-Zhen, ZHAO Xu-Hong, PAN Li-Juan, CHEN Na, Ma Jun-Qing, HAN Peng, YANG Zhen, CHI Xiao-Yuan. Effects of major geographic and climatic factors on agronomic traits and quality of peanut in the main production areas of northern China [J]. Acta Agronomica Sinica, 2025, 51(10): 2805-2820.
[12] YAN Feng, DONG Yang, LI Qing-Quan, ZHAO Fu-Yang, HOU Xiao-Min, LIU Yang, LI Qing-Chao, ZHAO Lei, FAN Guo-Quan, LIU Kai. Comprehensively evaluation on cold tolerance of foxtail millet varieties at germination stage [J]. Acta Agronomica Sinica, 2024, 50(9): 2207-2218.
[13] NIE Bo-Tao, LIU De-Quan, CHEN Jian, CUI Zheng-Guo, HOU Yun-Long, CHEN Liang, QIU Hong-Mei, WANG Yue-Qiang. Analysis and comprehensive evaluation of agronomic and quality traits of spring soybean varieties in northern China [J]. Acta Agronomica Sinica, 2024, 50(9): 2248-2266.
[14] LIU Chen, WANG Kun-Kun, LIAO Shi-Peng, YANG Jia-Qun, CONG Ri-Huan, REN Tao, LI Xiao-Kun, LU Jian-Wei. Effects of nitrogen fertilizer application levels on yield and nitrogen absorption and utilization of oilseed rape under maize-oilseed rape and rice-oilseed rape rotation fields [J]. Acta Agronomica Sinica, 2024, 50(8): 2067-2077.
[15] LI Xiao-Fei, GAO Hua-Wei, GUANG Hui, SHI Yu-Xin, GU Yong-Zhe, QI Zhao-Ming, QIU Li-Juan. Identification and evaluation of atrazine tolerance of soybean germplasm resources at germination stage and screening of excellent germplasm [J]. Acta Agronomica Sinica, 2024, 50(7): 1699-1709.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!