Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2017, Vol. 43 ›› Issue (08): 1181-1189.doi: 10.3724/SP.J.1006.2017.01181

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Cloning and Analysis of Structure and Expression of MeHDZ14 Gene in Cassava

YU Xiao-Ling,RUAN Meng-Bin,WANG Bin,YANG Yi-Ling,WANG Shu-Chang*,PENG Ming*   

  1. Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Science / Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Haikou 571101, China
  • Received:2016-12-09 Revised:2017-04-20 Online:2017-08-12 Published:2017-05-11
  • Contact: 王树昌, E-mail: wangshuchang2001@163.com; 彭明, E-mail: pengming@itbb.org.cn E-mail:yuxiaoling@itbb.org.cn
  • Supported by:

    This study was supported by the International Science & Technology Cooperation Program of China (31561143012,2013DFA32020) and the National Natural Science Foundation of China (31501378).

Abstract:

HD-Zip family genes play an important role in plant growth and stress response. To reveal the role of MeHDZ14 gene in abiotic stresses (e.g. drought) in cassava, we cloned MeHDZ14 gene by using RT-PCR from cassava cultivar SC124, which was relatively more resistant to drought stress. Bioinformatics methods were used to analyze its structural characteristics, and semi-RT-PCR/qRT-PCR was used to explore its expression patterns in response to abiotic stresses in different plant tissues and varieties. MeHDZ14 has a 726 bp open reading frame, encoding 241 amino acids, and contains the typical HD and ZIP domain. Blastp analysis showed that MeHDZ14 has close genetic relationship with ATHB-7, which is a member of the family I HD-Zip gene. Yeast and subcellular localization test showed that the MeHDZ14 gene is a transcription factor and specifically expresses in the nucleus. Genetic structural variation analysis revealed a total of four mis-sense mutations in eight tested varieties. However, amino acid mutations were not found between wild and cultivated cassavas. This indicates the MeHDZ14 proteins are highly conserved. Semi-RT PCR analysis revealed that MeHDZ14 was specifically expressed in petioles, and induced by drought stress in root and leaf, suggesting that MeHDZ14 plays an important role in the early drought stage. Analysis by qRT-PCR showed that MeHDZ14 gene had different expression levels in different cassava varieties, but the same mode under drought stress and ABA treatment. These data indicate that MeHDZ14 is a member of the ABA pathway responding to drought. Our results showed that MeHDZ14 plays an important role in the molecular pathways of cassava drought resistance, underlining its potential in genetic improvement of cassava drought tolerance.

