Acta Agron Sin ›› 2011, Vol. 37 ›› Issue (02): 302-308.doi: 10.3724/SP.J.1006.2011.00302
• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles Next Articles
TIAN Yun-Lu1,CHEN Jin1,DENG Ai-Xing2,ZHENG Jian-Chu3,ZHANG Wei-Jian1,2,*
[1]IPCC. Climate Change (2007). Synthesis Report: Summary for Policymakers. http://www.ipcc.ch [2]Li C-Y(李崇银), Weng H-Y(翁衡毅), Gao X-Q(高晓清), Zhong M(钟敏). Initial investigation of another possible reason to cause global warming. Chin J Atmospheric Sci (大气科学), 2003, 27(5): 789–797 (in Chinese with English abstract) [3]Yan M-H(闫敏华), Chen P-Q(陈泮勤), Deng W(邓伟), Liang L-Q(梁丽乔). Further understanding of the Sanjiang Plain warming: changes in maximum and minimum air temperature. Ecol Environ(生态环境), 2005, 14(2): 151–156 (in Chinese with English abstract) [4]Ren G-Y(任国玉), Xu M-Z(徐铭志), Chu Z-Y(初子莹), Guo J(郭军), Li Q-X.(李庆祥), Liu X-N(刘小宁), Wang Y(王颖). Changes of surface air temperature in China during 1951–2004. Climatic Environ Res (气候与环境研究), 2005, 10(4): 717–727 (in Chinese with English abstract) [5]Xu Z-F(徐兆飞), Zhang H-Y(张惠叶), Zhang D-Y(张定一). Wheat Quality and Improvement (小麦品质及其改良). Beijing: China Meteorological Press, 2000 (in Chinese) [6]Rahman S, Kosar-Hashemi B, Samuel M S, Hill A, Abbott D C, Skerritt J H, Preiss J, Appels R, Morell M K. The major proteins of wheat endosperm starch granules. Aust J Plant Physiol, 1995, 22: 793–803 [7]Yan J(阎俊), He Z-H(何中虎). Effects of genotype, environment and G×E interaction on starch quality traits of wheat grown in Yellow and Huai River Valley. J Triticeae Crops (麦类作物学报), 2001, 21(2): 14–19 (in Chinese with English abstract) [8]Keeling P L, Bacon P J, Holt D C. Elevated temperature reduces starch deposition in wheat endosperm by reducing the activity of soluble starch synthase. Planta, 1993, 191: 342–348 [9]Jenner C F. Starch synthesis in the kernel of wheat under high temperature conditions. Aust J Plant Physiol, 1994, 21: 791–806 [10]Panozzo J F, Eagles H A. Cultivar and environmental effects on quality characters in wheat: I. Starch. Aust J Plant Physiol, 1998, 49: 757–766 [11]Breseghello F, Finney P L, Gaines C, Andrews L, Tanaka J, Penner G, Sorrells M E. Genetic loci related to kernel quality differences between a soft and a hard wheat cultivar. Crop Sci, 2005, 45: 1685–1695 [12]Davies J, Berzonsky W A. Evaluation of spring wheat quality traits and genotypes for production of Cantonese Asian noodles. Crop Sci, 2003, 43: 1313–1319 [13]Ma D-Y(马冬云), Guo T-C(郭天财), Wang C-Y(王晨阳), Zhu Y-J(朱云集), Wang H-C(王化岑). Investigation on starch pasting properties of winter wheat in different sites. Acta Agric Boreali-Sin (华北农学报), 2004, 19(4): 59–61 (in Chinese) [14]Zhao C(赵春), Ning T-Y(宁堂原), Jiao N-Y(焦念元), Han B(韩宾), Li Z-J(李增嘉). Effects of genotype and environment on protein and starch quality of wheat grain. Chin J Appl Ecol (应用生态学报), 2005, 16(7): 1257–1260 (in Chinese with English abstract) [15]Tian Z-H(田志会), Sun Y(孙彦), Guo Y-Q(郭玉琴). Effects of main ecological factors on nutrition and baking quality of wheat. J Beijing Agric College (北京农学院学报), 2000, 15(2): 67–71 (in Chinese with English abstract) [16]Souza E J, Martin J M, Guttieri M J, O’Brien K M, Habernicht D K, Lanning S P, McLean R, Carlson G R, Talbert L E. Influence of genotype, environment, and nitrogen management on spring wheat quality. Crop Sci, 2004, 44: 425–432 [17]Wu D-B(吴东兵), Cao G-C(曹广才), Wang X-F(王秀芳), Qiang X-L(强小林), Li M(李萌). Relationship between growing process & climatic conditions and the quality of grain of autumn sown wheat. J Hebei Agric Sci (河北农业科学), 2003, 