Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2012, Vol. 38 ›› Issue (10): 1810-1817.doi: 10.3724/SP.J.1006.2012.01810

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Screening of Microsatellite Loci for Identifying Genome Barcoding of Cotton Cultivars

ZHAO Liang,CAI Cai-Ping,MEI Hong-Xian,GUO Wang-Zhen*   

  1. State Key Laboratory of Crop Genetics and Germplasm Enhancement, Hybrid Cotton R&D Engineering Research Center, Ministry of Education, Nanjing Agricultural University, Nanjing 210095, China
  • Received:2011-12-08 Revised:2012-06-10 Online:2012-10-12 Published:2012-07-27
  • Contact: 郭旺珍, E-mail: moelab@njau.edu.cn

Abstract:

Microsatellites or simple sequence repeats (SSRs) loci with high information content, reproducibility and locus specificity can be used effectively to construct DNA barcode in plant. In this study, 12 cotton cultivars derived from different germplasm pedigrees and planted widely in three ecological cotton growing areas were selected to screen the SSR loci with high polymorphism. Based on our newly updated high-density genetic linkage map from G. hirsutum × G. barbadense BC1 mapping population, we selected 51 primer pairs with clear amplification products and high polymorphism from 376 genome-wide SSR primer pairs. In total, 155 polymorphic loci in 12 cultivars were produced by using the selected 51 primer pairs. Alleles ranging from two to seven with an average of 3.04 were detected by each SSR primer pair. Of them, 26 SSR primer pairs, which amplified SSR loci were tagged on corresponding 26 chromosomes in cultivated tetraploid cotton species, were recommended as first selected primer pairs to establish DNA barcode of cotton cultivars, and other 25 SSR primer pairs could be used as candidate primer pairs. DNA barcodes of 12 cultivars were further constructed effectively using these microsatellite loci with high polymorphism. In the future, these microsatellite loci can be used to construct DNA barcode for a large number of cotton varieties, and applied effectively in the identification of genuineness and purity in cotton cultivar seeds.

Key words: Cotton, Cultivars, Microsatellite loci, DNA barcode

[1]Liu X-L(刘新龙), Ma L(马丽), Chen X-K(陈学宽), Ying X-M(应雄美), Cai Q(蔡青), Liu J-Y(刘家勇), Wu C-W(吴才文). Establishment of DNA fingerprint ID in sugarcane cultivars in Yunnan, China. Acta Agron Sin (作物学报), 2010, 36(2): 202−210 (in Chinese with English abstract)



[2]Kuang M(匡猛), Yang W-H(杨伟华), Xu H-X(许红霞), Wang Y-Q(王延琴), Zhou D-Y(周大云), Feng X-A(冯新爱) Construction of DNA fingerprinting and analysis of genetic diversity with SSR markers for cotton major cultivars in china. Sci Agric Sin (中国农业科学), 2011, 44(1): 20−27 (in Chinese with English abstract)



[3]Kashi Y, King D, Soller M. Simple sequence repeats as a source of quantitative genetic variation. Trends Genet, 1997, 13: 74–78



[4]Röder M S, Korzun V, Gill B S, Ganal M W. The physical mapping of microsatellite markers in wheat. Genome, 1998, 41: 278–283



[5]Röder M S, Korzun V, Wendehake K, Plaschke J, Tixier M H, Leroy P, Ganal M W. A microsatellite map of wheat. Genetics, 1998, 149: 2007–2023



[6]Yan J-W(颜静宛), Tian D-G(田大刚), Xu Y(许彦), Wang F(王锋). Constructing SSR molecular database for identity system of hybrid rice parents. Fujian J Agric Sci (福建农业学报), 2011, 26( 2): 148−152 (in Chinese with English abstract)



[7]Zhao X-Y(赵新燕), Huang L(黄莉), Ren X-P(任小平), Jiang H-F(姜慧芳), Chen Y-N(陈玉宁). Establishment of DNA fingerprint identity of arachis species with high oil content. Acta Agric Boreali-Sin (华北农学报) 2010, 25(6): 64−70 (in Chinese with English abstract)



[8]Ai C-X(艾呈祥), Zhang L-S(张力思), Wei H-R(魏海蓉), Yuan K-J(苑克俊), Jin S-N(金松南), Liu Q-Z(刘庆忠). Construction of molecular fingerprinting database for sweet cherry using SSR markers. Chin Agric Sci Bull (中国农学通报), 2007, 23(5): 55–58 (in Chinese with English abstract)



[9]Guo W Z, Cai C P, Wang C B, Zhao L, Wang L, Zhang T Z. A preliminary analysis of genome structure and composition in Gossypium hirsutum. BMC Genom, 2008, 9: 313



[10]Rong J, Abbey C, Bowers J E, Brubaker C L, Chang C, Chee P W, Delmonte T A, Ding X, Garza J J, Marler B S, Park C H, Pierce G J, Rainey K M, Rastogi V K, Schulze S R, Trolinder N L, Wendel J F, Wilkins T A, Williams-Coplin T D, Wing R A, Wright R J, Zhao X, Zhu L, Paterson A H. A 3347-locus genetic recombination map of sequence-tagged sites reveals features of genome organization, transmission and evolution of cotton (Gossypium). Genetics, 2004, 166: 389–417



