Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2009, Vol. 35 ›› Issue (4): 647-661.doi: 10.3724/SP.J.1006.2009.00647

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Characterization of Xinjiang Local and Intoduced Wheat Germplasm for High Molecular Weight Glutenin Subunits and Quality-Related Genes with Molecular Markers

LI Jing12,HE Zhong-Hu23*,XIA Xian-Chun2,WU Xin-Yuan1,LI Dong1,CAO Jun-Mei1   

  1. 1Institute of cereal Crops of xinjiang Academy of Agricultural Science,Urumqi 830000,China;2Insitute of Crop Sciences/National Wheat Improvement Center,Chinese Academy of Agricultural Sciences,Beijing 100081,China;3CIMMYT China Office,Beijing 100081,China
  • Received:2008-08-13 Revised:2008-10-25 Online:2009-04-12 Published:2009-02-16
  • Contact: HE Zhong-Hu E-mail:zhhe@public3.net.cn Tel:010-82105691 Fax:010-82108547 E-mail:zhhe@public3.bta.net.cn

Abstract:

High molecular weight glutenin subunits (HMW-GS), 1B·1R translocation, polyphenol oxidase (PPO) activities, and yellow pigment content are mostly correlated with the processing quality of common wheat (Triticum aestivum L.). An accurate and fast characterization of these genes is of great importance in the improvement of wheat quality. In this study, a total of 321 wheat genotypes, including 100 Xinjiang local wheat cultivars, 130 introductions from other provinces of China and 91 introductions from other countries, were analyzed by SDS-PAGE method. In addition, the functional markers of Dx5, Bx7, By8, By9,1B·1R, PPO16, PPO18, PPO29, and YP7A were used to detect their allelic variations. Twenty-one subunit combinations were found according to the SDS-PAGE data, 3 types at Glu-A1 locus with Null as a major subunit, 10 types at Glu-B1 locus with Bx7+By8 and Bx7+By9 as major subunits, and 8 types at Glu-D1 locus with Dx2+Dy12 and Dx5+Dy10 as major subunits. The frequencies of the Dx5, Bx7, By8, and Bx9 subunits revealed by functional markers were 38.3%, 85.7%, 38.9%, and 42.7%, respectively, with 97.2%, 98.4%, 93.4%, and 97.2% of consistency with SDS-PAGE results, respectively. Eighty-six genotypes had 1B·1R translocations, with 22.0% in Xinjiang local cultivars, 31.5% in the introductions from other provinces of China, and 25.0% in those from other countries, respectively. The frequencies of Psy-A1b detected by YP7A marker were 9.0%, 10.8%, and 5.4% among three group genotypes, respectively. The PPO18 marker for the Ppo-A1 locus yielded Ppo-A1b allele with frequencies of 38.0%, 43.8%, and 45.7% among three group genotypes, respectively. The Ppo-D1a allele frequencies were 48.0%, 66.9%, and 40.2% among three group genotypes, respectively, according to the PPO16 and PPO29 markers at Ppo-D1 locus. However, only 74 genotypes contained Ppo-A1b and Ppo-D1a alleles at both loci, accounting for 23.0% of the genotypes. The functional markers applied in this study were repeatable, accurate and stable, and can be effectively used in wheat quality breeding.

