Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2013, Vol. 39 ›› Issue (03): 549-556.doi: 10.3724/SP.J.1006.2013.00549

• RESEARCH NOTES • Previous Articles     Next Articles

QTL Identification for Plant Height and Ear Height Based on SNP Mapping in Maize (Zea mays L.)

ZHENG De-Bo1,2,5,YANG Xiao-Hong2,LI Jian-Sheng2,YAN Jian-Bing3,ZHANG Shi-Long4,HE Zheng-Hua4,HUANG Yi-Qin4,*   

  1. 1 College of Agronomy, Guangxi University, Nanning 530005, China; 2 National Maize Improvement Center of China, China Agricultural University, Beijing 100193, China; 3 National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; 4 Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; 5 Maize Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530227, China?
  • Received:2012-07-23 Revised:2012-11-16 Online:2013-03-12 Published:2013-01-04
  • Contact: 黄益勤,E-mail: hyqhzau@163.com,Tel: 027-87389897 E-mail:hyqhzau@163.com

Abstract:

In order to learn more about the genetic machanism of plant height and ear height, two linkage maps were constructed by SNP markers using two F2:3 families derived from K22 × CI7 and K22 × Dan340 respectively. These two maps included 429 and 344 polymorphic SNP markers respectively and their total lengths were 1 389.3 cM and 1 567.5 cM respectively. The phenotypic data of plant height (PH) and ear height (EH) of two populations were used to detect QTLs in two environments (2010 in Nanning and 2011 in Wuhan) by using the Composite Interval Mapping (CIM) model of WinQTLCart2.5. In total, 21 QTLs for plant height and 27 QTLs for ear height were identified. The phenotypic variance explained by each QTL ranged from 4.9% to 17.9%. The results showed that the additive and partial dominant effects were the main genetic basis for plant height and ear height in maize in this study, and the main QTLs for PH and EH were both found on chromosome 7.

Key words: SNP (single nucleotide polymorphism), QTL (quantitative trait locus), Linkage map, Plant height, Ear height, Zea mays

[1]Zhang Y, Li Y X, Wang Y, Liu Z Z, Liu C, Peng B, Tan W W, Wang D, Shi Y S, Sun B C, Song Y C, Wang T Y, Li Y. Stability of QTL across environments and QTL-by-Environment interactions for plant and ear height in maize. Agric Sci China, 2010, 9(10): 1400–1412

[2]Duvick D N. Genetic progress in yield of United States maize (Zea mays L.). Maydica, 2005, 50: 193–202

[3]Lan J-H(兰进好), Chu D(褚栋). Study on the genetic basis of plant height and ear height in maize (Zea mays L.) by QTL dissection. Hereditas (遗传), 2005, 27(6): 925–934 (in Chinese with English abstract)

[4]Paterson A H, Lander E S, Hewitt J D, Peterson S, Lincoln S E, Tanksley S D. Resolution of quantitative traits into Mendelian factors by using a complete linkage map of restriction fragment length polymorphisms. Nature, 1988, 335: 721–726

[5]Doebley J, Stec A, Hubbard L. The evolution of apical dominance in maize. Nature, 1997, 386: 485–488

[6]Salvi S, Sponza G, Morgante M, Tomes D, Niu X M, Fengler K A, Meeley R, Ananiev E V, Svitashev S, Bruggemann E, Li B L, Hainey C F, Radovic S, Zaina G, Rafalski J A, Tingey S V, Miao G H, Phillips R L, Tuberosa R. Conserved non-coding genomic sequences associated with a flowering-time quantitative trait locus in maize. Proc Natl Acad Sci USA, 2007, 104: 11376–11381

[7]Wang H, Nussbaum-Wagler T, Li B, Zhao Q, Vigouroux Y, Faller M, Bomblies K, Lukens L, Doebley J F. The origin of the naked grains of maize. Nature, 2005, 436 : 714–719

[8]Zheng P Z, Allen W B, Roesler K, Williams M E,  Zhang S R, Li J M, Glassman K, Ranch J, Nubel D, Solawetz W, Bhattramakki D, Llaca V, Deschamps S, Zhong G Y, Tarczynsk  M C,Shen B. A phenylalanine in DGAT is a key determinant of oil content and composition in maize. Nat Genet, 2008, 40: 367–372