[11]Nguyen T B, Giband M, Brottier P, Risterucci A M, Lacape J M. Wide coverage of the tetraploid cotton genome using newly developed microsatellite markers. Theor Appl Genet, 2004, 109: 167–175



[12]Frelichowski J E Jr, Palmer M B, Main D, Tomkins J P, Cantrell R G, Stelly D M, Yu J, Kohel R J, Ulloa M. Cotton genome mapping with new microsatellites from Acala ‘Maxxa’ BAC-ends. Mol Gen Genom, 2006, 275: 479–491



[13]Wu Y-T(武耀廷), Zhang T-Z(张天真), Yin J-M(殷剑美). Genetic diversity detected by DNA markers and phenotypes in upland cotton. J Gen Genom (遗传学报), 2001, 28(11): 1040–1050 (in Chinese with English abstract)



[14]Zhu L-F(朱龙付), Zhang X-L(张献龙), Nie Y-C(聂以春). Analysis of genetic diversity in upland cotton (Gossypium hirsutum L.) Cultivars from China and foreign countries by RAPDs and SSRs. J Agric Biotechnol (农业生物技术学报), 2003, 11(5): 450–455 (in Chinese with English abstract)



[15]Liu S, Cantrell R G, McCarty J C, Stewart J M. Simple sequence repeat-based assessment of genetic diversity in cotton race stock accessions. Crop Sci, 2000, 40: 1459–1469



[16]Zhao J-R(赵久然), Wang F-G(王凤格), Guo J-L(郭景伦), Chen G(陈刚), Liao Q(廖琴), Sun S-X(孙世贤), Chen R-M(陈如明), Liu L-Z(刘龙洲). Series of research on establishing DNA fingerprint pool of Chinese new maize cultivars: II. Confirmation of a set of SSR core primers pairs. J Maize Sci (玉米科学), 2003, 11(2): 3–5 (in Chinese with English abstract)



[17]Huang Z-K(黄滋康). Cotton Vatieties and Their Genealogy in China (revised and enlarged edition)[中国棉花品种及其系谱(修订本)]. Beijing: China Agriculture press, 2007 (in Chinese)



[18]Cotton Institute of Chinese Academy of Agriculture Sciences (中国农业科学院棉花研究所). Flora of Cotton Varieties in China (1978–2007)[中国棉花品种志(1978–2007)]. Beijing : China Agriculture Science Technology Press, 2009 (in Chinese)



[19]Paterson A H, Brubaker C, Wendel J F. A rapid method for extraction of cotton (Gossypium spp.) genomic DNA suitable for RFLP or PCR analysis. Plant Mol Biol Rep, 1993, 11: 122–127



[20]Zhang J, Wu Y T, Guo W Z, Zhang T Z. Fast screening of microsatellite markers in cotton with PAGE/silver staining. Cotton Sci, 2000, 12: 267–269 (in Chinese with English abstract)



[21]Zhang J, Guo W Z, Zhang T Z. Molecular linkage map of allotetraploid cotton (Gossypium hirsutum L. × Gossypium barbadense L.) with a haploid population. Theor Appl Genet, 2002, 105: 1166–1174



[22]Reddy O U K, Pepper A E, Abdurakhmonov I, Saha S, Jenkins J N, Brooks T, Bolek Y, El-Zik K M. New dinucleotide and trinucleotide microsatellite marker resources for cotton genome research. J Cotton Sci, 2001, 5: 103–113



[23]Han Z G, Guo W Z, Song X L, Zhang T Z. Genetic mapping of EST-derived microsatellites from the diploid Gossypium arboreum in allotetraploid cotton. Mol Gen Genom, 2004, 272: 308–327



[24]Park Y H, Alabady M S, Ulloa M, Sickler B, Wilkins T A, Yu J, Stelly D M, Kohel R J, El-Shihy O M, Cantrell R G. Genetic mapping of new cotton fiber loci using EST-derived microsatellites in an interspecific recombinant inbred (RIL) cotton population. Mol Gen Genom, 2005, 274: 428–441



[25]Song X L, Wang K, Guo W Z, Zhang J, Zhang T Z. A comparison of genetic maps constructed from haploid and BC1 mapping populations from the same crossing between Gossypium hirsutum L. × G. barbadense L. Genome, 2005, 48: 378–390



[26]Han Z G, Wang C B, Song X L, Guo W Z, Gou J Y, Li C H, Chen X Y, Zhang T Z. Characteristics, development and mapping of Gossypium hirsutum derived EST-SSR in allotetraploid cotton. Theor Appl Genet, 2006, 112: 430–439



[27]Yu X-Y(于新艳), Wang F-G(王凤格), Zhao J-R(赵久然), Wang X(王玺), Yi H-M(易红梅), Wang L(王璐), Guo J-L(郭景伦), Kuang M(匡猛), Sun Y-M(孙艳美). Redesigning and optimizing SSR core primer pairs for establishing DNA fingerprinting profiles. Mol Plant Breed (分子植物育种), 2007, 5(3): 443–447 (in Chinese with English abstract)

