Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2008, Vol. 34 ›› Issue (06): 1005-1013.doi: 10.3724/SP.J.1006.2008.01005

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Effects of Nitrogen Nutrition on Grain Yield of Upland Rice and Paddy Rice under Different Cultivation Methods

ZHANG Ya-Jie,ZHOU Yu-Ran,DU Bin,YANG Jian-Chang*   

  1. Key Laboratory of Crop Genetics and Physiology, Jiangsu Province / Yangzhou University, Yangzhou 225009, Jiangsu, China
  • Received:2007-09-17 Revised:1900-01-01 Online:2008-06-12 Published:2008-06-12
  • Contact: YANG Jian-Chang

Abstract: Upland rice and dry-cultivated paddy rice have been attracted more and more attention because of limited water resources in China. Researches on interaction between water and nitrogen supplies for crop resistance to drought stress has become the hot topic regarding regulation on nutritional physiology. However, there is little information available on effect of nitrogen (N) nutrition on grain yield and its components of upland rice and paddy rice under different cultivation methods. The objective of this study was to evaluate the difference between upland rice and paddy rice and interaction between cultivation methods and N levels. One upland rice cultivar Zhonghan 3 (japonica) and one paddy rice cultivar Yangjing 9538 (japonica) were grown under moist cultivation (MC, control) or bare dry-cultivation (DC) with three N levels, low amount of N (LN, 100 kg ha-1), normal amount of N (NN, 200 kg ha-1), and high amount of N (HN, 300 kg ha-1). The results showed that, compared with NN, the grain yield under HN was lower for both upland and paddy rice under DC and for paddy rice under MC, whereas higher for upland rice under MC. With the increase in N levels, upland rice and paddy rice showed higher productive tillers, more or fewer spikelets per panicle, lower percentage of ripened grains under two cultivation methods. However, the percentage of ripened grains was reduced more for paddy rice than for upland rice. There was no significant difference in 1 000-grain weight for upland rice among three N levels, whereas grain weight was reduced with the increase in N levels. Compared with MC, DC showed no significant difference in grain weight for upland rice, whereas a significant decrease for paddy rice. DC significantly increased the percentage of ripened grains for both upland and paddy rice, and that were more for upland rice than for paddy rice. Compared with paddy rice, upland rice showed less number of adventitious roots, lower nitrogen absorption ability and lower productive tillering ability, fewer pani-cles, fewer spikelets per panicle and lower grain yield. However, upland rice exhibited quicker increase in adventitious roots and slower declining in leaf nitrogen content from jointing to heading, and a faster declining speed in chlorophyll content (SPAD value) after flowering. Also, upland rice had less negative response to water stress and more positive response to N. The results suggest that the response to cultivation methods and N levels varies largely between upland rice and paddy rice. The approaches to in-crease the grain yield of both paddy and upland rice were discussed.

