Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2012, Vol. 38 ›› Issue (05): 761-772.doi: 10.3724/SP.J.1006.2012.00761

• REVIEW •     Next Articles

Molecular Mechanism of Plant Defense against Virus Attack

HOU Jing**, LIU Qing-Qing**,XU Ming-Liang*   

  1. National Maize Improvement Center of China / China Agricultural University, Beijing 100193, China
  • Received:2011-09-01 Revised:2012-02-22 Online:2012-05-12 Published:2012-03-05
  • Contact: 徐明良, E-mail: mxu@cau.edu.cn ** 同等贡献(Contributed equally to the work)

Abstract: Viral diseases of plants seriously threaten the crop productivity. Many virus resistance genes are reported to play roles in restraining viral replication and preventing virus movement. The viral replication is a complex process which depends on virus-encoded proteins, host factors, and their interactions. Many host factors are actively engaged in viral replication, e.g. eukaryotic translation initiation factor 4E (eIF4E) and 4G (eIF4G), and plant endomembrane systems. The loss-of-function or conformational changes of these host factors may inhibit viral replication. Furthermore, thioredoxin can regulate cellular redox state to restrain viral replication. Virus movement involves cell-to-cell movement and long distance movement. Hypersensitive cell death is trigged through the perception of a pathogen avirulence factor (Avr) by the cognate plant resistance protein (R protein) to limit the viral cell to cell movement. Dominant plant R genes, characterized by TIR-NBS-LRR or CC-NBS-LRR, are generally responsible for such kind of defense response. There are many factors associated with the long distance virus movement, but only polymerized RTM protein in phloem was identified to limit viral long distance movement. In addition, RNA silencing also actively functions as an antiviral defense response. This review is aimed to summarize various mechanisms of plant defense against virus attack, and to analyze possible implementations of MAS, TILLING, and transgenic technologies in the improvement of virus disease resistance in crops.

Key words: Plant, Virus, Gene, Resistance protein, Avirulence factor, RNA silencing

[1]Beijerinck M J. Concerning a contagium vivum fluidum as cause of the spot disease of tobacco leaves. Verhandelingen der Koninkyke akademie Wettenschapppen te Amsterdam, 1898, 65: 3-21

[2]Laliberté J F, Sanfaçon H. Cellular remodeling during plant virus infection. Annu Rev Phytopathol, 2010, 48: 69-91

[3]Gómez P, Rodríguez-Hernández A M, Moury B, Aranda M A. Genetic resistance for the sustainable control of plant virus diseases: breeding, mechanisms and durability. Eur J Plant Pathol, 2009, 125: 1-22

[4]Stacesmith R, Hamilton R I. Inoculum thresholds of seedborne pathogens-viruses. Phytopathology, 1988, 78: 875-880

[5]Sadasivam S, Thayumanavan B. Molecular Host Plant Resistance to Pests. New York: Marcel Dekker Press, 2003. p 479

[6]Singer A C, Crowley D E, Thompson I P. Secondary plant metabolites in phytoremediation and biotransformation. Trends Biotechnol, 2003, 21: 123-130

[7]Buck K W. Replication of tobacco mosaic virus RNA. Philos Trans R Soc Lond B Biol Sci, 1999, 354: 613-627

[8]Noueiry A O, Ahlquist P. Brome Mosaic virus RNA replication: Revealing the role of the host in RNA virus replication. Annu Rev Phytopathol, 2003, 41: 77-98

[9]Robaglia C, Caranta C. Translation initiation factors: a weak link in plant RNA virus infection. Trends Plant Sci, 2006, 11: 40-45

[10]Fraser R S S. The genetics of resistance to plant-viruses. Annu Rev Phytopathol, 1990, 28: 179-200

[11]Leonard S, Plante D, Wittmann S, Daigneault N, Fortin M G, Laliberte J F, Complex formation between potyvirus VPg and translation eukaryotic initiation factor 4E correlates with virus infectivity. J Virol, 2000, 74: 7730-7737

[12]Ruffel S, Dussault M H, Palloix A, Moury B, Bendahmane A, Robaglia C, Caranta C. A natural recessive resistance gene against potato virus Y in pepper corresponds to the eukaryotic initiation factor 4E (eIF4E). Plant J, 2002, 32: 1067-1075