[9]Li L, Li H, Li Q, Yang X H, Zheng D B, Warburton M, Chai Y C, Zhang P, Guo Y Q, Yan J B, Li J S. An 11-bp insertion in Zea mays fatb reduces the palmitic acid content of fatty acids in maize grain. PLoS ONE, 2011, 6(9): 1–12

[10]Gallavotti A, Zhao Q, Kyozuka J, Meeley R B, Ritter M K, Doebley J F, Pè M E, Schmidt R J. The role of barren stalk1 in the architecture of maize. Nature, 2004, 432: 630–635

[11]Thornsberry J M, Goodman M M, Doebley J, Kresovich S, Nielsen D , Buckler E S. Dwarf8 polymorphisms associate with variation in flowering time. Nat Genet, 2001, 28: 286–289

[12]Guan Q(关强), Zhang Y-X(张月学), Xu X-L(徐香玲), Sun D-Q(孙德全), Li S-Y(李绥艳), Lin H(林红), Pan L-Y(潘丽艳), Ma Y-H(马延华). Development of DNA molecular marker and several new types of molecular markers. Heilongjiang Agric Sci (黑龙江农业科学), 2008, (1): 102–104 (in Chinese with English abstract)

[13]Zou Y-P(邹喻苹), Ge S(葛颂). A novel molecular marker—SNPs and its application. Biodiversity Sci (生物多样性), 2003, 11(5): 370–382 (in Chinese with English abstract)

[14]Buckler E S, Holland J B, Bradbury P J, Acharya C B, Brown P J, Browne C, Ersoz E, Flint-Garcia S, Garcia A, Glaubitz J C, Goodman M M, Harjes C, Guill K, Kroon D E, Larsson S, Lepak N K, Li H H, Mitchell S E, Pressoir G, Peiffer J A, Rosas M O, Rocheford T R, Romay M C, Romero S, Salvo S, Villeda H S, Silva H S, Sun Q, Tian F, Upadyayula N, Ware D, Yates H, Yu J M, Zhang Z W, Kresovich S, McMullen M D. The genetic architecture of maize flowering time. Science, 2009, 325: 714–719

[15]Li H H, Bradbury P, Ersoz E, Buckler E S, Wang J K. Joint QTL linkage mapping for multiple-cross mating design sharing one common parent. PLoS ONE, 2011, 6(3): 1–12 (e17573)

[16]Wang L-M(汪黎明), Wang Q-C(王庆成), Meng Z-D(孟昭东). Corn Varieties and Their Pedigrees in China (中国玉米品种及其系谱). Shanghai: Shanghai Scientific and Technical Publishers, 2010. pp 467–602 (in Chinese)

[17]Li F-M(李发民), Mao J-C(毛建昌), Li X-T(李向拓). The breeding of maize inbred line K22 and the analysis on the combine ability. J Gansu Agric Univ (甘肃农业大学学报), 2004, 39(3): 312–315 (in Chinese with English abstract)

[18]Fan J B, Gunderson K L, Bibikova M, Yeakyley J M, Chen J, Garcia E W, Lebruska L L, Laurent M, Shen R, Barker D. Illumina Universal Bead Arrays. Methods Enzymol, 2006, 410: 57–73

[19]Yan J B, Yang X H, Trushar S, Hector S V, Li J S, Marilyn W, Zhou Y, Crouch J H, Xu Y B. High-throughput SNP genotyping with the Golden Gate assay in maize. Mol Breed, 2010, 25: 441–451

[20]Lander E C, Green P, Abrahamson J, Barlow A, Daly M J, Lincoln S E, Newberg L. MAPMAKER: an interactive computer package for construction primary genetic linkage maps of experimental and natural populations. Genomics, 1987, 1: 174–181

[21]Voorrips R E. MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered, 2002, 93: 77–78

[22]Wang S, Basten C J, Zeng Z B. Windows QTL Cartographer 2.5 Department of Statistics. Raleigh: North Carolina State University, 2006. (http://statgen.ncsu.edu/ qtlcart/WQTLCart.htm)

[23]Stuber C W, Edwards M D, Wendel J F. Molecular marker-facilitated investigations of quantitative trait loci in maize. Ⅱ. Factors influencing yield and its component traits. Crop Sci, 1987, 27(3): 639-648