7(1): 5–10 (in Chinese with English abstract) [18]Cao G-C(曹广才), Wu D-B(吴东兵), Chen H-Q(陈贺芹), Qiang X-L(强小林), Dong M(冬梅), Kou H(寇嗥), Wang J-L(王建林), Hou L-B(侯立白), Li M(李萌). Relationship between temperature, sunshine and quality of spring-sowing wheat. Sci Agric Sin (中国农业科学), 2004, 37(5): 663–669 (in Chinese with English abstract) [19]Li X-Y(李向阳), Zhu Y-J(朱云集), Guo T-C(郭天财). Preliminary analysis on the relationship between wheat canopy temperature and yield with quality in filling stage in different genotypes. J Triticeae Crops (麦类作物学报), 2004, 24(2): 88–91 (in Chinese with English abstract) [20]Blumenthal C S, Bekes F, Batey I L, Wrigley C W, Moss H J, Mares D J, Barlow E W R. Interpretation of grain quality results from wheat variety trials with reference to higher temperature stress. Aust J Agric Res, 1991, 42: 325–334 [21]Stone P J, Nicolas M E. Wheat cultivars vary widely in their response of grain yield and quality of short periods of post-anthesis heat stress. Aust J Plant Physiol, 1994, 21: 887–900 [22]Zhao H(赵辉), Jing Q(荆奇), Dai T-B(戴廷波), Jiang D(姜东), Cao W-X(曹卫星). Effects of post-anthesis high temperature and water stress on activities of key regulatory enzymes involved in protein formation in two wheat cultivars. Acta Agron Sin (作物学报), 2007, 33(12): 2021–2027 (in Chinese with English abstract) [23]Niu S L, Wan S Q. Warming changes plant competitive hierarchy in a temperate steppe in northern China. J Plant Ecol, 2008, 1: 103–110 [24]Nijs I, Kockelbergh F, Teughels H. Free air temperature increase (FATI): a new tool to study global warming effects on plants in the field. Plant, Cell & Environ, 1996, 19: 495–502 [25]Tian Y-L(田云录), Zheng J-C(郑建初), Zhang B(张彬), Chen J(陈金), Dong W-J(董文军), Yang F(杨飞), Zhang W-J(张卫建). System design of free air temperature increased (FATI) for upland with three diurnal warming scenarios and their effects on winter-wheat growth and yield. Sci Agric Sin (中国农业科学), 2010, 43(18): 3724–3731 (in Chinese with English abstract) [26]Shanghai Plant Physiology Association (上海植物生理学会). Modern Laboratory Manual of Plant Physiology (现代植物生理学实验手册), Beijing: Science Press, 1999 (in Chinese) [27]Sasaki T, Yasui T, Matsuki J, Satake T. Comparison of physical properties of wheat starch gels with different amylase content. Cereal Chem, 2002, 79: 861–866 [28]Mu P-Y(穆培源), He Z-H(何中虎), Xu Z-H(徐兆华), Wang D-S(王德森), Zhang Y(张艳), Xia X-C(夏先春). Waxy protein identification and starch pasting properties of CIMMYT wheat lines. Acta Agron Sin (作物学报), 2006, 32(7): 1071–1075 (in Chinese with English abstract) [29]Smika D E, Greb B W. Protein content of winter wheat grain as related to soil and climatic factors in the semiarid Central Great Plains. Agron J, 1973, 65: 433–436 [30]Wrigley C W, Blumenthal C, Gras P W, Barlow E W R. Temperature variation during grain filling and changes in wheat grain quality. Aust J Plant Physiol, 1994, 21: 875–885 [31]Blumenthal C, Bekes F, Gras P W, Barlow E W R, Wrigley C W. Identification of wheat genotypes tolerant to the effects of heat stress on grain quality. Cereal Chem, 1995, 72: 539–544 |
[1] | WANG Wang-Nian, GE Jun-Zhu, YANG Hai-Chang, YIN Fa-Ting, HUANG Tai-Li, KUAI Jie, WANG Jing, WANG Bo, ZHOU Guang-Sheng, FU Ting-Dong. Adaptation of feed crops to saline-alkali soil stress and effect of improving saline-alkali soil [J]. Acta Agronomica Sinica, 2022, 48(6): 1451-1462. |
[2] | GUO Xing-Yu, LIU Peng-Zhao, WANG Rui, WANG Xiao-Li, LI Jun. Response of winter wheat yield, nitrogen use efficiency and soil nitrogen balance to rainfall types and nitrogen application rate in dryland [J]. Acta Agronomica Sinica, 2022, 48(5): 1262-1272. |
