Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2006, Vol. 32 ›› Issue (12): 1860-1866.

• ORIGINAL PAPERS • Previous Articles     Next Articles

Effects of Nitrogen Rate and Ratio of Base Fertilizer and Topdressing on Uptake, Translocation of Nitrogen and Yield in Wheat

SHI Yu1,YU Zhen-Wen1*,WANG Dong1,LI Yan-Qi2,WANG Xue2   

  1. 1 Key Laboratory of Wheat Physiology and Genetics Improvement, Ministry of Agriculture, Shandong Agricultural University, Tai’an 271018, Shandong; 2 Center of Agricultural Technique Extension of Longkou City, Longkou 265701, Shandong, China
  • Received:2006-04-13 Revised:1900-01-01 Online:2006-12-12 Published:2006-12-12
  • Contact: YU Zhen-Wen

Abstract:

Application of nitrogen (N) fertilizer is one of the most important measures to increase grain yield and protein content in winter wheat (Triticum aestivum L.) production. However, misuse of N fertilizer will not only affect grain yield and quality, but also cause the decline of economic effects and related environmental effects. It is essential to study reasonable nitrogen applying regimes for profitable yields, efficient N utilization, and reduction of possible environment pollution. The objectives of this study were to determine the N uptake and translocation in wheat plant by using 15N isotope tracer in PVC cylinders (2.05 m length, Ф0.2 m, without bottom) with seven treatments: without applying N fertilizer (N0); N application rate of 168 kg N·ha-1 (0.527 g/pot), ratios of base fertilizer to topdressing of 1:1 (N1), 1:2 (N2) and 0:1(N3); N application rate of 240 kg N·ha-1 (0.753 g/pot), ratios of base fertilizer to topdressing of 1:1(N4), 1:2(N5) and 0:1(N6). Treatment N4 is a regime applied now in local wheat production. At the same time, the field experiment was conducted in the same field, and experimental design is same as that of the 15N isotope tracer experiment with three repetitions. The plot area was 3 m×8 m=24 m2. At the three-leaf stages, the seedlings were thinned to a density of 150 plants per m2.
15N tracer experiment showed that main basal nitrogen absorbed by plant from sowing to jointing stage accounted for 78.04%–89.67%; fertilizer-N use efficiency (N fertilizer accumulation in plant/N supplied, FNUE) of topdressing was markedly higher than that of basal nitrogen; reducing basal nitrogen amount and increasing topdressing nitrogen amount could appropriately promote plant to absorb more fertilizer nitrogen, and enhance FNUE, of which treatment N2 was the highest. In high-yield condition this study concerned, when nitrogen (N) fertilizer rate increased from 168 kg·ha-1 to 240 kg·ha-1, the amount of N accumulation in plant and in grain had no significant difference between treatments with the same ratio of base fertilizer to topdressing; with reducing basal nitrogen amount and increasing topdressing nitrogen amount appropriately, the translocation efficiency (accumulation amount from vegetative organs to grain/N accumulation in vegetative organs on anthesis, TE) heightened, and the amount of nitrogen assimilation for grain after anthesis and its contribution proportion (the amount of nitrogen assimilation to grain after anthesis/N accumulation in grain) also increased, in other words grain N accumulation amount increased with increasing amount of topdressing nitrogen in the same nitrogen fertilizer rate. There was no significant difference among treatments N2, N3, N5 and N6 in grain nitrogen accumulation. Appropriate N fertilizer rate with reducing basal nitrogen amount and increasing topdressing nitrogen amount such as in N2, N5 and N6 increased grain yield and protein content. In conclusion, under the condition of this experiment, as far as grain yield, protein content and fertilizer-N use efficiency are concerned, the most appropriate nitrogen fertilizer applying regime recommended is treatment N2, its nitrogen fertilizer rate is 168 kg·ha-1 and ratio of base fertilizer to topdressing is 1:2.

Key words: Nitrogen fertilizer rate, Ratio of base and topdressing, 15N, Nitrogen uptake, Translocation, Yield

CLC Number: 