[24]Chen Y-S(陈玉水), Lu C-B(卢川北). Correlation analysis on plant height and ear height in maize (Zea mays L.). Guangxi Agric Sci (广西农业科学), 2004, 35(2): 111 (in Chinese)

[25]Sun Z-C(孙志超), Jing S-L(荆绍凌), Zhang Z-J(张志军), Zhou X-H(周小辉), Yue Y-H(岳尧海), Zhang J-X(张建新), Ren J(任军). Analysis on genetic variations and correlation of the main agronomic traits in corn hybrids. Anhui Agric Sci Bull (安徽农学通报), 2008, 14(20): 54–55 (in Chinese)

[26]Zhang Z-M(张志明), Zhao M-J(赵茂俊), Rong T-Z(荣廷昭), Pan G-T(潘光堂). SSR linkage map construction and QTL identification for plant height and ear height in maize (Zea mays L.). Acta Agron Sin (作物学报), 2007, 33(2): 341–344 (in Chinese with English abstract).

[27]Yang X-J(杨晓军), Lu M(路明), Zhang S-H(张世煌), Zhou F(周芳), Qu Y-Y(曲延英), Xie C-X(谢传晓). QTL mapping of plant height and ear position in maize (Zea mays L.). Hereditas (Beijing)(遗传), 2008, 30(11): 1477–1486 (in Chinese with English abstract)

[28]Xing Y-Z(邢永忠), Xu C-G(徐才国). Advance in crop quantitative trait loci. Hereditas (Beijing) (遗传), 2001, 23(5): 498–502 (in Chinese with English abstract)

[29]Schön C C, Lee M, Melchinger A E, Guthrie W D, Woodman W L. Mapping and characterization of quantitative trait loci affecting resistance against second-generation European corn borer in maize with the aid of RFLPs. Heredity, 1993, 70: 648–659

[30]Schön C C, Melchinger A E, Boppenmaier J, Brunklaus-Jung E, Herrmann R G, Seitzer J F. RFLP mapping in maize: quantitative trait loci affecting testcross performance of elite European flint lines. Crop Sci, 1994, 37: 378–389

[31]Veldboom L R, Lee M, Woodman W L. Molecular marker-facilitated studies in an elite maize population: I. Linkage analysis and determination of QTL for morphological traits. Theor Appl Genet, 1994, 88: 7–16

[32]Veldboom L R, Lee M. Molecular-marker-facilitated studies of morphological traits in maize: II. Determination of QTLs for grain yield and yield components. Theor Appl Genet, 1994, 89: 451-458

[33]Beavis W D, Smith O S, Grant D, Fincher R. Identification of quantitative trait loci using a small sample of topcrossed and F4 progeny from maize. Crop Sci, 1994, 34: 882–896

