Acta Agron Sin ›› 2013, Vol. 39 ›› Issue (03): 549-556.doi: 10.3724/SP.J.1006.2013.00549
• RESEARCH NOTES • Previous Articles Next Articles
ZHENG De-Bo1,2,5,YANG Xiao-Hong2,LI Jian-Sheng2,YAN Jian-Bing3,ZHANG Shi-Long4,HE Zheng-Hua4,HUANG Yi-Qin4,*
[1]Zhang Y, Li Y X, Wang Y, Liu Z Z, Liu C, Peng B, Tan W W, Wang D, Shi Y S, Sun B C, Song Y C, Wang T Y, Li Y. Stability of QTL across environments and QTL-by-Environment interactions for plant and ear height in maize. Agric Sci China, 2010, 9(10): 1400–1412[2]Duvick D N. Genetic progress in yield of United States maize (Zea mays L.). Maydica, 2005, 50: 193–202[3]Lan J-H(兰进好), Chu D(褚栋). Study on the genetic basis of plant height and ear height in maize (Zea mays L.) by QTL dissection. Hereditas (遗传), 2005, 27(6): 925–934 (in Chinese with English abstract) [4]Paterson A H, Lander E S, Hewitt J D, Peterson S, Lincoln S E, Tanksley S D. Resolution of quantitative traits into Mendelian factors by using a complete linkage map of restriction fragment length polymorphisms. Nature, 1988, 335: 721–726[5]Doebley J, Stec A, Hubbard L. The evolution of apical dominance in maize. Nature, 1997, 386: 485–488[6]Salvi S, Sponza G, Morgante M, Tomes D, Niu X M, Fengler K A, Meeley R, Ananiev E V, Svitashev S, Bruggemann E, Li B L, Hainey C F, Radovic S, Zaina G, Rafalski J A, Tingey S V, Miao G H, Phillips R L, Tuberosa R. Conserved non-coding genomic sequences associated with a flowering-time quantitative trait locus in maize. Proc Natl Acad Sci USA, 2007, 104: 11376–11381 [7]Wang H, Nussbaum-Wagler T, Li B, Zhao Q, Vigouroux Y, Faller M, Bomblies K, Lukens L, Doebley J F. The origin of the naked grains of maize. Nature, 2005, 436 : 714–719[8]Zheng P Z, Allen W B, Roesler K, Williams M E, Zhang S R, Li J M, Glassman K, Ranch J, Nubel D, Solawetz W, Bhattramakki D, Llaca V, Deschamps S, Zhong G Y, Tarczynsk M C,Shen B. A phenylalanine in DGAT is a key determinant of oil content and composition in maize. Nat Genet, 2008, 40: 367–372[9]Li L, Li H, Li Q, Yang X H, Zheng D B, Warburton M, Chai Y C, Zhang P, Guo Y Q, Yan J B, Li J S. An 11-bp insertion in Zea mays fatb reduces the palmitic acid content of fatty acids in maize grain. PLoS ONE, 2011, 6(9): 1–12 [10]Gallavotti A, Zhao Q, Kyozuka J, Meeley R B, Ritter M K, Doebley J F, Pè M E, Schmidt R J. The role of barren stalk1 in the architecture of maize. Nature, 2004, 432: 630–635[11]Thornsberry J M, Goodman M M, Doebley J, Kresovich S, Nielsen D , Buckler E S. Dwarf8 polymorphisms associate with variation in flowering time. Nat Genet, 2001, 28: 286–289 [12]Guan Q(关强), Zhang Y-X(张月学), Xu X-L(徐香玲), Sun D-Q(孙德全), Li S-Y(李绥艳), Lin H(林红), Pan L-Y(潘丽艳), Ma Y-H(马延华). Development of DNA molecular marker and several new types of molecular markers. Heilongjiang Agric Sci (黑龙江农业科学), 2008, (1): 102–104 (in Chinese with English