  • S512
[1] WANG Dan, ZHOU Bao-Yuan, MA Wei, GE Jun-Zhu, DING Zai-Song, LI Cong-Feng, ZHAO Ming. Characteristics of the annual distribution and utilization of climate resource for double maize cropping system in the middle reaches of Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(6): 1437-1450.
[2] WANG Wang-Nian, GE Jun-Zhu, YANG Hai-Chang, YIN Fa-Ting, HUANG Tai-Li, KUAI Jie, WANG Jing, WANG Bo, ZHOU Guang-Sheng, FU Ting-Dong. Adaptation of feed crops to saline-alkali soil stress and effect of improving saline-alkali soil [J]. Acta Agronomica Sinica, 2022, 48(6): 1451-1462.
[3] YAN Jia-Qian, GU Yi-Biao, XUE Zhang-Yi, ZHOU Tian-Yang, GE Qian-Qian, ZHANG Hao, LIU Li-Jun, WANG Zhi-Qin, GU Jun-Fei, YANG Jian-Chang, ZHOU Zhen-Ling, XU Da-Yong. Different responses of rice cultivars to salt stress and the underlying mechanisms [J]. Acta Agronomica Sinica, 2022, 48(6): 1463-1475.
[4] YANG Huan, ZHOU Ying, CHEN Ping, DU Qing, ZHENG Ben-Chuan, PU Tian, WEN Jing, YANG Wen-Yu, YONG Tai-Wen. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system [J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487.
[5] CHEN Jing, REN Bai-Zhao, ZHAO Bin, LIU Peng, ZHANG Ji-Wang. Regulation of leaf-spraying glycine betaine on yield formation and antioxidation of summer maize sowed in different dates [J]. Acta Agronomica Sinica, 2022, 48(6): 1502-1515.
[6] LI Yi-Jun, LYU Hou-Quan. Effect of agricultural meteorological disasters on the production corn in the Northeast China [J]. Acta Agronomica Sinica, 2022, 48(6): 1537-1545.
[7] SHI Yan-Yan, MA Zhi-Hua, WU Chun-Hua, ZHOU Yong-Jin, LI Rong. Effects of ridge tillage with film mulching in furrow on photosynthetic characteristics of potato and yield formation in dryland farming [J]. Acta Agronomica Sinica, 2022, 48(5): 1288-1297.
[8] YAN Xiao-Yu, GUO Wen-Jun, QIN Du-Lin, WANG Shuang-Lei, NIE Jun-Jun, ZHAO Na, QI Jie, SONG Xian-Liang, MAO Li-Li, SUN Xue-Zhen. Effects of cotton stubble return and subsoiling on dry matter accumulation, nutrient uptake, and yield of cotton in coastal saline-alkali soil [J]. Acta Agronomica Sinica, 2022, 48(5): 1235-1247.
[9] KE Jian, CHEN Ting-Ting, WU Zhou, ZHU Tie-Zhong, SUN Jie, HE Hai-Bing, YOU Cui-Cui, ZHU De-Quan, WU Li-Quan. Suitable varieties and high-yielding population characteristics of late season rice in the northern margin area of double-cropping rice along the Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(4): 1005-1016.
[10] LI Rui-Dong, YIN Yang-Yang, SONG Wen-Wen, WU Ting-Ting, SUN Shi, HAN Tian-Fu, XU Cai-Long, WU Cun-Xiang, HU Shui-Xiu. Effects of close planting densities on assimilate accumulation and yield of soybean with different plant branching types [J]. Acta Agronomica Sinica, 2022, 48(4): 942-951.
[11] WANG Lyu, CUI Yue-Zhen, WU Yu-Hong, HAO Xing-Shun, ZHANG Chun-Hui, WANG Jun-Yi, LIU Yi-Xin, LI Xiao-Gang, QIN Yu-Hang. Effects of rice stalks mulching combined with green manure (Astragalus smicus L.) incorporated into soil and reducing nitrogen fertilizer rate on rice yield and soil fertility [J]. Acta Agronomica Sinica, 2022, 48(4): 952-961.
[12] DU Hao, CHENG Yu-Han, LI Tai, HOU Zhi-Hong, LI Yong-Li, NAN Hai-Yang, DONG Li-Dong, LIU Bao-Hui, CHENG Qun. Improving seed number per pod of soybean by molecular breeding based on Ln locus [J]. Acta Agronomica Sinica, 2022, 48(3): 565-571.
[13] CHEN Yun, LI Si-Yu, ZHU An, LIU Kun, ZHANG Ya-Jun, ZHANG Hao, GU Jun-Fei, ZHANG Wei-Yang, LIU Li-Jun, YANG Jian-Chang. Effects of seeding rates and panicle nitrogen fertilizer rates on grain yield and quality in good taste rice cultivars under direct sowing [J]. Acta Agronomica Sinica, 2022, 48(3): 656-666.
[14] YUAN Jia-Qi, LIU Yan-Yang, XU Ke, LI Guo-Hui, CHEN Tian-Ye, ZHOU Hu-Yi, GUO Bao-Wei, HUO Zhong-Yang, DAI Qi-Gen, ZHANG Hong-Cheng. Nitrogen and density treatment to improve resource utilization and yield in late sowing japonica rice [J]. Acta Agronomica Sinica, 2022, 48(3): 667-681.
[15] DING Hong, XU Yang, ZHANG Guan-Chu, QIN Fei-Fei, DAI Liang-Xiang, ZHANG Zhi-Meng. Effects of drought at different growth stages and nitrogen application on nitrogen absorption and utilization in peanut [J]. Acta Agronomica Sinica, 2022, 48(3): 695-703.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!