Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2008, Vol. 34 ›› Issue (10): 1788-1796.doi: 10.3724/SP.J.1006.2008.01788

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Development of Small Starch Granule in Barley Endosperm

WEI Cun-Xu1,ZHANG Jun1,ZHOU Wei-Dong2,CHEN Yi-Fang2,XU Ru-Gen3   

  1. 1 College of Bioscience and Biotechnology; 2 Analytical Centre; 3 Agricultural College, Yangzhou University, Yangzhou 225009, Jiangsu, China
  • Received:2008-01-10 Revised:1900-01-01 Online:2008-10-12 Published:2008-10-12
  • Contact: WEI Cun-Xu

Abstract: Mature starchy endosperm of barley is mainly composed of starch. The structural characteristics and physicochemical properties of barley starch differ with granule size, which is important in final product applications of barley flours. To produce barley cultivars with predominantly large or small starch granules, it is necessary to understand the development of large and small starch granules during barley endosperm development. However, only large starch granule in barley has been studied currently, while little information is available on small starch granule development. In this study, we used Yangsimai 3 as the material to investigate small starch granule development in barley endosperm. Starch granules in barley mature endosperm showed a three-size distribution after differential sedimentation. The average long axis of A-, B-, and C-type starch granules was 16.1, 7.9, and 2.6 mm, and their percentage in total starch weight was 87.2%, 11.9%, and 0.9%, respectively. Large starch granule (A-type) increased quickly in size with approximate maximum diameter at 12 days after ear stem emerging from flag leaf sheath (DAE). The number of large starch granules in endosperm cell changed little after 16 DAE. Small starch granules (B- and C-types) initi-ated at 12 DAE and increased quickly in number from 12 to 20 DAE. After 20 DAE, the magnitude of increase in number of small starch granules reduced. Scanning electron micrographs indicated that large starch granules showed a disk shape and small starch granules showed a spherical or irregularly polygonal shape. Endosperm cells had large amyloplast that exhibited protrusions from envelope at 10 DAE. Spherical small amyloplast appeared at 12 DAE and increased quickly in number at 20 DAE. Some small amyloplasts showed polygonal shape at 24 DAE. Many irregularly polygonal small starch granules were observed around large starch granules after 28 DAE. Transmission electron micrographs with conventional glutaraldehyde-osmium tetroxide fixation showed that early endosperm cells contained amyloplasts that contained single starch granule. Large amyloplasts with large starch granules divided and increased in number through binary fission at 12 DAE. One large amyloplast had only one large starch gra- nule. The envelopes of large and small amyloplasts were difficultly observed after 12 DAE. Transmission electron micrographs with potassium permanganate fixation showed a distinct endomembrane organization, in particular, the structure associations of the amyloplast envelope with amyloplast proliferation during endosperm development. Endosperm cells had large amyloplasts that exhibited protrusion at 12 DAE, and some of the protrusions contained small starch granules. Small amyloplasts with small starch granules formed new small amyloplasts to produce small starch granules by the way of protruding of their envelopes at 16 DAE. Many small starch granules formed and developed in one small amyloplast. With small starch granules development in one small amyloplast, some small starch granules became irregularly polygonal shape when they enlarged close to one another. The amyloplast envelope began to degrade and released starch granules into cell matrix when amyloplast was full of starch granules. The above results showed that small amyloplasts came from the protrusion of amyloplast envelopes. Many small starch granules, which were compound starch granules, formed and developed in one small amyloplast.

Key words: Barley, Endosperm, Amyloplast, Small starch granule, Compound starch granule, Single starch granule

