Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2013, Vol. 39 ›› Issue (03): 455-463.doi: 10.3724/SP.J.1006.2013.00455

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

QTL Analysis of Kernel Ratio, Kernel Depth and 100-Kernel Weight in Maize (Zea mays L.)

ZHANG Wei-Qiang1,2,KU Li-Xia2,ZHANG Jun2,HAN Zan-Ping2,3,CHEN Yan-Hui2,*   

  1. 1 Zhumadian Academy of Agricultural Sciences, Zhumadian 463000, China; 2 College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China ?; 3 College of Agronomy, Henan University of Science and Technology, Luoyang 471003, China
  • Received:2012-11-16 Revised:2012-11-16 Online:2013-03-12 Published:2013-01-04
  • Contact: 陈彦惠, E-mail: chy989@sohu.com, Tel: 0371-63558032 E-mail:zwq7290134@163.com

Abstract:

In order to study the genetic mechanism of kernel ratio (KR, %), kernel depth (KD), and 100-kernel weight (100-KW) in maize, we constructed a mapping population consisting of 229 F2:3 lines from the cross between inbred lines Yu 82 and Shen 137. QTL mapping and analysis for the three traits were conducted under the three environments by composite interval mapping (CIM) method. Three, three and four QTLs were detected for kernel ratio, kernel depth, and 100-kernel weight, with the joint contribution rate of 35.5%, 28.1%, and 39.0% respectively. One major QTL qKR1b controlling kernel ratio was detected on chromosome 1, locating in marker of interval umc1335–umc2236, explaining 18.9% of the phenotypic variation. Another major QTL q100-KW9b controlling 100-kernel weight was detected in marker of interval bnlg1209-umc2095 on chromosome 9, with explained 11.7% of the phenotypic variation, and gene action of additive effect. The results showed that some key genes for kernel characters are possibly contained in these regions, having an important researchvalue to analyze the genetic mechanism of maize yield formation.

Key words: Maize (Zea mays L.), Kernel ratio, Kernel depth, 100-kernel weight, QTL analysis

[1]Duvick D N, Cassmain K G. Post-green revolution trends in yield potential of temperate maize in the Northern-central United States. Crop Sci, 1999, 39: 1622–1630



[2]Lu M(路明). QTL Mapping and Genetic Basis of Yield and Plant Architecture in Maize. PhD Dissertation of the Chinese Academy of Agricultural Sciences, 2007. p 9 (in Chinese with English abstract)



[3]Ma J-L(马金亮). Analysis of QTL for Yield and Related Traits Using Found Inbred line in Maize. MS Thesis of Henan Agricultural University, 2010. p 7 (in Chinese with English abstract)



[4]Yang X-H(杨小红), Yan J-B(严建兵), Zheng Y-P(郑艳萍), Yu J-M(余建明), Li J-S(李建生). Reviews of association analysis for quantitative traits in plants. Acta Agron Sin (作物学报), 2007, 33(4): 523–530 (in Chinese with English abstract)



[5]Frary A, Nesbitt T C, Grandillo S, Knaap E, Cong B, Liu J, Meller J, Elber R, Alpert K B, Tanksley S D. fw2.2: a quantitative trait locus key to the evolution of tomato fruit size. Science, 2000, 289: 85–88



[6]Liu J P, Eck J V, Cong B, Tanksley S D. A new class of regulatory genes underlying the cause of pear-shaped tomato fruit. Proc Natl Acad Sci USA, 2002, 99: 13302–13306



[7]Yano M, Katayose Y, Ashikari M, Yamanouchi U, Monna L, Fuse T, Baba T, Yamamoto K, Umehara Y, Nagamura Y, Sasaki T. Hd1, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene. Plant Cell, 2000, 12: 2473–2483



[8]Takahashi Y, Shomura A, Sasaki T, Yano M. Hd6, a rice quantitative trait locus involved in photoperiod sensitivity, encodes the alpha subunit of protein kinase CK2. Proc Natl Acad Sci USA, 2001, 98: 7922–7927



[9]Ashikari M, Sakakibara H, Lin S Y, Yamamoto T, Takashi T, Nishimura A, Angeles E R, Qian Q, Kitano H, Matsuoka M. Cytokinin oxidase regulates rice grain production. Science, 2005, 309: 741–745



[10]Wang H, Nussbaum-Wagler T, Li B L, Zhao Q, Vigouroux Y, Faller M, Bomblies K, Lukens L, Doebley J. The origin of the naked grains of maize. Nature, 2005, 436: 714–719