Key words: Upland rice, Paddy rice, Dry cultivation, Nitrogen, Yield

[1] WANG Dan, ZHOU Bao-Yuan, MA Wei, GE Jun-Zhu, DING Zai-Song, LI Cong-Feng, ZHAO Ming. Characteristics of the annual distribution and utilization of climate resource for double maize cropping system in the middle reaches of Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(6): 1437-1450.
[2] WANG Wang-Nian, GE Jun-Zhu, YANG Hai-Chang, YIN Fa-Ting, HUANG Tai-Li, KUAI Jie, WANG Jing, WANG Bo, ZHOU Guang-Sheng, FU Ting-Dong. Adaptation of feed crops to saline-alkali soil stress and effect of improving saline-alkali soil [J]. Acta Agronomica Sinica, 2022, 48(6): 1451-1462.
[3] YAN Jia-Qian, GU Yi-Biao, XUE Zhang-Yi, ZHOU Tian-Yang, GE Qian-Qian, ZHANG Hao, LIU Li-Jun, WANG Zhi-Qin, GU Jun-Fei, YANG Jian-Chang, ZHOU Zhen-Ling, XU Da-Yong. Different responses of rice cultivars to salt stress and the underlying mechanisms [J]. Acta Agronomica Sinica, 2022, 48(6): 1463-1475.
[4] YANG Huan, ZHOU Ying, CHEN Ping, DU Qing, ZHENG Ben-Chuan, PU Tian, WEN Jing, YANG Wen-Yu, YONG Tai-Wen. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system [J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487.
[5] QIN Lu, HAN Pei-Pei, CHANG Hai-Bin, GU Chi-Ming, HUANG Wei, LI Yin-Shui, LIAO Xiang-Sheng, XIE Li-Hua, LIAO Xing. Screening of rapeseed germplasms with low nitrogen tolerance and the evaluation of its potential application as green manure [J]. Acta Agronomica Sinica, 2022, 48(6): 1488-1501.
[6] CHEN Jing, REN Bai-Zhao, ZHAO Bin, LIU Peng, ZHANG Ji-Wang. Regulation of leaf-spraying glycine betaine on yield formation and antioxidation of summer maize sowed in different dates [J]. Acta Agronomica Sinica, 2022, 48(6): 1502-1515.
[7] LI Yi-Jun, LYU Hou-Quan. Effect of agricultural meteorological disasters on the production corn in the Northeast China [J]. Acta Agronomica Sinica, 2022, 48(6): 1537-1545.
[8] GUO Xing-Yu, LIU Peng-Zhao, WANG Rui, WANG Xiao-Li, LI Jun. Response of winter wheat yield, nitrogen use efficiency and soil nitrogen balance to rainfall types and nitrogen application rate in dryland [J]. Acta Agronomica Sinica, 2022, 48(5): 1262-1272.
[9] SHI Yan-Yan, MA Zhi-Hua, WU Chun-Hua, ZHOU Yong-Jin, LI Rong. Effects of ridge tillage with film mulching in furrow on photosynthetic characteristics of potato and yield formation in dryland farming [J]. Acta Agronomica Sinica, 2022, 48(5): 1288-1297.
[10] PENG Xi-Hong, CHEN Ping, DU Qing, YANG Xue-Li, REN Jun-Bo, ZHENG Ben-Chuan, LUO Kai, XIE Chen, LEI Lu, YONG Tai-Wen, YANG Wen-Yu. Effects of reduced nitrogen application on soil aeration and root nodule growth of relay strip intercropping soybean [J]. Acta Agronomica Sinica, 2022, 48(5): 1199-1209.
[11] YAN Xiao-Yu, GUO Wen-Jun, QIN Du-Lin, WANG Shuang-Lei, NIE Jun-Jun, ZHAO Na, QI Jie, SONG Xian-Liang, MAO Li-Li, SUN Xue-Zhen. Effects of cotton stubble return and subsoiling on dry matter accumulation, nutrient uptake, and yield of cotton in coastal saline-alkali soil [J]. Acta Agronomica Sinica, 2022, 48(5): 1235-1247.
[12] KE Jian, CHEN Ting-Ting, WU Zhou, ZHU Tie-Zhong, SUN Jie, HE Hai-Bing, YOU Cui-Cui, ZHU De-Quan, WU Li-Quan. Suitable varieties and high-yielding population characteristics of late season rice in the northern margin area of double-cropping rice along the Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(4): 1005-1016.
[13] LI Rui-Dong, YIN Yang-Yang, SONG Wen-Wen, WU Ting-Ting, SUN Shi, HAN Tian-Fu, XU Cai-Long, WU Cun-Xiang, HU Shui-Xiu. Effects of close planting densities on assimilate accumulation and yield of soybean with different plant branching types [J]. Acta Agronomica Sinica, 2022, 48(4): 942-951.
[14] WANG Lyu, CUI Yue-Zhen, WU Yu-Hong, HAO Xing-Shun, ZHANG Chun-Hui, WANG Jun-Yi, LIU Yi-Xin, LI Xiao-Gang, QIN Yu-Hang. Effects of rice stalks mulching combined with green manure (Astragalus smicus L.) incorporated into soil and reducing nitrogen fertilizer rate on rice yield and soil fertility [J]. Acta Agronomica Sinica, 2022, 48(4): 952-961.
[15] YAN Yu-Ting, SONG Qiu-Lai, YAN Chao, LIU Shuang, ZHANG Yu-Hui, TIAN Jing-Fen, DENG Yu-Xuan, MA Chun-Mei. Nitrogen accumulation and nitrogen substitution effect of maize under straw returning with continuous cropping [J]. Acta Agronomica Sinica, 2022, 48(4): 962-974.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!