[13]Ruffel S, Gallois J L, Lesage M L, Caranta C. The recessive potyvirus resistance gene pot-1 is the tomato orthologue of the pepper pvr2-eIF4E gene. Mol Genet Genomics, 2005, 274: 346-353

[14]Lellis A D, Kasschau K D, Whitham S A, Carrington J C. Loss-of-susceptibility mutants of Arabidopsis thaliana reveal an essential role for eIF(iso)4E during potyvirus infection. Curr Biol, 2002, 12: 1046-1051

[15]Nicaise V, German-Retana S, Sanjuan R, Dubrana M P, Mazier M, Maisonneuve B, Candresse T, Caranta C, Legall O. The Eukaryotic translation initiation factor 4E controls lettuce ssceptibility to the Potyvirus Lettuce mosaic virus. Plant Physiol, 2003, 132: 1272-1282

[16]Kanyuka K, Druka A, Caldwell D G, Tymon A, McCallum N, Waugh R, Adams M J. Evidence that the recessive bymovirus resistance locus rym4 in barley corresponds to the eukaryotic translation initiation factor 4E gene. Mol Plant Pathol, 2005, 6: 449-458

[17]Stein N, Perovic D, Kumlehn J, Pellio B, Stracke S, Streng S, Ordon F, Graner A. The eukaryotic translation initiation factor 4E confers multiallelic recessive Bymovirus resistance in Hordeum vulgare (L.). Plant J, 2005, 42: 912-922

[18]Nieto C, Morales M, Orjeda G, Clepet C, Monfort A, Sturbois B, Puigdomènech P, Pitrat M, Caboche M, Dogimont C, Garcia-Mas J, Aranda M A, Bendahmane A. An eIF4E allele confers resistance to an uncapped and non-polyadenylated RNA virus in melon. Plant J, 2006, 48: 452-462

[19]Truniger V, Nieto C, González-Ibeas D, Aranda M. Mechanism of plant eIF4E-mediated resistance against a Carmovirus (Tombusviridae): cap-independent translation of a viral RNA controlled in cis by an (a)virulence determinant. Plant J, 2008, 56: 716-727

[20]Albar L, Bangratz-Reyser M, Hébrard E, Ndjiondjop M N, Jones M, Ghesquière A. Mutations in the eIF(iso)4G translation initiation factor confer high resistance of rice to Rice yellow mottle virus. Plant J, 2006, 47: 417-426

[21]Ishibashi K, Masuda K, Naito S, Meshi T, Ishikawa M. An inhibitor of viral RNA replication is encoded by a plant resistance gene. Proc Natl Acad Sci USA, 2007, 104: 13833-13838

[22]Sun L J, Ren H Y, Liu R X, Li B Y, Wu T Q, Sun F, Liu H M, Wang X M, Dong H S. An h-type thioredoxin functions in tobacco defense responses to two species of viruses and an abiotic oxidative stress. Mol Plant-Microbe Interact, 2010, 23: 1470-1485

[23]Tada Y, Spoel S H, Pajerowska-Mukhtar K, Mou Z, Song J, Wang C, Zuo J, Dong X. Plant immunity requires conformational charges of NPR1 via S-nitrosylation and thioredoxins. Science, 2008, 321: 952-956

[24]Schaad M C, Jensen P E, Carrington J C. Formation of plant RNA virus replication complexes on membranes: Role of an endoplasmic reticulum-targeted viral protein. EMBO J, 1997, 16: 4049-4059

[25]Magliano D, Marshall J A, Bowden D S, Vardaxis N, Meanger J, Lee J Y. Rubella virus replication complexes are virus-modified lysosomes. Virology, 1998, 240: 57-63

[26]Mackenzie J M, Jones M K, Westaway E G. Markers for trans-Golgi membranes and the intermediate compartment localize to induced membranes with distinct replication functions in flavivirus-infected cells. J Virol, 1999, 73: 9555-9567

[27]Restrepo-Hartwig M, Ahlquist P. Brome mosaic virus RNA replication proteins 1a and 2a colocalize and 1a independently localizes on the yeast endoplasmic reticulum. J Virol, 1999, 73: 10303-10309