[11]Ducrocq S, Madur D, Veyrieras J B, Camus-Kulandaivelu L, Kloiber-Maitz M, Presterl T, Ouzunova M, Manicacci D, Charcosset A. Key impact of Vgt1 on flowering time adaptation in maize: evidence from association mapping and ecogeographical information. Genetics, 2008, 178: 2433–2437



[12]Zheng P, Allen W B, Roesler K, Williams M E, Zhang S, Li J, Glassman K, Ranch J, Nubel D, Solawetz W, Bhattramakki D, Llaca V, Deschamps S, Zhong G Y, Tarczynski M C, Shen B. A phenylalanine in DGAT is a key determinant of oil content and composition in maize. Nat Genet, 2008, 40: 367–372



[13]Wang J-K(王建康), Li H-H(李慧慧), Zhang X-C(张学才), Yin C-B(尹长斌), Li Y(黎裕), Ma Y-Z(马有志), Li X-H(李新海), Qiu L-J(邱丽娟), Wan J-M(万建民). Molecular design breeding in crops in China. Acta Agron Sin (作物学报), 2011, 37(2): 191–201 (in Chinese with English abstract)



[14]Huang Y F, Madur D, Combes V, Ky C L, Coubriche D, Jamin P, Jouanne S, Dumas F, Bouty E, Bertin P, Charcosset A, Moreau L. The genetic architecture of grain yield and related traits in Zea may L. revealed by comparing intermated and conventional populations. Genetics, 2010, 186: 395–404



[15]Sabadin P K, Souza C L Jr, Souza A P, Garcia A A F. QTL mapping for yield components in a tropical maize population using microsatellite markers. Hereditas, 2008, 145: 194–203



[16]Guo J, Su G, Zhang J, Wang G. Genetic analysis and QTL mapping of maize yield and associate agronomic traits under semi-arid land condition. Afr J Biotechnol, 2008, 7: 1829–1838



[17]Lu G H, Tang J H, Yan J B, Ma X Q, Li J S, Chen S J, Ma J C, Liu Z X, E L Z, Zhang Y R, Dai J R. Quantitative trait loci mapping of maize yield and its components under different water treatments at flowering time. J Integr Plant Biol, 2006, 48: 1233–1243



[18]Liu X H, He S L, Zheng Z P, Huang Y B, Tan Z B, Wu X. QTL identification for row number per ear and grain number per row in maize. Maydica, 2010, 55: 127–133



[19]Li M, Guo X, Zhang M, Wang X, Zhang G D, Tian Y C, Wang Z L. Mapping QTLs for grain yield and yield components under high and low phosphorus treatments in maize (Zea mays L.). Plant Sci, 2010, 178: 454–462



[20]Wang B-T(王帮太), Zhang S-H(张书红), Xi Z-Y(席章营). QTL mapping for ear length based on chromosome single segment substitution lines of 87-1 and Zong3 in maize. J Maize Sci (玉米科学), 2012, 20(3): 9–14 (in Chinese with English abstract)



[21]Tan W-W(谭巍巍), Wang Y(王阳), Li Y-X(李永祥), Liu C(刘成), Liu Z-Z(刘志斋), Peng B(彭勃), Wang D(王迪), Zhang Y(张岩), Sun B-C(孙宝成), Shi Y-S(石云素), Song Y-C(宋燕春), Yang D-G(杨德光), Wang T-Y(王天宇), Li Y(黎裕). QTL analysis of ear traits in maize across multiple environments. Sci Agric Sin (中国农业科学), 2011, 44(2): 233–244 (in Chinese with English abstract)



[22]Liu X H, He S L, Zheng Z P, Tan Z B, Li Z, He C. Genetic loci mapping associated with maize kernel number per ear based on a recombinant inbred line population grown under different nitrogen regimes. Genet Mol Res, 2011, 10: 3267–3274



[23]Veldboom L R, Lee M. Genetic mapping of quantitative trait loci in maize in stress and nonstress environment: I. Grain yield and yield components. Crop Sci, 1996, 36: 1310–1319



[24]Austin D F, Lee M. Comparative mapping in F2:3 and F6:7 generations of quantitative trait loci for grain yield and yield components in maize. Theor Appl Genet, 1996, 92: 817–826



[25]Sene M, Thevenot C, Hoffmann D, Benetrix F, Causse M, Prioul J L. QTL for grain dry milling properties, composition and virtuousness in maize recombinant inbred lines. Theor Appl Genet, 200l, 102: 591–599



[26]Yang J-P(杨俊品), Rong T-Z(荣廷昭), Xiang D-Q(向道权), Tang H-T(唐海涛), Huang L-J(黄烈健), Dai J-R(戴景瑞). QTL mapping of quantitative traits in maize. Acta Agron Sin (作物学报), 2005, 21(2): 188–196 (in Chinese with English abstract)



