Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2014, Vol. 40 ›› Issue (04): 702-710.doi: 10.3724/SP.J.1006.2014.00702

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Physiological Characteristics of Drought Resistance in Common Bean (Phaseolus vulgaris L.)

LI Long,WANG Lan-Fen,WU Jing,JING Rui-Lian,WANG Shu-Min*   

  1. 王述民, E-mail: wangshumin@caas.cn, Tel: 010-62175628
  • Received:2012-12-16 Revised:2014-01-12 Online:2014-04-12 Published:2014-02-14

Abstract:

hree common bean cultivars, Yuejindou (drought-resistant), 260205 (drought-resistant) and Naihuayundou (drought-susceptible) were evaluated with two treatments (drought stress and normal water supply) in pot experiments. We determined physiological and biochemical parameters during growth stage and yield and traits related to yield after harvest, analyzed the changes of all parameters and indicators under drought stress. The result showed that the root dry weight of Yuejindou and 260205 was 20.2% and 20.6% of the total biomass and the pod dry weight was 30.0% and 28.9% of the total biomass especially at 36 days of drought treatment, while, the root dry weight and pod dry weight only 10.6% and 17.1% of the total biomass in Naihuayundou, indicating that effective photosynthate distribution is significantly correlated with drought resistance in common bean.The water use efficiency in the drought-resistant cultivar (Yuejindou) increased by 230.5% compared with control, much higher than the 60% increase in drought-susceptible cultivar (Naihuayundou). The drought-resistant cultivars had an efficient CO2 diffusion and fixation in leaf tissues, and an effective water-use. In drought-resistant cultivars, antioxidant enzyme and photorespiration played a significant role in reactive oxygen scavenging; proline and soluble sugar contributed to the maintenance of relative water content in leaves under low water potential. All together, our results indicated that the competence of drought-resistant cultivars to maintain seed production under drought stress relies on effective adjustments in morphology, stomatal conductance, osmosis and antioxidant capacity.

Key words: Common bean, Drought stress, Physiological characteristics, Evaluation indices

[1]Broughton W J, Hernández G, Blair M, Beebe S, Gepts P, Vanderleyden J. Beans (Phaseolus spp.)-model food legumes. Plant Soil, 2003, 252: 55–128



[2]FAOSTAT. Statistics Database. Rome Available at: http://faostat.fao.org/, 2013



[3]Franca M G C, Thi A T O, Pimentel C, Rossiello R O P, Fodil Y Z, Laffray D. Differences in growth and water relations among Phaseolus vulgaris cultivars in response to induced drought stress. Environ Exp Bot, 2000, 43: 227–237



[4]Singh S P. Broadening the genetic base of common bean cultivars: a review. Crop Sci, 2001, 41: 1659–1675



[5]Jones P G, Thornton P K. The potential impacts of climate change on maize production in Africa and Latin America in 2055. Global Environ Change, 2003, 13: 51–59



[6]Sadeghipour O, Aghaei P. Response of common bean (Phaseolus vulgaris L.) to exogenous application of salicylic acid (SA) under water stress conditions. Adv Environ Biol, 2012, 6: 1160–1168



[7]Cortés A J, This D, Chavarro C, Madriñán S, Blair M W. Nucleotide diversity patterns at the drought-related DREB2 encoding genes in wild and cultivated common bean (Phaseolus vulgaris L.). Theor Appl Genet, 2012, 125: 1069–1085



[8]Velikova V, Yordanov I, Tsonev T. Plant responses to drought, acclimation, and stress tolerance. Photosynthetica, 2000, 38: 171–186



[9]Shao H B, Chu L Y, Jaleel C A, Manlvannan P, Panneerselvam R, Shao M A. Understanding water deficit stress-induced changes in the basic metabolism of higher plants-biotechnologically and sustainably improving agriculture and ecoenvironment in arid regions of the globe. Crit Rev Biotech, 2009, 29: 131–151



[10]Simsek M, Comlekcioglu N, Ozturk I. The effects of the regulated deficit irrigation on yield and some yield components of common bean (Phaseolus vulgaris L.) under semi-arid conditions. Afr J Biotechnol, 2011, 10: 4057–4064



[11]Rosales M A, Ocampo E, Rodríguez-Valentín R, Olvera-Carrillo Y, Acosta-Gallegos J, Covarrubias A A. Physiological analysis of common bean (Phaseolus vulgaris L.) cultivars uncovers characteristics related to terminal drought resistance. Plant Physiol Biochem, 2012, 56: 24–34



[12]Wentworth M, Murchie E H, Gray J E, Villegas D, Pastenes C, Pinto M, Horton P. Differential adaptation of two varieties of common bean to abiotic stress. J Exp Bot, 2006, 57: 699–709



[13]Mohamed M F, Schmitz-Eiberger N, Keutgen N, Noga G. Comparative drought postponing and tolerance potentials of two tepary bean lines in relation to seed yield. Afr Crop Sci J, 2005, 13: 49–60