[28]Lee W M, Ishikawa M, Ahlquist P. Mutation of Host Δ9 fatty acid desaturase inhibits Brome mosaic virus RNA replication between template recognition and RNA synthesis. J Virol, 2001, 75: 2097-2106

[29]Yamanaka T, Imai T, Satoh R, Kawashima A, Takahashi M, Tomita K, Kubota K, Meshi T, Naito S, Ishikawa M. Complete inhibition of Tobamovirus multiplication by simultaneous mutations in two homologous host genes. J Virol, 2002, 76: 2491-2497

[30]Tsujimoto Y, Numaga T, Ohshima K, Yano M, Ohsawa R, Goto D B, Niato S, Ishikawa M. Arabidopsis TOBAMOVIRUS MULTIPLICATION (TOM) 2 locus encodes a transmembrane protein that interacts with TOM1. EMBO J, 2003, 22: 335-343

[31]Niehl A, Heinlein M. Cellular pathways for viral transport through plasmodesmata. Protoplasma, 2010, 248: 75-99

[32]Amari K, Boutant E, Hofmann C, Schmitt-Keichinger C, Fernandez-Calvino L, Didier P, Lerich A, Mutterer J, Thomas C L, Heinlein M, Mély Y, Maule A J, Ritzenthaler C. A family of plasmodesmal proteins with receptor-like properties for plant viral movement proteins. PLoS Pathog, 2010, 6: e1001119

[33]Lucas W J, Ham B K, Kim J Y. Plasmodesmata - bridging the gap between neighboring plant cells. Trends Cell Biol, 2009, 19: 495-503

[34]Yoshii M, Nishikiori M, Tomita K, Yoshioka N, Kozuka R, Naito S, Ishikawa M. The Arabidopsis Cucumovirus Multiplication 1 and 2 loci encode translation initiation factors 4E and 4G. J Virol, 2004, 78: 6102-6111

[35]Gao Z, Johansen E, Eyers S, Thomas C L, Noel Ellis T H, Maule A J. The potyvirus recessive resistance gene, sbm1, identifies a novel role for translation initiation factor eIF4E in cell-to-cell trafficking. Plant J, 2004, 40: 376-385

[36]van der Biezen E A, Jones J D G. The NB-ARC domain: A novel signalling motif shared by plant resistance gene products and regulators of cell death in animals. Curr Biol, 1998, 8: R226-R227

[37]Caplan J, Dinesh-Kumar S. Natural Resistance Mechanisms of Pants to Viruses. Netherlands: Springer Press, 2006. pp 73-98

[38]Whitham S, Dineshkumar S P, Choi D, Hehl R, Corr C, Baker B. The product of the Tobacco mosaic virus resistance gene N similarity to toll and the interleukin-1 receptor. Cell, 1994, 78: 1101-1115

[39]Ueda H, Yamaguchi Y, Sano H. Direct interaction between the tobacco mosaic virus helicase domain and the ATP-bound resistance protein, N factor during the hypersensitive response in tobacco plants. Plant Mol Biol, 2006, 61: 31-45

[40]Caplan J L, Mamillapalli P, Burch-Smith T M, Czymmek K, Dinesh-Kumar S P. Chloroplastic protein NRIP1 mediates innate immune receptor recognition of a viral effector. Cell, 2008, 132: 449-462

[41]Vidal S, Cabrera H, Andersson R A, Fredriksson A, Valkonen J P T. Potato gene Y-1 is an N gene homolog that confers cell death upon infection with potato virus Y. Mol Plant-Microbe Interact, 2002, 15: 717-727

[42]Seo Y S, Rojas M R, Lee J Y, Lee S W, Jeon J S, Ronald P, Lucas W J, Gilbertson R L. A viral resistance gene from common bean functions across plant families and is up-regulated in a non-virus-specific manner. Proc Natl Acad Sci USA, 2006, 103: 11856-11861

[43]Hajimorad M R, Eggenberger A L, Hill J H. Loss and gain of elicitor function of Soybean mosaic virus G7 provoking Rsv1-mediated lethal systemic hypersensitive response maps to P3. J Virol, 2004, 79: 1215-1222