[27]Li Y-X(李永祥), Wang Y(王阳), Shi Y-S(石云素), Song Y-C(宋燕春), Wang T-Y(王天宇), Li Y(黎裕). Correlation analysis and QTL mapping for traits of kernel structure and yield components in maize. Sci Agric Sin (中国农业科学), 2009, 42(2): 408–418 (in Chinese with English abstract) 



[28]Zhang J(张君). QTL Mapping and Analysis on Plant Architecture and Yield Related Traits in Maize. MS Dissertation of the Henan Agricultural University, 2010. p 7 (in Chinese with English abstract)



[29]Li J Z, Zhang Z W, Li Y L, Wang Q L, Zhou Y G. QTL consistency and meta-analysis for grain yield components in three generations in maize. Theor Appl Genet, 2011, 122: 771–782



[30]Peng B, Li Y X, Wang Y, Liu C, Liu Z Z, Tan W W, Zhang Y, Wang D, Shi Y S, Sun B C, Song Y C, Wang T Y, Li Y. QTL analysis for yield components and kernel-related traits in maize across multi-environments. Theor Appl Genet, 2011, 122: 1305–1320



[31]Knapp S J, Stroup W W, Ross W M. Exact confidence intervals for heritability on a progeny mean basis. Crop Sci, 1985, 25: 192–194



[32]Wang S, Basten C J, Zeng Z B. Windows QTL Cartographer 2.5. Department of Statistics, North Carolina State University, Raleigh, NC. 2007. (http://statgen.ncsu.edu/qtlcart/WQTLCart.htm)



[33]Zeng Z B. Precision mapping of quantitative trait loci. Genetics, 1994, 136: 1457–1468



[34]Churchill G A, Doerge R W. Empirical threshold values for quantitative trait mapping. Genetics, 1994, 138: 963–971



[35]Stuber C W, Edwards M D, Wendel J. Molecular marker-facilitated investigations of quantitative trait loci in maize: II. Factors influencing yield and its component traits. Crop Sci, 1987, 27: 639–648



[36]Xiao Y N, Li X H, George M L, Li M S, Zhang S H, Zheng Y L. Quantitative trait locus analysis of drought tolerance and yield in maize in China. Plant Mol Biol Rep, 2005, 23: 155–165



[37]Yan J B, Tang H, Huang Y Q, Zheng Y L, Li J S. Quantitative trait loci mapping and epistatic analysis for grain yield and yield components using molecular markers with an elite maize hybrid. Euphytica, 2006, 149: 121–131



[38]Tang J-H(汤继华), Yan J-B (严建兵), Ma X-Q(马西青), Teng W-T(腾文涛), Meng Y-J(孟义江), Dai J-R(戴景瑞), Li J-S(李建生). Genetic dissection for grain yield and its components using an “Immortalized F2 Population” in maize. Acta Agron Sin (作物学报), 2007, 33(8): 1299–1303 (in Chinese with English abstract)



[39]Li H-H(李慧慧), Zhang L-Y(张鲁燕), Wang J-K(王健康). Analysis and answers to frequently asked questions in quantitative trait locus mapping. Acta Agron Sin (作物学报), 2010, 36(6): 918–931 (in Chinese with English abstract)



[40]Knapp S J, Bridges W C, Birkes D. Mapping quantitative trait loci using molecular maker linkage maps. Theor Appl Genet, 1990, 79: 583–592