Key words: Cassava, MeHDZ14, Structure characteristics, Expression analysis

[1] Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K. AP2/ERF family transcription factors in plant abiotic stress responses. Biochim Biophys Acta, 2012, 1819: 86–96
[2] Shinozaki K, Yamaguchi-Shinozaki K: Gene networks involved in drought stress response and tolerance. J Exp Bot, 2007, 58: 221–227
[3] 康宗利, 杨玉红, 张立军. 植物响应干旱胁迫的分子机制. 玉米科学, 2006, 14(2): 96–100
Kang Z L, Yang Y H, Zhang L J. Molecular mechanism of responsing to drought stress in plants. Maize Sci, 2006, 14(2): 96–100 (in Chinese with English abstract)
[4] Aso K, Kato M, Banks J A, Hasebe M. Characterization of homeodomain-leucine zipper genes in the fern Ceratopteris richardii and the evolution of the homeodomain-leucine zipper gene family in vascular plants. Mol Biol Evol, 1999, 16: 544–552
[5] Sakakibara K, Nishiyama T, Kato M, Hasebe M. Isolation of homeodomain-leucine zipper genes from the moss Physcomitrella patens and the evolution of homeodomain-leucine zipper genes in land plants. Mol Biol Evol, 2001, 18: 491–502
[6] Schena M, Davis R W. HD-Zip proteins: members of an Arabidopsis homeodomain protein superfamily. Proc Natl Acad Sci USA, 1992, 89: 3894–3898
[7] Meijer A H, Scarpella E, van Dijk E L, Qin L, Taal A J, Rueb S, Harrington S E, McCouch S R, Schilperoort R A, Hoge J H. Transcriptional repression by Oshox1, a novel homeodomain leucine zipper protein from rice. Plant J, 1997, 11: 263–276
[8] Zhao Y, Zhou Y, Jiang H, Li X, Gan D, Peng X, Zhu S, Cheng B. Systematic analysis of sequences and expression patterns of drought-responsive members of the HD-Zip gene family in maize. PLoS One, 2011, 6: e28488
[9] Re D A, Dezar C A, Chan R L, Baldwin I T, Bonaventure G. Nicotiana attenuata NaHD20 plays a role in leaf ABA accumulation during water stress, benzylacetone emission from flowers, and the timing of bolting and flower transitions. J Exp Bot, 2011, 62: 155–166
[10] Zhang Z, Chen X, Guan X, Liu Y, Chen H, Wang T, Mouekouba LD, Li J, Wang A. A genome-wide survey of homeodomain-leucine zipper genes and analysis of cold-responsive HD-Zip I members' expression in tomato. Biosci Biotechnol Biochem, 2014, 78: 1337–1349
[11] Matsumoto T, Morishige H, Tanaka T, Kanamori H, Komatsuda T, Sato K, Itoh T, Wu J, Nakamura S. Transcriptome analysis of barley identifies heat shock and HD-Zip I transcription factors up-regulated in response to multiple abiotic stresses. Mol Breed, 2014, 34: 761–768
[12] Chen X, Chen Z, Zhao H, Zhao Y, Cheng B, Xiang Y. Genome-wide analysis of soybean HD-Zip gene family and expression profiling under salinity and drought treatments. PLoS One, 2014, 9: e87156
[13] Rueda E C, Dezar C A, Gonzalez D H, Chan R L. Hahb-10, a sunflower homeobox-leucine zipper gene, is regulated by light quality and quantity, and promotes early flowering when expressed in Arabidopsis. Plant Cell Physiol, 2005, 46: 1954–1963
[14] Song A, Li P, Xin J, Chen S, Zhao K, Wu D, Fan Q, Gao T, Chen F, Guan Z. Transcriptome-wide survey and expression profile analysis of putative chrysanthemum HD-Zip I and II genes. Genes, 2016, 7: 19
[15] Chan R L, Gago G M, Palena C M, Gonzalez D H. Homeoboxes in plant development. Biochim Biophys Acta, 1998, 1442: 1–19
[16] Olsson AS, Engstrom P, Soderman E. The homeobox genes ATHB12 and ATHB7 encode potential regulators of growth in response to water deficit in Arabidopsis. Plant Mol Biol, 2004, 55: 663–677
[17] Gago G M, Jordano C A J, Gonzalez D H, Chan R L. Hahb-4, a homeobox-leucine zipper gene potentially involved in abscisic acid-dependent responses to water stress in sunflower. Plant, Cell Environ, 2002, 25: 633–640
[18] Cabello J V, Arce A L, Chan R L. The homologous HD-Zip I transcription factors HaHB1 and AtHB13 confer cold tolerance via the induction of pathogenesis-related and glucanase proteins. Plant J, 2012, 69: 141–153
[19] Agalou A, Purwantomo S, Overnas E, Johannesson H, Zhu X, Estiati A, de Kam R J, Engstrom P, Slamet-Loedin I H, Zhu Z Wang M, Xiong L, Meijer A, Ouwerkerk P. A genome-wide survey of HD-Zip genes in rice and analysis of drought-responsive family members. Plant Mol Biol, 2008, 66: 87–103
[20] Hanson J, Johannesson H, Engstrom P. Sugar-dependent alterations in cotyledon and leaf development in transgenic plants expressing the HD-Zip gene ATHB13. Plant Mol Biol, 2001, 45: 247–262