Key words: Common wheat, HMW-GS, SDS-PAGE, Processing quality, Molecular markers

[1] Payne P I. Genetics of wheat storage protein and the effect of allelic variation on bread-making quality. Annu RevPlant Physiol, 1987, 38: 141–153
[2] Branlard G, Dardevet M. Diversity of grain protein and bread wheat quality: II. Correlation between high-molecular-weight subunits of glutenin and flour quality characteristics. J Cereal Sci, 1985, 3: 345–354
[3] Lawrence G J, Macritchie F, Wrigley C W. Dough and baking quality of wheat lines deficient in glutenin subunits controlled by the Glu-A1, Glu-B1 and Glu-D1 loci. J Cereal Sci, 1988, 7: 109–112
[4] Boleslaw P S, Monika D. Identification and characterization of high-molecular-weight glutenin genes in polish triticale cultivars by PCR-based DNA markers. Theor Appl Genet, 2007, 48: 347–357
[5] Ma W, Zhang W, Gale K R. Multiplex-PCR typing of high molecular weight glutenin alleles in wheat. Euphytica, 2003, 134: 51–60
[6] D’Ovidio R, Anderson O D. PCR analysis to distinguish between alleles of a member of a multigene family correlated with bread-making quality. Theor Appl Genet, 1994, 88: 759–763
[7] Lei Z S, Gale K R, He Z H, Gianibelli C, Larroque O, Xia X C, Butow B J, Ma W. Y-type gene specific markers for enhanced discrimination of high-molecular weight glutenin alleles at the Glu-B1 locus in hexaploid wheat. J Cereal Sci, 2006, 43: 94–101
[8] Schwarz G, Felsenstein F G, Wenzel G. Development and validation of a PCR-based marker assay for negative selection of the HMW glutenin allele Glu-B1-1d(Bx-6) in wheat. Theor Appl Genet, 2004, 109: 1064–1069
[9] Zhou Y(周阳), He Z-H(何中虎), Zhang G-S(张改生), Xia L-Q(夏兰琴), Chen X-M(陈新民), Gao Y-C(高永超), Jing Z-B(井赵斌), Yu G-J(于广军). Utlization of 1BL/1RS translocation in wheat breeding in China. Acta Agron Sin (作物学报), 2004, 30(6): 531–535 (in Chinese with English abstract)
[10] Liu L, He Z H, Yan J, Zhang Y, Xia X C, Pen?a J. Allelic variation at the Glu-1 and Glu-3 loci, presence of the 1B·1R translocation, and their effects on mixographic properties in Chinese bread wheats. Euphytica, 2005, 142: 197–204
[11]Liu J-J(刘建军), He Z-H(何中虎), Peňa R J, Zhao Z-D(赵振东). Effect of 1BL/1RS translocation on grain quality and noodle quality in bread wheat. Acta Agron Sin (作物学报), 2004, 30(2): 149–153 (in Chinese with English abstract)
[12] Francis H A, Leitch A R, Koebner R M D. Conversion of a RAPD-generated PCR product, containing novel dispersed repetitive element, into a fast assay for the presence of rye chromatin in wheat. Theor Appl Genet, 1995, 90: 636–642
[13] He Z H, Yang J, Zhang Y, Quail K J, Peňa R J. Pan bread and dry white Chinese noodle quality in Chinese winter wheats. Euphytica, 2004, 139: 257–267
[14] Miskelly D M. Flour components affecting paste and noodle colour. J Sci Food Agric, 1984, 35: 463–471
[15] Kruger J E, Hatcher D W, DePauw R. A whole seed assay for polyphenol oxidase in Canadian prairie spring wheats and its usefulness as a measure of noodle darkening. Cereal Chem, 1994, 71: 324–326
[16] Sun D J, He Z H, Xia X C, Zhang L P, Morris C F, Appels R, Ma W J, Wang H. A novel STS marker for polyphenol oxidase activity in bread wheat. Mol Breed, 2005, 16: 209–218