[44]Merits A, Guo D Y, Jarvekulg L, Saarma M. Biochemical and genetic evidence for interactions between potato A potyvirus-encoded proteins P1 and P3 and proteins of the putative replication complex. Virology, 1999, 263: 15-22

[45]Lanfermeijer F C, Dijkhuis J, Sturre M J G, de Haan P, Hille J. Cloning and characterization of the durable tomato mosaic virus resistance gene Tm-22 from Lycopersicon esculentum. Plant Mol Biol, 2003, 52: 1037-1049

[46]Pfitzner A J P, Weber H. Tm-22 resistance in tomato requires recognition of the carboxy terminus of the movement protein of tomato mosaic virus. Mol Plant-Microbe Interact, 1998, 11: 498-503

[47]Brommonschenkel S H, Frary A, Frary A, Tanksley S D. The broad-spectrum tospovirus resistance gene Sw-5 of tomato is a homolog of the root-knot nematode resistance gene Mi. Mol Plant-Microbe Interact, 2000, 13: 1130-1138

[48]Lopez C, Aramburu J, Galipienso L, Soler S, Nuez F, Rubio L. Evolutionary analysis of tomato Sw-5 resistance-breaking isolates of Tomato spotted wilt virus. J General Virol, 2011, 92: 210-215

[49]Cooley M B, Pathirana S, Wu H J, Kachroo P, Klessig D F. Members of the Arabidopsis HRT/RPP8 family of resistance genes confer resistance to both viral and oomycete pathogens. Plant Cell, 2000, 12: 663-676

[50]Ren T, Qu F, Morris T J. HRT gene function requires interaction between a NAC protein and viral capsid protein to confer resistance to turnip crinkle virus. Plant Cell, 2000, 12: 1917-1925

[51]Takahashi H, Miller J, Nozaki Y, Sukamto, Takeda M, Shah J, Hase S, Ikegami M, Ehara Y, Dinesh-Kumar S P. RCY1, an Arabidopsis thaliana RPP8/HRT family resistance gene, conferring resistance to Cucumber mosaic virus requires salicylic acid, ethylene and a novel signal transduction mechanism. Plant J, 2002, 32: 655-667

[52]Kang B C, Yeam I, Jahn M M. Genetics of plant virus resistance. Annu Rev Phytopathol, 2005, 43: 581-621

[53]Bendahmane A, Kanyuka K, Baulcombe D C. The Rx gene from potato controls separate virus resistance and cell death responses. Plant Cell, 1999, 11: 781-791

[54]Mestre P, Brigneti G, Baulcombe D C. An Ry-mediated resistance response in potato requires the intact active site of the NIa proteinase from potato virus Y. Plant J, 2000, 23: 653-661

[55]Mestre P, Brigneti G, Durrant M C, Baulcombe D C. Potato virus Y NIa protease activity is not sufficient for elicitation of Ry-mediated disease resistance in potato. Plant J, 2003, 36: 755-761

[56]Rairdan G J, Collier S M, Sacco M A, Baldwin T T, Boettrich T, Moffett P. The coiled-coil and nucleotide binding domains of the potato Rx disease resistance protein function in pathogen recognition and signaling. Plant Cell, 2008, 20: 739-751

[57]Ueki S, Citovsky V. The systemic movement of a tobamovirus is inhibited by a cadmium-ion-induced glycine-rich protein. Nat Cell Biol, 2002, 4: 478-485

[58]Chisholm S T, Parra M A, Anderberg R J, Carrington J C. Arabidopsis RTM1 and RTM2 genes function in phloem to restrict long-distance movement of tobacco etch virus. Plant Physiol, 2001, 127: 1667-1675

[59]Cosson P, Sofer L, Le Q H, Leger V, Schurdi-Levraud V, Whitham S A, Yamamoto M L, Gopalan S, Le Gall O, Candresse T, Carrington J C, Revers F. RTM3, Which controls long-distance movement of potyviruses, is a member of a new plant gene family encoding a meprin and TRAF homology domain-containing protein. Plant Physiol, 2010, 154: 222-232

[60]Revers F, Guiraud T, Houvenaghel M C, Mauduit T, Le Gall O, Candresse T. Multiple resistance phenotypes to Lettuce mosaic virus among Arabidopsis thaliana accessions. Mol Plant-Microbe Interact, 2003, 16: 608-616