[21] Henriksson E, Olsson A S, Johannesson H, Johansson H, Hanson J, Engstrom P, Soderman E. Homeodomain leucine zipper class I genes in Arabidopsis. expression patterns and phylogenetic relationships. Plant Physiol, 2005, 139: 509–518
[22] Wang Y, Henriksson E, Soderman E, Henriksson K N, Sundberg E, Engstrom P. The Arabidopsis homeobox gene, ATHB16, regulates leaf development and the sensitivity to photoperiod in Arabidopsis. Dev Biol, 2003, 264: 228–239
[23] Lechner E, Leonhardt N, Eisler H, Parmentier Y, Alioua M, Jacquet H, Leung J, Genschik P. MATH/BTB CRL3 receptors target the homeodomain-leucine zipper ATHB6 to modulate abscisic acid signaling. Dev Cell, 2011, 21: 1116–1128
[24] Park J, Lee H J, Cheon C I, Kim S H, Hur Y S, Auh C K, Im K H, Yun D J, Lee S, Davis K R. The Arabidopsis thaliana homeobox gene ATHB12 is involved in symptom development caused by geminivirus infection. PLoS One, 2011, 6: e20054
[25] Son O, Hur Y S, Kim Y K, Lee H J, Kim S, Kim M R, Nam K H, Lee M S, Kim B Y, Park J. ATHB12, an ABA-inducible homeodomain-leucine zipper (HD-Zip) protein of Arabidopsis, negatively regulates the growth of the inflorescence stem by decreasing the expression of a gibberellin 20-oxidase gene. Plant Cell Physiol, 2010, 51: 1537–1547
[26] Elhiti M, Stasolla C. Structure and function of homodomain-leucine zipper (HD-Zip) proteins. Plant Signal Behav, 2009, 4: 86–88
[27] Himmelbach A, Hoffmann T, Leube M, Hohener B, Grill E. Homeodomain protein ATHB6 is a target of the protein phosphatase ABI1 and regulates hormone responses in Arabidopsis. EMBO J, 2002, 21: 3029–3038
[28] Mayda E, Tornero P, Conejero V, Vera P. A tomato homeobox gene (HD-zip) is involved in limiting the spread of programmed cell death. Plant J, 1999, 20: 591–600
[29] Zhao Y, Ma Q, Jin X, Peng X, Liu J, Deng L, Yan H, Sheng L, Jiang H, Cheng B. A novel Maize homeodomain-leucine zipper (HD-Zip) I gene, Zmhdz10, positively regulates drought and salt tolerance in both rice and Arabidopsis. Plant Cell Physiol, 2014, 55: 1142–1156
[30] Manavella P A, Arce A L, Dezar C A, Bitton F, Renou J P, Crespi M, Chan R L. Cross-talk between ethylene and drought signalling pathways is mediated by the sunflower Hahb-4 transcription factor. Plant J, 2006, 48: 125–137
[31] Zhao P, Liu P, Shao J, Li C, Wang B, Guo X, Yan B, Xia Y, Peng M. Analysis of different strategies adapted by two cassava cultivars in response to drought stress: ensuring survival or continuing growth. J Exp Bot, 2015, 66: 1477–1488
[32] 于晓玲, 王淦, 阮孟斌, 刘恩世, 彭明. 水分胁迫对不同木薯品种叶片生理生化的影响. 中国农学通报, 2012, 28(33): 60–64
Yu X L, Wang G, Ruan M B, Liu E S, Peng M. Physiological and biochemical changes of leaves in different cassava varieties under water stress. Chin Agric Sci Bull, 2012, 28(33): 60–64 (in Chinese with English abstract)
[33] Hebsgaard S M, Korning P G, Tolstrup N, Engelbrecht J, Rouze P, Brunak S. Splice site prediction in Arabidopsis thaliana pre-mRNA by combining local and global sequence information. Nucl Acids Res, 1996, 24: 3439–3452
[34] 郭安源, 朱其慧, 陈新, 罗静初. GSDS:基因结构显示系统. 遗传, 2007, 29: 1023–1026
Guo A Y, Zhu Q H, Chen X, Luo J C. GSDS: a gene structure display server. Hereditas (Beijing), 2007, 29:1023–1026
[35] Ariel F D, Manavella P A, Dezar C A, Chan R L, Chan R L. The true story of the HD-Zip family. Trends Plant Sci, 2007, 12: 419–426
[36] Soderman E, Mattsson J, Engstrom P. The Arabidopsis homeobox gene ATHB-7 is induced by water deficit and by abscisic acid. Plant J, 1996, 10: 375–381
[37] Van Hove J, Stefanowicz K, De Schutter K, Eggermont L, Lannoo N, Al Atalah B, Van Damme EJ. Transcriptional profiling of the lectin ArathEULS3 from Arabidopsis thaliana toward abiotic stresses. J Plant Physiol, 2014, 171: 1763–1773
[38] Raghavendra AS, Gonugunta VK, Christmann A, Grill E. ABA perception and signaling. Trends Plant Sci, 2010, 15: 395–401
[39] Christmann A, Weiler E W, Steudle E, Grill E. A hydraulic signal in root-to-shoot signaling of water shortage. Plant J, 2007, 52: 167–174
[40] Zeller G, Henz S R, Widmer C K, Sachsenberg T, Ratsch G, Weigel D, Laubinger S. Stress-induced changes in the Arabidopsis thaliana transcriptome analyzed using whole-genome tiling arrays. Plant J, 2009, 58: 1068–1082