abstract) [13]Zou Y-P(邹喻苹), Ge S(葛颂). A novel molecular marker—SNPs and its application. Biodiversity Sci (生物多样性), 2003, 11(5): 370–382 (in Chinese with English abstract)[14]Buckler E S, Holland J B, Bradbury P J, Acharya C B, Brown P J, Browne C, Ersoz E, Flint-Garcia S, Garcia A, Glaubitz J C, Goodman M M, Harjes C, Guill K, Kroon D E, Larsson S, Lepak N K, Li H H, Mitchell S E, Pressoir G, Peiffer J A, Rosas M O, Rocheford T R, Romay M C, Romero S, Salvo S, Villeda H S, Silva H S, Sun Q, Tian F, Upadyayula N, Ware D, Yates H, Yu J M, Zhang Z W, Kresovich S, McMullen M D. The genetic architecture of maize flowering time. Science, 2009, 325: 714–719[15]Li H H, Bradbury P, Ersoz E, Buckler E S, Wang J K. Joint QTL linkage mapping for multiple-cross mating design sharing one common parent. PLoS ONE, 2011, 6(3): 1–12 (e17573)[16]Wang L-M(汪黎明), Wang Q-C(王庆成), Meng Z-D(孟昭东). Corn Varieties and Their Pedigrees in China (中国玉米品种及其系谱). Shanghai: Shanghai Scientific and Technical Publishers, 2010. pp 467–602 (in Chinese)[17]Li F-M(李发民), Mao J-C(毛建昌), Li X-T(李向拓). The breeding of maize inbred line K22 and the analysis on the combine ability. J Gansu Agric Univ (甘肃农业大学学报), 2004, 39(3): 312–315 (in Chinese with English abstract)[18]Fan J B, Gunderson K L, Bibikova M, Yeakyley J M, Chen J, Garcia E W, Lebruska L L, Laurent M, Shen R, Barker D. Illumina Universal Bead Arrays. Methods Enzymol, 2006, 410: 57–73[19]Yan J B, Yang X H, Trushar S, Hector S V, Li J S, Marilyn W, Zhou Y, Crouch J H, Xu Y B. High-throughput SNP genotyping with the Golden Gate assay in maize. Mol Breed, 2010, 25: 441–451 [20]Lander E C, Green P, Abrahamson J, Barlow A, Daly M J, Lincoln S E, Newberg L. MAPMAKER: an interactive computer package for construction primary genetic linkage maps of experimental and natural populations. Genomics, 1987, 1: 174–181[21]Voorrips R E. MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered, 2002, 93: 77–78 [22]Wang S, Basten C J, Zeng Z B. Windows QTL Cartographer 2.5 Department of Statistics. Raleigh: North Carolina State University, 2006. (http://statgen.ncsu.edu/ qtlcart/WQTLCart.htm)[23]Stuber C W, Edwards M D, Wendel J F. Molecular marker-facilitated investigations of quantitative trait loci in maize. Ⅱ. Factors influencing yield and its component traits. Crop Sci, 1987, 27(3): 639-648[24]Chen Y-S(陈玉水), Lu C-B(卢川北). Correlation analysis on plant height and ear height in maize (Zea mays L.). Guangxi Agric Sci (广西农业科学), 2004, 35(2): 111 (in Chinese)[25]Sun Z-C(孙志超), Jing S-L(荆绍凌), Zhang Z-J(张志军), Zhou X-H(周小辉), Yue Y-H(岳尧海), Zhang J-X(张建新), Ren J(任军). Analysis on genetic variations and correlation of the main agronomic traits in corn hybrids. Anhui Agric Sci Bull (安徽农学通报), 2008, 14(20): 54–55 (in Chinese)[26]Zhang Z-M(张志明), Zhao M-J(赵茂俊), Rong T-Z(荣廷昭), Pan G-T(潘光堂). SSR linkage map construction and QTL identification for plant height and ear height in maize (Zea mays L.). Acta Agron Sin (作物学报), 2007, 33(2): 341–344 (in Chinese with English abstract).