[17] He X Y, He Z H, Zhang L P, Sun D J, Morris C F, Fuerst E P, Xia X C. Allelic variation of polyphenol oxidase (PPO) genes located on chromosomes 2A and 2D and development of functional markers for the PPO genes in common wheat. Theor Appl Genet, 2007, 115: 47–58
[18] Parker G D. Mapping loci associated with flour color in wheat. Theor Appl Genet, 1998, 97: 238–245
[19] Elouafi I, Nachit M M, Martin L M. Identification of a microsatellite on chromosome 7B showing a strong linkage with yellow pigment in durum wheat (Triticum turgidum L. var. durum). Hereditas, 2001, 135: 255–261
[20] Zhang L-P(张立平), Yan J(阎俊), Xia X-C(夏先春), He Z-H(何中虎), Sutherland M W. QTL mapping for kernel yellow pigment content in common wheat. Acta Agron Sin (作物学报), 2006, 32(1): 41–45 (in Chinese with English abstract)
[21] He X Y, Zhang Y L, He Z H, Wu Y P, Xiao Y G, Ma C X, Xia X C. Characterization of phytoene synthase 1 gene (Psy1) located on common wheat chromosome 7A and development of a functional marker. Theor Appl Genet, 2008, 116: 213–221
[22] Zhang X-Y(张学勇), Dong Y-C(董玉琛), You G-X(游光侠), Wang L-F(王兰芬), Li P(李培), Jia J-Z(贾继增). Allelic variation of Glu-A1, Glu-B1 and Glu-D1 in Chinese commercial wheat varieties in the last 50 years. Sci Agric Sin (中国农业科学), 2001, 34(4): 355–362 (in Chinese with English abstract)
[23] Lagudah E S, Appels R, McNeil D. The Nor-D3 locus of Triticum tauschii: natural variation and genetic linkage to markers in chromosome 5. Genome, 1991, 34: 387–395
[24] Liu L(刘丽), Yan J(阎俊), Zhang Y(张艳), He Z-H(何中虎), Pe?a R J, Zhang L-P(张立平). Allelic variation at the Glu-1 and Glu-3 loci and presence of 1B/1R translocation, and their effects on processing quality in cultivars and advanced lines from autumn-sown wheat regions in China. Sci Agric Sin (中国农业科学), 2005, 38(10): 1944–1950 (in Chinese with English abstract)
[25] Sun D-J(孙道杰), Zhang L-P(张立平), Xia X-C(夏先春), He Z-H(何中虎), Ge X-X(葛秀秀), Xu Z-H(徐兆华), Wang H(王辉). Validation of SSR marker assisted selection for polyphenol oxidase activities in common wheat. Sci Agric Sin (中国农业科学), 2005, 38(7): 1295–1299 (in Chinese with English abstract)
[26] Kruger J E, Matsuo R R, Preston K. A comparison of methods for the prediction of Cantonese noodle colour. Can J Plant Sci, 1992, 72: 1021–1029
[1] WANG Heng-Bo, CHEN Shu-Qi, GUO Jin-Long, QUE You-Xiong. Molecular detection of G1 marker for orange rust resistance and analysis of candidate resistance WAK gene in sugarcane [J]. Acta Agronomica Sinica, 2021, 47(4): 577-586.
[2] JIN Yi-Rong, LIU Jin-Dong, LIU Cai-Yun, JIA De-Xin, LIU Peng, WANG Ya-Mei. Genome-wide association study of nitrogen use efficiency related traits in common wheat (Triticum aestivum L.) [J]. Acta Agronomica Sinica, 2021, 47(3): 394-404.
[3] GUO Yan-Chun, ZHANG Li-Lan, CHEN Si-Yuan, QI Jian-Min, FANG Ping-Ping, TAO Ai-Fen, ZHANG Lie-Mei, ZHANG Li-Wu. Establishment of DNA molecular fingerprint of applied core germplasm in jute (Corchorus spp.) [J]. Acta Agronomica Sinica, 2021, 47(1): 80-93.