[1] CHEN Song-Yu, DING Yi-Juan, SUN Jun-Ming, HUANG Deng-Wen, YANG Nan, DAI Yu-Han, WAN Hua-Fang, QIAN Wei. Genome-wide identification of BnCNGC and the gene expression analysis in Brassica napus challenged with Sclerotinia sclerotiorum and PEG-simulated drought [J]. Acta Agronomica Sinica, 2022, 48(6): 1357-1371.
[2] JIN Min-Shan, QU Rui-Fang, LI Hong-Ying, HAN Yan-Qing, MA Fang-Fang, HAN Yuan-Huai, XING Guo-Fang. Identification of sugar transporter gene family SiSTPs in foxtail millet and its participation in stress response [J]. Acta Agronomica Sinica, 2022, 48(4): 825-839.
[3] YIN Ming, YANG Da-Wei, TANG Hui-Juan, PAN Gen, LI De-Fang, ZHAO Li-Ning, HUANG Si-Qi. Genome-wide identification of GRAS transcription factor and expression analysis in response to cadmium stresses in hemp (Cannabis sativa L.) [J]. Acta Agronomica Sinica, 2021, 47(6): 1054-1069.
[4] JIA Xiao-Ping, LI Jian-Feng, ZHANG Bo, QUAN Jian-Zhang, WANG Yong-Fang, ZHAO Yuan, ZHANG Xiao-Mei, WANG Zhen-Shan, SANG Lu-Man, DONG Zhi-Ping. Responsive features of SiPRR37 to photoperiod and temperature, abiotic stress and identification of its favourable allelic variations in foxtail millet (Setaria italica L.) [J]. Acta Agronomica Sinica, 2021, 47(4): 638-649.
[5] YUE Jie-Ru, BAI Jian-Fang, ZHANG Feng-Ting, GUO Li-Ping, YUAN Shao-Hua, LI Yan-Mei, ZHANG Sheng-Quan, ZHAO Chang-Ping, ZHANG Li-Ping. Cloning and potential function analysis of ascorbic peroxidase gene of hybrid wheat in seed aging [J]. Acta Agronomica Sinica, 2021, 47(3): 405-415.
[6] HE Xiao, LIU Xing, XIN Zheng-Qi, XIE Hai-Yan, XIN Yu-Feng, WU Neng-Biao. Molecular cloning, expression, and enzyme kinetic analysis of a phenylalanine ammonia-lyase gene in Pinellia ternate [J]. Acta Agronomica Sinica, 2021, 47(10): 1941-1952.
[7] SUN Qian, ZOU Mei-Ling, ZHANG Chen-Ji, JIANG Si-Rong, Eder Jorge de Oliveira, ZHANG Sheng-Kui, XIA Zhi-Qiang, WANG Wen-Quan, LI You-Zhi. Genetic diversity and population structure analysis by SNP and InDel markers of cassava in Brazil [J]. Acta Agronomica Sinica, 2021, 47(1): 42-49.
[8] LI Guo-Ji, ZHU Lin, CAO Jin-Shan, WANG You-Ning. Cloning and functional analysis of GmNRT1.2a and GmNRT1.2b in soybean [J]. Acta Agronomica Sinica, 2020, 46(7): 1025-1032.
[9] Jin-Feng ZHAO,Yan-Wei DU,Gao-Hong WANG,Yan-Fang LI,Gen-You ZHAO,Zhen-Hua WANG,Yu-Wen WANG,Ai-Li YU. Identification of PEPC genes from foxtail millet and its response to abiotic stress [J]. Acta Agronomica Sinica, 2020, 46(5): 700-711.
[10] LIANG Si-Wei,JIANG Hao-Liang,ZHAI Li-Hong,WAN Xiao-Rong,LI Xiao-Qin,JIANG Feng,SUN Wei. Genome-wide identification and expression analysis of HD-ZIP I subfamily genes in maize [J]. Acta Agronomica Sinica, 2020, 46(4): 532-543.
[11] Tong-Hong ZUO, He-Cui ZHANG, Qian-Ying LIU, Xiao-Ping LIAN, Qin-Qin XIE, Deng-Ke HU, Yi-Zhong ZHANG, Yu-Kui WANG, Xiao-Jing BAI, Li-Quan ZHU. Molecular cloning and expression analysis of BoGSTL21 in self-incompatibility Brasscia oleracea [J]. Acta Agronomica Sinica, 2020, 46(12): 1850-1861.
[12] WANG Yan-Hua,XIE Ling,YANG Bo,CAO Yan-Ru,LI Jia-Na. Flowering genes in oilseed rape: identification, characterization, evolutionary and expression analysis [J]. Acta Agronomica Sinica, 2019, 45(8): 1137-1145.
[13] Hong-Ju JIAN,Bo YANG,Yang-Yang LI,Hong YANG,Lie-Zhao LIU,Xin-Fu XU,Jia-Na LI. Identification and expression analysis of PEBP gene family in oilseed rape [J]. Acta Agronomica Sinica, 2019, 45(3): 354-364.
[14] Xiao-Hong ZHANG,Gen-Hai HU,Han-Tao WANG,Cong-Cong WANG,Heng-Ling WEI,Yuan-Zhi FU,Shu-Xun YU. Expression and promoter activity of GhTFL1a and GhTFL1c in Upland cotton [J]. Acta Agronomica Sinica, 2019, 45(3): 469-476.
[15] Pi-Biao SHI,Bing HE,Yue-Yue FEI,Jun WANG,Wei-Yi WANG,Fu-You WEI,Yuan-Da LYU,Min-Feng GU. Identification and expression analysis of GRF transcription factor family of Chenopodium quinoa [J]. Acta Agronomica Sinica, 2019, 45(12): 1841-1850.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!