[3] | ZHU Zheng, WANG Tian-Xing-Zi, CHEN Yue, LIU Yu-Qing, YAN Gao-Wei, XU Shan, MA Jin-Jiao, DOU Shi-Juan, LI Li-Yun, LIU Guo-Zhen. Rice transcription factor WRKY68 plays a positive role in Xa21-mediated resistance to Xanthomonas oryzae pv. oryzae [J]. Acta Agronomica Sinica, 2022, 48(5): 1129-1140. |
[4] | JIN Min-Shan, QU Rui-Fang, LI Hong-Ying, HAN Yan-Qing, MA Fang-Fang, HAN Yuan-Huai, XING Guo-Fang. Identification of sugar transporter gene family SiSTPs in foxtail millet and its participation in stress response [J]. Acta Agronomica Sinica, 2022, 48(4): 825-839. |
[5] | XU Jing, GAO Jing-Yang, LI Cheng-Cheng, SONG Yun-Xia, DONG Chao-Pei, WANG Zhao, LI Yun-Meng, LUAN Yi-Fan, CHEN Jia-Fa, ZHOU Zi-Jian, WU Jian-Yu. Overexpression of ZmCIPKHT enhances heat tolerance in plant [J]. Acta Agronomica Sinica, 2022, 48(4): 851-859. |
[6] | CHEN Yun, LI Si-Yu, ZHU An, LIU Kun, ZHANG Ya-Jun, ZHANG Hao, GU Jun-Fei, ZHANG Wei-Yang, LIU Li-Jun, YANG Jian-Chang. Effects of seeding rates and panicle nitrogen fertilizer rates on grain yield and quality in good taste rice cultivars under direct sowing [J]. Acta Agronomica Sinica, 2022, 48(3): 656-666. |
[7] | LIU Yun-Jing, ZHENG Fei-Na, ZHANG Xiu, CHU Jin-Peng, YU Hai-Tao, DAI Xing-Long, HE Ming-Rong. Effects of wide range sowing on grain yield, quality, and nitrogen use of strong gluten wheat [J]. Acta Agronomica Sinica, 2022, 48(3): 716-725. |
[8] | YANG Zong-Tao, LIU Shu-Xian, CHENG Guang-Yuan, ZHANG Hai, ZHOU Ying-Shuan, SHANG He-Yang, HUANG Guo-Qiang, XU Jing-Sheng. Sugarcane ubiquitin-like protein UBL5 responses to SCMV infection and interacts with SCMV-6K2 [J]. Acta Agronomica Sinica, 2022, 48(2): 332-341. |
[9] | WANG Yang-Yang, HE Li, REN De-Chao, DUAN Jian-Zhao, HU Xin, LIU Wan-Dai, GU Tian-Cai, WANG Yong-Hua, FENG Wei. Evaluations of winter wheat late frost damage under different water based on principal component-cluster analysis [J]. Acta Agronomica Sinica, 2022, 48(2): 448-462. |
[10] | RUAN Jun-Mei, ZHANG Jun, LIU You-Hong, DONG Wen-Jun, MENG Ying, DENG Ai-Xing, YANG Wan-Shen, SONG Zhen-Wei, ZHANG Wei-Jian. Effects of free air temperature increase on nitrogen utilization of rice in northeastern China [J]. Acta Agronomica Sinica, 2022, 48(1): 193-202. |
[11] | WANG Na, BAI Jian-Fang, MA You-Zhi, GUO Hao-Yu, WANG Yong-Bo, CHEN Zhao-Bo, ZHAO Chang-Ping, ZHANG Ling-Ping. Cloning and expression analysis of lncRNA27195 and its target gene TaRTS in wheat (Triticum aestivum L.) [J]. Acta Agronomica Sinica, 2021, 47(8): 1417-1426. |
[12] | ZHANG Hai, CHENG Guang-Yuan, YANG Zong-Tao, LIU Shu-Xian, SHANG He-Yang, HUANG Guo-Qiang, XU Jing-Sheng. Sugarcane PsbR subunit response to SCMV infection and its interaction with SCMV-6K2 [J]. Acta Agronomica Sinica, 2021, 47(8): 1522-1530. |
[13] | CHEN Yun, LIU Kun, ZHANG Hong-Lu, LI Si-Yu, ZHANG Ya-Jun, WEI Jia-Li, ZHANG Hao, GU Jun-Fei, LIU Li-Jun, YANG Jian-Chang. Effects of machine transplanting density and panicle nitrogen fertilizer reduction on grains starch synthesis in good taste rice cultivars [J]. Acta Agronomica Sinica, 2021, 47(8): 1540-1550. |
[14] | GAO Lu, XU Wen-Liang. GhP4H2 encoding a prolyl-4-hydroxylase is involved in regulating cotton fiber development [J]. Acta Agronomica Sinica, 2021, 47(7): 1239-1247. |
[15] | LI Jie, FU Hui, YAO Xiao-Hua, WU Kun-Lun. Differentially expressed protein analysis of different drought tolerance hulless barley leaves [J]. Acta Agronomica Sinica, 2021, 47(7): 1248-1258. |
|