[4] ZHANG Ping-Ping,YAO Jin-Bao,WANG Hua-Dun,SONG Gui-Cheng,JIANG Peng,ZHANG Peng,MA Hong-Xiang. Soft wheat quality traits in Jiangsu province and their relationship with cookie making quality [J]. Acta Agronomica Sinica, 2020, 46(4): 491-502.
[5] Di JIN,Dong-Zhi WANG,Huan-Xue WANG,Run-Zhi LI,Shu-Lin CHEN,Wen-Long YANG,Ai-Min ZHANG,Dong-Cheng LIU,Ke-Hui ZHAN. Fine mapping and candidate gene analysis of awn inhibiting gene B2 in common wheat [J]. Acta Agronomica Sinica, 2019, 45(6): 807-817.
[6] Fang-Ping YANG,Jin-Dong LIU,Ying GUO,Ao-Lin JIA,Wei-E WEN,Kai-Xiang CHAO,Ling WU,Wei-Yun YUE,Ya-Chao DONG,Xian-Chun XIA. QTL mapping of adult-plant resistance to stripe rust in wheat variety holdfast [J]. Acta Agronomica Sinica, 2019, 45(12): 1832-1840.
[7] ZHAO Jia-Jia,MA Xiao-Fei,ZHENG Xing-Wei,HAO Jian-Yu,QIAO Ling,GE Chuan,WANG Ai-Ai,ZHANG Shu-Wei,ZHANG Xiao-Jun,JI Hu-Tai,ZHENG Jun. Effects of HMW-GS on wheat quality under different water conditions [J]. Acta Agronomica Sinica, 2019, 45(11): 1682-1690.
[8] Jun-Hua YE,Qi-Tai YANG,Zhang-Xiong LIU,Yong GUO,Ying-Hui LI,Rong-Xia GUAN,Li-Juan QIU. Genotyping of SCN, SMV Resistance, Salinity Tolerance and Screening of Pyramiding Favorable Alleles in Introduced Soybean Accessions [J]. Acta Agronomica Sinica, 2018, 44(9): 1263-1273.
[9] Yong-Jie MIAO, Jun YAN, De-Hui ZHAO, Yu-Bing TIAN, Jun-Liang YAN, Xian-Chun XIA, Yong ZHANG, Zhong-Hu HE. Relationship between Grain Filling Parameters and Grain Weight in Leading Wheat Cultivars in the Yellow and Huai Rivers Valley [J]. Acta Agronomica Sinica, 2018, 44(02): 260-267.
[10] XIAO Yong-Gui,Susanne DREISIGACKER,Claudia NU?EZ-RíOS,HU Wei-Guo,XIA Xian-Chun,HE Zhong-Hu. dsDNA Fluorescent Quantification and Genotyping in Common Wheat by FLUOstar System [J]. Acta Agron Sin, 2017, 43(07): 947-953.
[11] LIU Chang,LI Shi-Jin,WANG Ke,YE Xing-Guo,LIN Zhi-Shan*. Developing of Specific Transcription Sequences P21461 and P33259 on D. villosum 6VS and Their Application of Molecular Markers in Identifying Wheat-D. villosum Breeding Materials with Powdery Mildew Resistance [J]. Acta Agron Sin, 2017, 43(07): 983-992.
[12] DONG Xue,LIU Meng,ZHAO Xian-Lin,FENG Yu-Mei,YANG Yan. Isolation and Characterization of LMW-GS Glu-A3 in Common Wheat Related Species [J]. Acta Agron Sin, 2017, 43(06): 829-838.
[13] LIU Kai,DENG Zhi-Ying,ZHANG Ying,WANG Fang-Fang,LIU Tong-Tong,LI Qing-Fang,SHAO Wen,ZHAO Bin,TIAN Ji-Chun*,CHEN Jian-Sheng*. Linkage Analysis and Genome-Wide Association Study of QTLs Controlling Stem-Breaking-Strength-Related Traits in Wheat [J]. Acta Agron Sin, 2017, 43(04): 483-495.
[14] GONG Xi,JIANG Yun-Feng,XU Bin-Jie,QIAO Yuan-Yuan,HUA Shi-Yu,WU Wang,MA Jian,ZHOU Xiao-Hong,QI Peng-Fei,LAN Xiu-Jin. Mapping QTLs for Awn Length in Recombinant Inbred Line Population Derived from the Cross between Common Wheat and Tibetan Semi-wild Wheat [J]. Acta Agron Sin, 2017, 43(04): 496-500.
[15] FU Bi-Sheng,LIU Ying,ZHANG Qiao-Feng,WU Xiao-You,GAO Hai-Dong,CAI Shi-Bin,DAI Ting-Bo,WU Ji-Zhong. Development of Markers Closely Linked with Wheat Powdery Mildew Resistance Gene Pm48 [J]. Acta Agron Sin, 2017, 43(02): 307-312.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!