Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2009, Vol. 35 ›› Issue (11): 2045-2054.doi: 10.3724/SP.J.1006.2009.02045

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Utilization of Water and Nitrogen and Yield Formation Under Three ALimited Irrigation Schedules in Winter Wheat

ZHANG Sheng-Quan1,FANG Bao-Ting1,2,ZHANG Ying-Hua1,ZHOU Shun-Li1,WANG Zhi-Min1*   

  1. 1College of Agronomy and Biotechnology,China Agricultural University,Beijing 100193,China;2Wheat Research Center,Henan Academy of Agricultural Sciences,Zhengzhou 450002,China
  • Received:2009-02-24 Revised:2009-05-31 Online:2009-11-12 Published:2009-09-10
  • Contact: WANG Zhi-Min,E-mail:zhimin206@263.net;Tel:010-62734011

Abstract:

Water shortage is a great challenge in winter wheat (Triticum aestivum L.) production worldwide. Studies on wheat physiology and ecology have been carried out aiming at yielding more grains with less consumptions of water and nitrogen fertilizer. Cultivation techniques based on limited irrigation and nitrogen application are highly emphasized in North China Plain, where water stress is the most major problem in regular years. In Wuqiao area, Hebei province, China, a series cultivation systems have been established with distinct effects of high yield and small water consumption. The principle measure in the technique system was controlling the irrigation frequency and water amount. The purpose of this study was to disclose the mechanism of high-yielding and high resource use efficiency in the cultivation system established in Wuqiao. In the consecutive growing seasons from 2004 to 2008, field experiments were conducted at the Wuqiao Experimental Station of China Agriculture University under three limited irrigation schedules, i.e., no irrigation in spring (I0), 750 m3 ha-1 of water at jointing (I1) and each 750 m3ha-1 of water at jointing and anthesis (I2). Fertilizers were only applied before sowing, including urea 225 kg ha-1, (NH4)2HPO4 300 kg ha-1 (thus, the total nitrogen was 157.5 kg ha-1),K2SO4225 kg ha-1, and ZnSO422.5 kg ha-1. The characteristics of water and nitrogen use and the formation of grain yield were investigated at jointing, booting, anthesis, and maturity stages. The results showed that the average yield was 6134 kg ha-1 for I0, 7 515 kg ha-1 for I1, and 8 134 for I2 treatment, and the average total evapotranspiration was in the order of 3 334, 3 829, and
4 270
m3 ha-1. The ratio of soil water consumption to total evapotranspiration was 67%, 49%, and 38% in I0, I1, and I2 treatments, respectively. The water use efficiency ranged from 1.9 to 2.0 kg m-3 with no significant differences among treatments. This indicated that approximately 52.6 m3 of water was required for yielding 100 kg of grains. Under the nitrogen application level of 157.5 kg ha-1, the average total nitrogen accumulation was 163, 198, and 212 kg ha-1 in I0, I1, and I2 treatments, respectively. Consistent results with slight variations were observed in the total nitrogen accumulation across years. The average nitrogen use efficacy of the three irrigation treatments was 38 kg kg-1and there were no significant differences among treatments. In terms of the characteristics of plant population, the leaf area index (LAI) at booting and anthesis, as well as the LAI for the top three leaves were not significantly different between I1 and I2 treatments, but they were significantly higher than those in I0 treatment. The LAI for the top three leaves and non-leaf organs green area index (NAI) above flag leaf ranged from 2.6 to 3.8 and from 2.7 to 3.6, respectively. The ratios of non-leaf organs green area above flag leaf to the uppermost three leaf area and total leaf area were more than 1.0 and 0.7, respectively. Three limited irrigation schedulesshowed steady grain yield and high resource use efficiency for consecutive four years.

Key words: Winter wheat, Water-saving cultivation, Nitrogen use efficiency, High yield, Irrigation schedule