[1] HU Wen-Jing, LI Dong-Sheng, YI Xin, ZHANG Chun-Mei, ZHANG Yong. Molecular mapping and validation of quantitative trait loci for spike-related traits and plant height in wheat [J]. Acta Agronomica Sinica, 2022, 48(6): 1346-1356.
[2] YU Chun-Miao, ZHANG Yong, WANG Hao-Rang, YANG Xing-Yong, DONG Quan-Zhong, XUE Hong, ZHANG Ming-Ming, LI Wei-Wei, WANG Lei, HU Kai-Feng, GU Yong-Zhe, QIU Li-Juan. Construction of a high density genetic map between cultivated and semi-wild soybeans and identification of QTLs for plant height [J]. Acta Agronomica Sinica, 2022, 48(5): 1091-1102.
[3] WANG Ze, ZHOU Qin-Yang, LIU Cong, MU Yue, GUO Wei, DING Yan-Feng, NINOMIYA Seishi. Estimation and evaluation of paddy rice canopy characteristics based on images from UAV and ground camera [J]. Acta Agronomica Sinica, 2022, 48(5): 1248-1261.
[4] FU Mei-Yu, XIONG Hong-Chun, ZHOU Chun-Yun, GUO Hui-Jun, XIE Yong-Dun, ZHAO Lin-Shu, GU Jia-Yu, ZHAO Shi-Rong, DING Yu-Ping, XU Yan-Hao, LIU Lu-Xiang. Genetic analysis of wheat dwarf mutant je0098 and molecular mapping of dwarfing gene [J]. Acta Agronomica Sinica, 2022, 48(3): 580-589.
[5] HUANG Li, CHEN Yu-Ning, LUO Huai-Yong, ZHOU Xiao-Jing, LIU Nian, CHEN Wei-Gang, LEI Yong, LIAO Bo-Shou, JIANG Hui-Fang. Advances of QTL mapping for seed size related traits in peanut [J]. Acta Agronomica Sinica, 2022, 48(2): 280-291.
[6] WANG Ying, GAO Fang, LIU Zhao-Xin, ZHAO Ji-Hao, LAI Hua-Jiang, PAN Xiao-Yi, BI Chen, LI Xiang-Dong, YANG Dong-Qing. Identification of gene co-expression modules of peanut main stem growth by WGCNA [J]. Acta Agronomica Sinica, 2021, 47(9): 1639-1653.
[7] HAN Yu-Zhou, ZHANG Yong, YANG Yang, GU Zheng-Zhong, WU Ke, XIE Quan, KONG Zhong-Xin, JIA Hai-Yan, MA Zheng-Qiang. Effect evaluation of QTL Qph.nau-5B controlling plant height in wheat [J]. Acta Agronomica Sinica, 2021, 47(6): 1188-1196.
[8] ZHOU Xin-Tong, GUO Qing-Qing, CHEN Xue, LI Jia-Na, WANG Rui. Construction of a high-density genetic map using genotyping by sequencing (GBS) for quantitative trait loci (QTL) analysis of pink petal trait in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(4): 587-598.
[9] SHEN Wen-Qiang, ZHAO Bing-Bing, YU Guo-Ling, LI Feng-Fei, ZHU Xiao-Yan, MA Fu-Ying, LI Yun-Feng, HE Guang-Hua, ZHAO Fang-Ming. Identification of an excellent rice chromosome segment substitution line Z746 and QTL mapping and verification of important agronomic traits [J]. Acta Agronomica Sinica, 2021, 47(3): 451-461.
[10] FU Hong-Yu, CUI Guo-Xian, LI Xu-Meng, SHE Wei, CUI Dan-Dan, ZHAO Liang, SU Xiao-Hui, WANG Ji-Long, CAO Xiao-Lan, LIU Jie-Yi, LIU Wan-Hui, WANG Xin-Hui. Estimation of ramie yield based on UAV (Unmanned Aerial Vehicle) remote sensing images [J]. Acta Agronomica Sinica, 2020, 46(9): 1448-1455.
[11] JIANG Peng,HE Yi,ZHANG Xu,WU Lei,ZHANG Ping-Ping,MA Hong-Xiang. Genetic analysis of plant height and its components for wheat (Triticum aestivum L.) cultivars Ningmai 9 and Yangmai 158 [J]. Acta Agronomica Sinica, 2020, 46(6): 858-868.
[12] Juan MA, Yan-Yong CAO, Li-Feng WANG, Jing-Jing LI, Hao WANG, Yan-Ping FAN, Hui-Yong LI. Identification of gene co-expression modules of maize plant height and ear height by WGCNA [J]. Acta Agronomica Sinica, 2020, 46(3): 385-394.
[13] LIU Rong, WANG Fang, FANG Li, YANG Tao, ZHANG Hong-Yan, HUANG Yu-Ning, WANG Dong, JI Yi-Shan, XU Dong-Xu, LI Guan, GUO Rui-Jun, ZONG Xu-Xiao. An integrated high-density SSR genetic linkage map from two F2 population in Chinese pea [J]. Acta Agronomica Sinica, 2020, 46(10): 1496-1506.
[14] HUO Qiang,YANG Hong,CHEN Zhi-You,JIAN Hong-Ju,QU Cun-Min,LU Kun,LI Jia-Na. Candidate genes screening for plant height and the first branch height based on QTL mapping and genome-wide association study in rapessed (Brassica napus L.) [J]. Acta Agronomica Sinica, 2020, 46(02): 214-227.
[15] CUI Yue,LU Jian-Nong,SHI Yu-Zhen,YIN Xue-Gui,ZHANG Qi-Hao. Genetic analysis of plant height related traits in Ricinus communis L. with major gene plus polygenes mixed model [J]. Acta Agronomica Sinica, 2019, 45(7): 1111-1118.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!