[1] LUO Lan, LEI Li-Xia, LIU Jin, ZHANG Rui-Hua, JIN Gui-Xiu, CUI Di, LI Mao-Mao, MA Xiao-Ding, ZHAO Zheng-Wu, HAN Long-Zhi. Mapping QTLs for yield-related traits using chromosome segment substitution lines of Dongxiang common wild rice (Oryza rufipogon Griff.) and Nipponbare (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2021, 47(7): 1391-1401.
[2] ZHANG Ling,LI Xiao-Nan,WANG Wei,YANG Sheng-Long,LI Qing,WANG Jia-Yu. Analysis of QTLs for Plant Type Traits in Rice (Oryza sativa) [J]. Acta Agron Sin, 2014, 40(12): 2128-2135.
[3] LI Cong-Feng,ZHAO Ming,LIU Peng,ZHANG Ji-Wang,YANG Jin-Sheng,DONG Shu-Ting. Characteristics of Grain Filling and Nitrogen Translocation of Maize Parent Lines Released in Different Eras in China [J]. Acta Agron Sin, 2014, 40(11): 1990-1998.
[4] WU Ya-Hui,TAO Xing-Xing,XIAO Wu-Ming,GUO Tao,LIU Yong-Zhu,WANG Hui,CHEN Zhi-Qiang. Dissection of QTLs for Panicle Traits in Rice (Oryza sativa) [J]. Acta Agron Sin, 2014, 40(02): 214-221.
[5] MA Hai-Zhen,ZHU Wei-Wei,WANG Qi-Bai,WANG Guo-Liang,LI Xin-Zhen,QI Bao-Xiu. Regeneration Capacity and Some Affecting Factors of Different Parts of Young Seedlings of Maize (Zea mays L.) [J]. Acta Agron Sin, 2014, 40(02): 313-319.
[6] CHEN Chun-Xia**,LU Ming-Yang**,SHANG Ai-Lan,WANG Yu-Min,XI Zhang-Ying*. QTL Analysis of 100-Kernel Weight Based on Chromosome Single Segment Substitution Lines in Maize [J]. Acta Agron Sin, 2013, 39(09): 1562-1568.
[7] FAN Dong-Mei,MA Zhan-Zhou,LIU Chun-Yan,YANG Zhe,ZENG Qing-Li,XIN Da-Wei,JIANG Hong-Wei,QIU Peng-Cheng,CHEN Qing-Shan,HU Guo-Hua. Analysis of Related Interactions and Mapping of QTLs for Seed Weight per Plant in Soybean in Different Years [J]. Acta Agron Sin, 2013, 39(06): 1021-1029.
[8] MING Bo,ZHU Jin-Cheng,TAO Hong-Bin,XU Li-Na,GUO Bu-Qing,WANG Pu. Effects of Meteorological Factors at Different Growth Stages on Yield Traits of Maize (Zea mays L.) in Heilonggang Basin [J]. Acta Agron Sin, 2013, 39(05): 919-927.
[9] LIU Ling-Ling,LIU Si-Si,WENG Jian-Feng,WANG Chang-Tao,LI Xin-Hai,ZHANG Shi-Huang,SHI Qing-Hua,WANG Li-Juan,HAO Zhuan-Fang. Cloning and Expression Analysis of Heat Shock Protein Gene ZmHSP90-1 in Maize [J]. Acta Agron Sin, 2012, 38(10): 1839-1846.
[10] CUI Li-Na,ZHANG Hai-Yan,MENG Jia-Jia,SHI De-Yang,ZHANG Hong,DONG Shu-Ting. Starch Granule Size Distribution in Grains of Maize with Different Endosperm Types [J]. Acta Agron Sin, 2012, 38(09): 1723-1727.
[11] LI Zong-Xin,CHEN Yuan-Quan,WANG Qing-Cheng,LIU Kai-Chang,GAO Wang-Sheng,SUI Peng. Influence of Planting Density on Root Spatio-Temporal Distribution of Different Types of Maize under High-Yielding Cultivation Conditions [J]. Acta Agron Sin, 2012, 38(07): 1286-1294.
[12] HUI Guo-Qiang, DU He-Wei, YANG Xiao-Gong, LIU Guang-Hui, WANG Zhen-Tong, ZHANG Yi-Rong, ZHENG Yan-Ping,YAN Jian-Bing, CHANG Ming-Tang, LI Jian-Sheng. Doubling Efficiency of Maize Haploids Treated by Different Herbicides [J]. Acta Agron Sin, 2012, 38(03): 416-422.
[13] WANG Yong-Jun, SUN Ji-Zhuan, YANG Jin-Qing, WANG Kong-Jun, DONG Shu-Ting, YUAN Cui-Beng, WANG Li-Chun. Effects of Controlled-Release Urea on Yield and Photosynthesis Characteristics of Maize (Zea mays L.) under Different Soil Fertility Conditions [J]. Acta Agron Sin, 2011, 37(12): 2233-2240.
[14] FENG Yue, ZAI Rong-Rong, CAO Li-Yong, LIN Ze-Chuan, WEI Xin-Hua, CHENG Shi-Hua. QTL Analysis for Plant Height and Heading Date in Rice under Two Nitrogen Levels [J]. Acta Agron Sin, 2011, 37(09): 1525-1532.
[15] WANG Cui-Ling, SUN Chao-Hui, KU Li-Xia, WANG Tie-Gu, CHEN Yan-Hui. Detection of Quantitative Trait Loci for Plant Height in Different Photoperiod Environments Using an Immortalized F2 Population in Maize [J]. Acta Agron Sin, 2011, 37(02): 271-279.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!