[27]Yang X-J(杨晓军), Lu M(路明), Zhang S-H(张世煌), Zhou F(周芳), Qu Y-Y(曲延英), Xie C-X(谢传晓). QTL mapping of plant height and ear position in maize (Zea mays L.). Hereditas (Beijing)(遗传), 2008, 30(11): 1477–1486 (in Chinese with English abstract)[28]Xing Y-Z(邢永忠), Xu C-G(徐才国). Advance in crop quantitative trait loci. Hereditas (Beijing) (遗传), 2001, 23(5): 498–502 (in Chinese with English abstract)[29]Schön C C, Lee M, Melchinger A E, Guthrie W D, Woodman W L. Mapping and characterization of quantitative trait loci affecting resistance against second-generation European corn borer in maize with the aid of RFLPs. Heredity, 1993, 70: 648–659[30]Schön C C, Melchinger A E, Boppenmaier J, Brunklaus-Jung E, Herrmann R G, Seitzer J F. RFLP mapping in maize: quantitative trait loci affecting testcross performance of elite European flint lines. Crop Sci, 1994, 37: 378–389[31]Veldboom L R, Lee M, Woodman W L. Molecular marker-facilitated studies in an elite maize population: I. Linkage analysis and determination of QTL for morphological traits. Theor Appl Genet, 1994, 88: 7–16[32]Veldboom L R, Lee M. Molecular-marker-facilitated studies of morphological traits in maize: II. Determination of QTLs for grain yield and yield components. Theor Appl Genet, 1994, 89: 451-458[33]Beavis W D, Smith O S, Grant D, Fincher R. Identification of quantitative trait loci using a small sample of topcrossed and F4 progeny from maize. Crop Sci, 1994, 34: 882–896 |
[1] | HU Wen-Jing, LI Dong-Sheng, YI Xin, ZHANG Chun-Mei, ZHANG Yong. Molecular mapping and validation of quantitative trait loci for spike-related traits and plant height in wheat [J]. Acta Agronomica Sinica, 2022, 48(6): 1346-1356. |
[2] | YU Chun-Miao, ZHANG Yong, WANG Hao-Rang, YANG Xing-Yong, DONG Quan-Zhong, XUE Hong, ZHANG Ming-Ming, LI Wei-Wei, WANG Lei, HU Kai-Feng, GU Yong-Zhe, QIU Li-Juan. Construction of a high density genetic map between cultivated and semi-wild soybeans and identification of QTLs for plant height [J]. Acta Agronomica Sinica, 2022, 48(5): 1091-1102. |
[3] | WANG Ze, ZHOU Qin-Yang, LIU Cong, MU Yue, GUO Wei, DING Yan-Feng, NINOMIYA Seishi. Estimation and evaluation of paddy rice canopy characteristics based on images from UAV and ground camera [J]. Acta Agronomica Sinica, 2022, 48(5): 1248-1261. |
[4] | FU Mei-Yu, XIONG Hong-Chun, ZHOU Chun-Yun, GUO Hui-Jun, XIE Yong-Dun, ZHAO Lin-Shu, GU Jia-Yu, ZHAO Shi-Rong, DING Yu-Ping, XU Yan-Hao, LIU Lu-Xiang. Genetic analysis of wheat dwarf mutant je0098 and molecular mapping of dwarfing gene [J]. Acta Agronomica Sinica, 2022, 48(3): 580-589. |