[61]Decroocq V, Sicard O, Alamillo J M, Lansac M, Eyquard J P, Garcia J A, Candresse T, Le Gall O, Revers F. Multiple resistance traits control Plum pox virus infection in Arabidopsis thaliana. Mol Plant-Microbe Interact, 2006, 19: 541-549

[62]Vaucheret H. Post-transcriptional small RNA pathways in plants: mechanisms and regulations. Genes & Development, 2006, 20: 759-771

[63]Soosaar J L M, Burch-Smith T M, Dinesh-Kumar S P. Mechanisms of plant resistance to viruses. Nat Rev Microbiol, 2005, 3: 789-798

[64]Ding S W, Voinnet O. Antiviral immunity directed by small RNAs. Cell, 2007, 130: 413-426

[65]Xie Z X, Fan B F, Chen C H, Chen Z X. An important role of an inducible RNA-dependent RNA polymerase in plant antiviral defense. Proc Natl Acad Sci USA, 2001, 98: 6516-6521

[66]Ding S W. RNA-based antiviral immunity. Nat Rev Immunol, 2010, 10: 632-644

[67]Henderson I R, Zhang X, Lu C, Johnson L, Meyers B C, Green P J, Jacobsen S E. Dissecting Arabidopsis thaliana DICER function in small RNA processing, gene silencing and DNA methylation patterning. Nat Genet, 2006, 38: 721-725

[68]Margis R, Fusaro A F, Smith N A, Curtin S J, Watson J M, Finnegan E J, Waterhouse P M. The evolution and diversification of Dicers in plants. FEBS Lett, 2006, 580: 2442-2450

[69]Blevins T, Rajeswaran R, Shivaprasad P V, Beknazariants D, Si-Ammour A, Park H S, Vazquez F, Robertson D, Meins F, Hohn T, Pooggin M M. Four plant Dicers mediate viral small RNA biogenesis and DNA virus induced silencing. Nucleic Acids Res, 2006, 34: 6233-6246

[70]Deleris A, Gallego-Bartolome, Bao J S, Kasschau K D, Carrington J C, Voinnet O. Hierarchical action and inhibition of plant dicer-like proteins in antiviral defense. Science, 2006, 313: 68-71

[71]Garcia-Ruiz H, Takeda A, Chapman E J, Sullivan C M, Fahlgren N, Brempelis K J, Carrington J C. Arabidopsis RNA-dependent RNA polymerases and dicer-like proteins in antiviral defense and small interfering RNA biogenesis during Turnip mosaic virus infection. Plant Cell Online, 2010, 22: 481-496

[72]Baumberger N, Baulcombe D C. Arabidopsis ARGONAUTE1 is an RNA slicer that selectively recruits microRNAs and short interfering RNAs. Proc Natl Acad Sci USA, 2005, 102: 11928-11933

[73]Zilberman D, Cao X F, Johansen L K, Xie Z X, Carrington J C, Jacobsen S E. Role of Arabidopsis ARGONAUTE4 in RNA-directed DNA methylation triggered by inverted repeats. Curr Biol, 2004, 14: 1214-1220

[74]Mi S J, Cai T, Hu Y G, Chen Y M, Hodges E, Ni F R, Wu L, Li S, Zhou H Y, Long C Z, Chen S, Hannon G J, Qi Y J. Sorting of small RNAs into Arabidopsis Argonaute complexes is directed by the 5′ terminal nucleotide. Cell, 2008, 133: 116-127

[75]Merai Z, Kerenyi Z, Kertesz S, Magna M, Lakatos L, Silhavy D. Double-stranded RNA binding may be a general plant RNA viral strategy to suppress RNA silencing. J Virol, 2006, 80: 5747-5756

[76]Voinnet O, Pinto Y M, Baulcombe D C. Suppression of gene silencing: A general strategy used by diverse DNA and RNA viruses of plants. Proc Natl Acad Sci USA, 1999, 96: 14147-14152

[77]Chapman E J, Prokhnevsky A I, Gopinath K, Dolja V V, Carrington J C. Viral RNA silencing suppressors inhibit the microRNA pathway at an intermediate step. Genes & Development, 2004, 18: 1179-1186