[1] ZHOU Jing-Yuan, KONG Xiang-Qiang, ZHANG Yan-Jun, LI Xue-Yuan, ZHANG Dong-Mei, DONG He-Zhong. Mechanism and technology of stand establishment improvements through regulating the apical hook formation and hypocotyl growth during seed germination and emergence in cotton [J]. Acta Agronomica Sinica, 2022, 48(5): 1051-1058.
[2] SUN Si-Min, HAN Bei, CHEN Lin, SUN Wei-Nan, ZHANG Xian-Long, YANG Xi-Yan. Root system architecture analysis and genome-wide association study of root system architecture related traits in cotton [J]. Acta Agronomica Sinica, 2022, 48(5): 1081-1090.
[3] YAN Xiao-Yu, GUO Wen-Jun, QIN Du-Lin, WANG Shuang-Lei, NIE Jun-Jun, ZHAO Na, QI Jie, SONG Xian-Liang, MAO Li-Li, SUN Xue-Zhen. Effects of cotton stubble return and subsoiling on dry matter accumulation, nutrient uptake, and yield of cotton in coastal saline-alkali soil [J]. Acta Agronomica Sinica, 2022, 48(5): 1235-1247.
[4] ZHENG Shu-Feng, LIU Xiao-Ling, WANG Wei, XU Dao-Qing, KAN Hua-Chun, CHEN Min, LI Shu-Ying. On the green and light-simplified and mechanized cultivation of cotton in a cotton-based double cropping system [J]. Acta Agronomica Sinica, 2022, 48(3): 541-552.
[5] ZHANG Yan-Bo, WANG Yuan, FENG Gan-Yu, DUAN Hui-Rong, LIU Hai-Ying. QTLs analysis of oil and three main fatty acid contents in cottonseeds [J]. Acta Agronomica Sinica, 2022, 48(2): 380-395.
[6] ZHANG Te, WANG Mi-Feng, ZHAO Qiang. Effects of DPC and nitrogen fertilizer through drip irrigation on growth and yield in cotton [J]. Acta Agronomica Sinica, 2022, 48(2): 396-409.
[7] ER Chen, LIN Tao, XIA Wen, ZHANG Hao, XU Gao-Yu, TANG Qiu-Xiang. Coupling effects of irrigation and nitrogen levels on yield, water distribution and nitrate nitrogen residue of machine-harvested cotton [J]. Acta Agronomica Sinica, 2022, 48(2): 497-510.
[8] ZHAO Wen-Qing, XU Wen-Zheng, YANG Liu-Yan, LIU Yu, ZHOU Zhi-Guo, WANG You-Hua. Different response of cotton leaves to heat stress is closely related to the night starch degradation [J]. Acta Agronomica Sinica, 2021, 47(9): 1680-1689.
[9] YUE Dan-Dan, HAN Bei, Abid Ullah, ZHANG Xian-Long, YANG Xi-Yan. Fungi diversity analysis of rhizosphere under drought conditions in cotton [J]. Acta Agronomica Sinica, 2021, 47(9): 1806-1815.
[10] ZENG Zi-Jun, ZENG Yu, YAN Lei, CHENG Jin, JIANG Cun-Cang. Effects of boron deficiency/toxicity on the growth and proline metabolism of cotton seedlings [J]. Acta Agronomica Sinica, 2021, 47(8): 1616-1623.
[11] GAO Lu, XU Wen-Liang. GhP4H2 encoding a prolyl-4-hydroxylase is involved in regulating cotton fiber development [J]. Acta Agronomica Sinica, 2021, 47(7): 1239-1247.
[12] XI Ling, WANG Yu-Qi, ZHU Wei, WANG Yi, CHEN Guo-Yue, PU Zong-Jun, ZHOU Yong-Hong, KANG Hou-Yang. Identification of resistance to wheat and molecular detection of resistance genes to wheat stripe rust of 78 wheat cultivars (lines) in Sichuan province [J]. Acta Agronomica Sinica, 2021, 47(7): 1309-1323.
[13] MA Huan-Huan, FANG Qi-Di, DING Yuan-Hao, CHI Hua-Bin, ZHANG Xian-Long, MIN Ling. GhMADS7 positively regulates petal development in cotton [J]. Acta Agronomica Sinica, 2021, 47(5): 814-826.
[14] XU Nai-Yin, ZHAO Su-Qin, ZHANG Fang, FU Xiao-Qiong, YANG Xiao-Ni, QIAO Yin-Tao, SUN Shi-Xian. Retrospective evaluation of cotton varieties nationally registered for the Northwest Inland cotton growing regions based on GYT biplot analysis [J]. Acta Agronomica Sinica, 2021, 47(4): 660-671.
[15] ZHOU Guan-Tong, LEI Jian-Feng, DAI Pei-Hong, LIU Chao, LI Yue, LIU Xiao-Dong. Efficient screening system of effective sgRNA for cotton CRISPR/Cas9 gene editing [J]. Acta Agronomica Sinica, 2021, 47(3): 427-437.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!