[5] | HUANG Li, CHEN Yu-Ning, LUO Huai-Yong, ZHOU Xiao-Jing, LIU Nian, CHEN Wei-Gang, LEI Yong, LIAO Bo-Shou, JIANG Hui-Fang. Advances of QTL mapping for seed size related traits in peanut [J]. Acta Agronomica Sinica, 2022, 48(2): 280-291. |
[6] | WANG Ying, GAO Fang, LIU Zhao-Xin, ZHAO Ji-Hao, LAI Hua-Jiang, PAN Xiao-Yi, BI Chen, LI Xiang-Dong, YANG Dong-Qing. Identification of gene co-expression modules of peanut main stem growth by WGCNA [J]. Acta Agronomica Sinica, 2021, 47(9): 1639-1653. |
[7] | HAN Yu-Zhou, ZHANG Yong, YANG Yang, GU Zheng-Zhong, WU Ke, XIE Quan, KONG Zhong-Xin, JIA Hai-Yan, MA Zheng-Qiang. Effect evaluation of QTL Qph.nau-5B controlling plant height in wheat [J]. Acta Agronomica Sinica, 2021, 47(6): 1188-1196. |
[8] | ZHOU Xin-Tong, GUO Qing-Qing, CHEN Xue, LI Jia-Na, WANG Rui. Construction of a high-density genetic map using genotyping by sequencing (GBS) for quantitative trait loci (QTL) analysis of pink petal trait in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(4): 587-598. |
[9] | SHEN Wen-Qiang, ZHAO Bing-Bing, YU Guo-Ling, LI Feng-Fei, ZHU Xiao-Yan, MA Fu-Ying, LI Yun-Feng, HE Guang-Hua, ZHAO Fang-Ming. Identification of an excellent rice chromosome segment substitution line Z746 and QTL mapping and verification of important agronomic traits [J]. Acta Agronomica Sinica, 2021, 47(3): 451-461. |
[10] | FU Hong-Yu, CUI Guo-Xian, LI Xu-Meng, SHE Wei, CUI Dan-Dan, ZHAO Liang, SU Xiao-Hui, WANG Ji-Long, CAO Xiao-Lan, LIU Jie-Yi, LIU Wan-Hui, WANG Xin-Hui. Estimation of ramie yield based on UAV (Unmanned Aerial Vehicle) remote sensing images [J]. Acta Agronomica Sinica, 2020, 46(9): 1448-1455. |
[11] | JIANG Peng,HE Yi,ZHANG Xu,WU Lei,ZHANG Ping-Ping,MA Hong-Xiang. Genetic analysis of plant height and its components for wheat (Triticum aestivum L.) cultivars Ningmai 9 and Yangmai 158 [J]. Acta Agronomica Sinica, 2020, 46(6): 858-868. |
[12] | Juan MA, Yan-Yong CAO, Li-Feng WANG, Jing-Jing LI, Hao WANG, Yan-Ping FAN, Hui-Yong LI. Identification of gene co-expression modules of maize plant height and ear height by WGCNA [J]. Acta Agronomica Sinica, 2020, 46(3): 385-394. |
[13] | LIU Rong, WANG Fang, FANG Li, YANG Tao, ZHANG Hong-Yan, HUANG Yu-Ning, WANG Dong, JI Yi-Shan, XU Dong-Xu, LI Guan, GUO Rui-Jun, ZONG Xu-Xiao. An integrated high-density SSR genetic linkage map from two F2 population in Chinese pea [J]. Acta Agronomica Sinica, 2020, 46(10): 1496-1506. |
[14] | HUO Qiang,YANG Hong,CHEN Zhi-You,JIAN Hong-Ju,QU Cun-Min,LU Kun,LI Jia-Na. Candidate genes screening for plant height and the first branch height based on QTL mapping and genome-wide association study in rapessed (Brassica napus L.) [J]. Acta Agronomica Sinica, 2020, 46(02): 214-227. |
[15] | CUI Yue,LU Jian-Nong,SHI Yu-Zhen,YIN Xue-Gui,ZHANG Qi-Hao. Genetic analysis of plant height related traits in Ricinus communis L. with major gene plus polygenes mixed model [J]. Acta Agronomica Sinica, 2019, 45(7): 1111-1118. |
|