[1] WANG Xing-Rong, LI Yue, ZHANG Yan-Jun, LI Yong-Sheng, WANG Jun-Cheng, XU Yin-Ping, QI Xu-Sheng. Drought resistance identification and drought resistance indexes screening of Tibetan hulless barley resources at adult stage [J]. Acta Agronomica Sinica, 2022, 48(5): 1279-1287.
[2] YAO Xiao-Hua, WANG Yue, YAO You-Hua, AN Li-Kun, WANG Yan, WU Kun-Lun. Isolation and expression of a new gene HvMEL1 AGO in Tibetan hulless barley under leaf stripe stress [J]. Acta Agronomica Sinica, 2022, 48(5): 1181-1190.
[3] YANG Jin, BAI Ai-Ning, BAI Xue, CHEN Juan, GUO Lin, LIU Chun-Ming. Phenotypic and genetic analyses of a rice mutant eed1 with defected embryo and endosperm development [J]. Acta Agronomica Sinica, 2022, 48(2): 292-303.
[4] HE Jun-Yu, ZHONG Wei, CHEN Yun-Qiong, WANG Wei-Bin, XIONG Jing-Lei, JIANG Ya-Li, SHI Hui-Meng, CHEN Sheng-Wei. Analysis on the accumulation characteristics of seven flavonoids at grain development stage in barley [J]. Acta Agronomica Sinica, 2021, 47(8): 1624-1630.
[5] GENG La, HUANG Ye-Chang, LI Meng-Di, XIE Shang-Geng, YE Ling-Zhen, ZHANG Guo-Ping. Genome-wide association study of β-glucan content in barley grains [J]. Acta Agronomica Sinica, 2021, 47(7): 1205-1214.
[6] LI Jie, FU Hui, YAO Xiao-Hua, WU Kun-Lun. Differentially expressed protein analysis of different drought tolerance hulless barley leaves [J]. Acta Agronomica Sinica, 2021, 47(7): 1248-1258.
[7] ZHANG Fan, YANG Qian. Effects of combined application of organic materials and chemical fertilizers in barley-double cropping rice rotation system on barley resource utilization efficiency and yield [J]. Acta Agronomica Sinica, 2021, 47(12): 2522-2531.
[8] XU Ting-Ting, WANG Qiao-Ling, ZOU Shu-Qiong, DI Jia-Chun, YANG Xin, ZHU Yin, ZHAO Han, YAN Wei. Development and application of InDel markers based on high throughput sequencing in barley [J]. Acta Agronomica Sinica, 2020, 46(9): 1340-1350.
[9] ZHAO Xiao-Hong,BAI Yi-Xiong,WANG Kai,YAO You-Hua,YAO Xiao-Hua,WU Kun-Lun. Effects of planting density on lodging resistance and straw forage characteristics in two hulless barley varieties [J]. Acta Agronomica Sinica, 2020, 46(4): 586-595.
[10] Yin-Ping XU, Yong-Dong PAN, Qiang-De LIU, Yuan-Hu YAO, Yan-Chun JIA, Cheng REN, Ke-Cang HUO, Wen-Qing CHEN, Feng ZHAO, Qi-Jun BAO, Hua-Yu ZHANG. Drought resistance identification and drought resistance indexes screening of barley resources at mature period [J]. Acta Agronomica Sinica, 2020, 46(3): 448-461.
[11] YANG Xiao-Meng, LI Xia, PU Xiao-Ying, DU Juan, Muhammad Kazim Ali, YANG Jia-Zhen, ZENG Ya-Wen, YANG Tao. QTL mapping for total grain anthocyanin content and 1000-kernel weight in barley recombinant inbred lines population [J]. Acta Agronomica Sinica, 2020, 46(01): 52-61.
[12] SHI Li-Jie,JIANG Cong-Cong,WANG Fang-Mei,YANG Ping,FENG Zong-Yun. Genome-wide characterization and transcriptional analysis of the protein disulfide isomerase-like genes in barley (Hordeum vulgare) [J]. Acta Agronomica Sinica, 2019, 45(9): 1365-1374.
[13] WANG Kai,ZHAO Xiao-Hong,YAO Xiao-Hua,YAO You-Hua,BAI Yi-Xiong,WU Kun-Lun. Relationship of stem characteristics and lignin synthesis with lodging resistance of hulless barley [J]. Acta Agronomica Sinica, 2019, 45(4): 621-627.
[14] Lhundrupnamgyal,Hui-Hui LI,Gang-Gang GUO, Chemiwangmo,Li-Yun GAO,Ya-Wei TANG, Nyematashi, Dawadondrup, Dolkar. Growth habit identification and diversity and stability analysis of heading date in Tibetan barley (Hordeum vulgare L.) [J]. Acta Agronomica Sinica, 2019, 45(12): 1796-1805.
[15] Li-Min YUAN, Ming-Fei ZHAN, Xing-Chuan ZHANG, Zhi-Qin WANG, Jian-Chang YANG. Endosperm Structure of Grains at Different Positions of Rice Panicle and Regulation Effect of Irrigation Regimes on It during Grain Filling [J]. Acta Agronomica Sinica, 2018, 44(02): 245-259.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!