[78]Zhang X R, Yuan Y R, Pei Y, Lin S S, Tuschl T, Patel D J, Chua N H. Cucumber mosaic virus-encoded 2b suppressor inhibits Arabidopsis Argonaute1 cleavage activity to counter plant defense. Genes & Development, 2006, 20: 3255-3268

[79]Bortolamiol D, Pazhouhandeh M, Marrocco K, Genschik P, Ziegler-Graff V. The polerovirus F box protein P0 targets ARGONAUTE1 to suppress RNA silencing. Curr Biol, 2007, 17: 1615-1621

[80]Csorba T, Lózsa R, Hutvágner G, Burgyán J. Polerovirus protein P0 prevents the assembly of small RNA-containing RISC complexes and leads to degradation of ARGONAUTE1. Plant J, 2010, 62: 463-472

[81]McCallum C M, Comai L, Greene E A, Henikoff S. Targeting induced local lesions in genomes (TILLING) for plant functional genomics. Plant Physiol, 2000, 123: 439-442

[82]Piron F, Nicolaï M, Minoïa S, Piednoir E, Moretti A, Salgues A, Zamir D, Caranta C, Bendahmane A. An induced mutation in tomato eIF4E leads to immunity to two potyviruses. PLoS ONE, 2010, 5: e11313

[83]Abel P P, Nelson R S, De B, Hoffmann N, Rogers S G, Fraley R T, Beachy R N. Delay of disease development in transgenic plants that express the tobacco mosaic virus coat protein gene. Science, 1986, 232: 738-743

[84]Niu Q W, Lin S S, Reyes J L, Chen K C, Wu H W, Yeh S D, Chua N H. Expression of artificial microRNAs in transgenic Arabidopsis thaliana confers virus resistance. Nat Biotechnol, 2006, 24: 1420-1428

[85]Shimizu T, Nakazono-Nagaoka E, Uehara-Ichiki T, Sasaya T, Omura T. Targeting specific genes for RNA interference is crucial to the development of strong resistance to Rice stripe virus. Plant Biotechnol J, 2011, 9: 503-512

[86]Shimizu T, Nakazono-Nagaoka E, Akita F, Uehara-Ichiki T, Omura T, Sasaya T. Immunity to Rice black streaked dwarf virus, a plant reovirus, can be achieved in rice plants by RNA silencing against the gene for the viroplasm component protein. Virus Res, 2011, 160: 400-403