[1] GUO Xing-Yu, LIU Peng-Zhao, WANG Rui, WANG Xiao-Li, LI Jun. Response of winter wheat yield, nitrogen use efficiency and soil nitrogen balance to rainfall types and nitrogen application rate in dryland [J]. Acta Agronomica Sinica, 2022, 48(5): 1262-1272.
[2] YUAN Jia-Qi, LIU Yan-Yang, XU Ke, LI Guo-Hui, CHEN Tian-Ye, ZHOU Hu-Yi, GUO Bao-Wei, HUO Zhong-Yang, DAI Qi-Gen, ZHANG Hong-Cheng. Nitrogen and density treatment to improve resource utilization and yield in late sowing japonica rice [J]. Acta Agronomica Sinica, 2022, 48(3): 667-681.
[3] LIU Yun-Jing, ZHENG Fei-Na, ZHANG Xiu, CHU Jin-Peng, YU Hai-Tao, DAI Xing-Long, HE Ming-Rong. Effects of wide range sowing on grain yield, quality, and nitrogen use of strong gluten wheat [J]. Acta Agronomica Sinica, 2022, 48(3): 716-725.
[4] WANG Yan, CHEN Zhi-Xiong, JIANG Da-Gang, ZHANG Can-Kui, ZHA Man-Rong. Effects of enhancing leaf nitrogen output on tiller growth and carbon metabolism in rice [J]. Acta Agronomica Sinica, 2022, 48(3): 739-746.
[5] WANG Yang-Yang, HE Li, REN De-Chao, DUAN Jian-Zhao, HU Xin, LIU Wan-Dai, GU Tian-Cai, WANG Yong-Hua, FENG Wei. Evaluations of winter wheat late frost damage under different water based on principal component-cluster analysis [J]. Acta Agronomica Sinica, 2022, 48(2): 448-462.
[6] JIN Yi-Rong, LIU Jin-Dong, LIU Cai-Yun, JIA De-Xin, LIU Peng, WANG Ya-Mei. Genome-wide association study of nitrogen use efficiency related traits in common wheat (Triticum aestivum L.) [J]. Acta Agronomica Sinica, 2021, 47(3): 394-404.
[7] ZHANG Yu-Xun, QI Tuo-Ye, SUN Yuan, QU Xiang-Ning, CAO Yuan, WU Meng-Yao, LIU Chun-Hong, WANG Lei. Vegetation characteristics of GF-6 remote sensing image and application on LAI retrieval of winter wheat at seedling stage [J]. Acta Agronomica Sinica, 2021, 47(12): 2532-2540.
[8] HUANG Heng, JIANG Heng-Xin, LIU Guang-Ming, YUAN Jia-Qi, WANG Yuan, ZHAO Can, WANG Wei-Ling, HUO Zhong-Yang, XU Ke, DAI Qi-Gen, ZHANG Hong-Cheng, LI De-Jian, LIU Guo-Lin. Effects of side deep placement of nitrogen on rice yield and nitrogen use efficiency [J]. Acta Agronomica Sinica, 2021, 47(11): 2232-2249.
[9] HU Xin-Hui, GU Shu-Bo, ZHU Jun-Ke, WANG Dong. Effects of applying potassium at different growth stages on dry matter accumulation and yield of winter wheat in different soil-texture fields [J]. Acta Agronomica Sinica, 2021, 47(11): 2258-2267.
[10] ZHOU Bao-Yuan, GE Jun-Zhu, SUN Xue-Fang, HAN Yu-Ling, MA Wei, DING Zai-Song, LI Cong-Feng, ZHAO Ming. Research advance on optimizing annual distribution of solar and heat resources for double cropping system in the Yellow-Huaihe-Haihe Rivers plain [J]. Acta Agronomica Sinica, 2021, 47(10): 1843-1853.
[11] LUO Wen-He, SHI Zu-Jiao, WANG Xu-Min, LI Jun, WANG Rui. Effects of water saving and nitrogen reduction on soil nitrate nitrogen distribution, water and nitrogen use efficiencies of winter wheat [J]. Acta Agronomica Sinica, 2020, 46(6): 924-936.
[12] Lei ZHOU,Qiu-Yuan LIU,Jin-Yu TIAN,Meng-Hua ZHU,Shuang CHENG,Yang CHE,Zhi-Jie WANG,Zhi-Peng XING,Ya-Jie HU,Guo-Dong LIU,Hai-Yan WEI,Hong-Cheng ZHANG. Differences in yield and nitrogen absorption and utilization of indica-japonica hybrid rice varieties of Yongyou series [J]. Acta Agronomica Sinica, 2020, 46(5): 772-786.
[13] Zhi-Yuan YANG,Na LI,Peng MA,Tian-Rong YAN,Yan HE,Ming-Jin JIANG,Teng-Fei LYU,Yu LI,Xiang GUO,Rong HU,Chang-Chun GUO,Yong-Jian SUN,Jun MA. Effects of methodical nitrogen-water distribution management on water and nitrogen use efficiency of rice [J]. Acta Agronomica Sinica, 2020, 46(3): 408-422.
[14] Fei-Na ZHENG,Jin-Peng CHU,Xiu ZHANG,Li-Wei FEI,Xing-Long DAI,Ming-Rong HE. Interactive effects of sowing pattern and planting density on grain yield and nitrogen use efficiency in large spike wheat cultivar [J]. Acta Agronomica Sinica, 2020, 46(3): 423-431.
[15] MA Yan-Ming, FENG Zhi-Yu, WANG Wei, ZHANG Sheng-Jun, GUO Ying, NI Zhong-Fu, LIU Jie. Genetic diversity analysis of winter wheat landraces and modern bred varieties in Xinjiang based on agronomic traits [J]. Acta Agronomica Sinica, 2020, 46(12): 1997-2007.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!