[87]Shimizu T, Yoshii M, Wei T, Hirochika H, Omura T. Silencing by RNAi of the gene for Pns12, a viroplasm matrix protein of Rice dwarf virus, results in strong resistance of transgenic rice plants to the virus. Plant Biotechnol J, 2009, 7: 24-32
[1] XIAO Ying-Ni, YU Yong-Tao, XIE Li-Hua, QI Xi-Tao, LI Chun-Yan, WEN Tian-Xiang, LI Gao-Ke, HU Jian-Guang. Genetic diversity analysis of Chinese fresh corn hybrids using SNP Chips [J]. Acta Agronomica Sinica, 2022, 48(6): 1301-1311.
[2] CUI Lian-Hua, ZHAN Wei-Min, YANG Lu-Hao, WANG Shao-Ci, MA Wen-Qi, JIANG Liang-Liang, ZHANG Yan-Pei, YANG Jian-Ping, YANG Qing-Hua. Molecular cloning of two maize (Zea mays) ZmCOP1 genes and their transcription abundances in response to different light treatments [J]. Acta Agronomica Sinica, 2022, 48(6): 1312-1324.
[3] ZHANG Yu-Kun, LU Ying, CUI Kan, XIA Shi-Tou, LIU Zhong-Song. Allelic variation and geographical distribution of TT8 for seed color in Brassica juncea Czern. et Coss. [J]. Acta Agronomica Sinica, 2022, 48(6): 1325-1332.
[4] HU Wen-Jing, LI Dong-Sheng, YI Xin, ZHANG Chun-Mei, ZHANG Yong. Molecular mapping and validation of quantitative trait loci for spike-related traits and plant height in wheat [J]. Acta Agronomica Sinica, 2022, 48(6): 1346-1356.
[5] CHEN Song-Yu, DING Yi-Juan, SUN Jun-Ming, HUANG Deng-Wen, YANG Nan, DAI Yu-Han, WAN Hua-Fang, QIAN Wei. Genome-wide identification of BnCNGC and the gene expression analysis in Brassica napus challenged with Sclerotinia sclerotiorum and PEG-simulated drought [J]. Acta Agronomica Sinica, 2022, 48(6): 1357-1371.
[6] TIAN Tian, CHEN Li-Juan, HE Hua-Qin. Identification of rice blast resistance candidate genes based on integrating Meta-QTL and RNA-seq analysis [J]. Acta Agronomica Sinica, 2022, 48(6): 1372-1388.
[7] ZHENG Chong-Ke, ZHOU Guan-Hua, NIU Shu-Lin, HE Ya-Nan, SUN wei, XIE Xian-Zhi. Phenotypic characterization and gene mapping of an early senescence leaf H5(esl-H5) mutant in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2022, 48(6): 1389-1400.
[8] ZHOU Wen-Qi, QIANG Xiao-Xia, WANG Sen, JIANG Jing-Wen, WEI Wan-Rong. Mechanism of drought and salt tolerance of OsLPL2/PIR gene in rice [J]. Acta Agronomica Sinica, 2022, 48(6): 1401-1415.
[9] WANG Jing-Tian, ZHANG Ya-Wen, DU Ying-Wen, REN Wen-Long, LI Hong-Fu, SUN Wen-Xian, GE Chao, ZHANG Yuan-Ming. SEA v2.0: an R software package for mixed major genes plus polygenes inheritance analysis of quantitative traits [J]. Acta Agronomica Sinica, 2022, 48(6): 1416-1424.
[10] LI Hai-Fen, WEI Hao, WEN Shi-Jie, LU Qing, LIU Hao, LI Shao-Xiong, HONG Yan-Bin, CHEN Xiao-Ping, LIANG Xuan-Qiang. Cloning and expression analysis of voltage dependent anion channel (AhVDAC) gene in the geotropism response of the peanut gynophores [J]. Acta Agronomica Sinica, 2022, 48(6): 1558-1565.
[11] SHAN Lu-Ying, LI Jun, LI Liang, ZHANG Li, WANG Hao-Qian, GAO Jia-Qi, WU Gang, WU Yu-Hua, ZHANG Xiu-Jie. Development of genetically modified maize (Zea mays L.) NK603 matrix reference materials [J]. Acta Agronomica Sinica, 2022, 48(5): 1059-1070.
[12] DENG Zhao, JIANG Nan, FU Chen-Jian, YAN Tian-Zhe, FU Xing-Xue, HU Xiao-Chun, QIN Peng, LIU Shan-Shan, WANG Kai, YANG Yuan-Zhu. Analysis of blast resistance genes in Longliangyou and Jingliangyou hybrid rice varieties [J]. Acta Agronomica Sinica, 2022, 48(5): 1071-1080.
[13] WANG Hai-Bo, YING Jing-Wen, HE Li, YE Wen-Xuan, TU Wei, CAI Xing-Kui, SONG Bo-Tao, LIU Jun. Identification of chromosome loss and rearrangement in potato and eggplant somatic hybrids by rDNA and telomere repeats [J]. Acta Agronomica Sinica, 2022, 48(5): 1273-1278.
[14] SUN Si-Min, HAN Bei, CHEN Lin, SUN Wei-Nan, ZHANG Xian-Long, YANG Xi-Yan. Root system architecture analysis and genome-wide association study of root system architecture related traits in cotton [J]. Acta Agronomica Sinica, 2022, 48(5): 1081-1090.
[15] YU Chun-Miao, ZHANG Yong, WANG Hao-Rang, YANG Xing-Yong, DONG Quan-Zhong, XUE Hong, ZHANG Ming-Ming, LI Wei-Wei, WANG Lei, HU Kai-Feng, GU Yong-Zhe, QIU Li-Juan. Construction of a high density genetic map between cultivated and semi-wild soybeans and identification of QTLs for plant height [J]. Acta Agronomica Sinica, 2022, 48(5): 1091-1102.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!