[14]王述民, 张亚芝, 魏淑红. 普通菜豆种质资源描述规范和数据标准. 北京: 中国农业出版社, 2006. pp 50–52



Wang S M, Zhang Y Z, Wei S H. Descriptors and data standard for common bean (Phaseolus vulgaris L.). Beijing: China Agriculture Press, 2006. pp 50–52 (in Chinese)



[15]张仁和, 郭东伟, 张兴华, 路海东, 刘建超, 李凤艳, 郝引川, 薛吉全. 吐丝期干旱胁迫对玉米生理特性和物质生产的影响. 作物学报, 2012, 32: 1884–1890



Zhang R H, Guo D W, Zhang X H, Lu H D, Liu J C, Li F Y, Hao Y C, Xue J Q. Effects of drought stress on physiological characteristics and dry matter production in maize silking stage. Acta Agron Sin, 2012, 38: 1884–1890 (in Chinese with English abstract)



[16]徐晨, 凌风楼, 徐克章, 武志海, 刘晓龙, 安久海, 赵兰坡. 盐胁迫对不同水稻品种光合特性和生理生化特性的影响. 中国水稻科学, 2013, 27: 280–286



Xu C, Ling F L, Xu K Z, Wu Z H, Liu X L, An J H, Zhao L P. Effect of salt stress on photosynthetic characteristics and physiological and biochemical traits of different rice varieties. Chin J Rice Sci, 2013, 27: 280–286 (in Chinese with English abstract)



[17]邱鹏程, 张闻博, 李灿东, 蒋洪蔚, 刘春燕, 范冬梅, 曾庆力, 胡国华, 陈庆山. 利用选择导入系分析大豆芽期和苗期耐旱性的遗传重叠. 作物学报, 2011, 37: 477–483



Qiu P C, Zhang W B, Li C D, Jiang H W, Liu C Y, Fan D M, Zeng Q L, Hu G H, Chen Q S. Genetic overlap of drought-tolerance loci between germination stage and seedling stage analyzed using introgression lines in soybean. Acta Agron Sin, 2011, 37: 477–483 (in Chinese with English abstract)



[18]张志良. 植物生理学实验指导. 北京: 高等教育出版社, 1990. pp 208–209, 125–126, 103–104, 100–101, 218–219, 227–229



Zhang Z L. Handbook of plant physiology experiment. Beijing: Higher Education Press, 1990. pp 208–209, 125–126, 103–104, 100–101, 218–219, 227–229 (in Chinese)



[19]李合生. 植物生理生化实验原理和技术. 北京: 高等教育出版社, 2003. pp 213–214



Li H S. Principle and technology of plant in physiology biochemical experiment. Beijing: Higher Education Press, 2003, pp 213–214 (in Chinese)



[20]Acosta-Gallegos J A, Adams M W. Plant traits and yield stability of dry bean (Phaseolus vulgaris L.) cultivars under drought stress. J Agric Sci, 1991, 117: 213–219



[21]Ramirez-Vallejo P, Kelly J D. Traits related to drought resistance in common bean. Euphytica, 1998, 99: 127–136



[22]Amede T, Schubert S, Stahr K. Mechanisms of drought resistance in grain legumes: I. Osmotic adjustment. Ethiopian J Sci, 2003, 26: 37–46



[23]Acosta-Gallegos J A, Kohashi-Shibata J. Effect of water stress on growth and yield of indeterminate dry beans (Phaseolus vulgaris L.) cultivar. Field Crops Res, 1989, 20: 81–93



[24]Cuéllar-Ortiz S M, Arrieta-Montiel M P, Acosta-Gallegos J, Covarrubias A A. Relationship between carbohydrate partioning and drought resistance in common bean. Plant Cell Environ, 2008, 31: 1399–1409



[25]Chaves M M, Flexas J, Pinheiro C. Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Ann Bot, 2009, 103: 551–560



[26]Bota J, Flexas J, Medrano H. Is photosynthesis limited by decreased rubisco activity and RuBP content under progressive water stress? New Phytol, 2004, 162: 671–681



[27]云建英, 杨甲定, 赵哈林. 干旱和高温对植物光合作用的影响机制研究进展. 西北植物学报, 2006, 26: 641–648



Yun J Y, Yang J D, Zhao H L. Research progress in the mechanism for drought and high temperature to affect plant photosynthesis. Acta Bot Boreal-Occident Sin, 2006, 26: 641–648 (in Chinese with English abstract)



[28]吴永美, 吕炯章, 王书建, 李润植. 植物抗旱生理生态特性研究进展. 杂粮作物, 2008, 28(2): 90–93



Wu Y M, Lu J Z, Wang S J, Li R Z. Research progress on eco-physiological responses of plants to drought conditions. Rain Fed Crops, 2008, 28(2): 90–93 (in Chinese)



[29]Turkan I, Bor M, Ozdemir F, Koca H. Differential responses of lipid peroxidation and antioxidants in the leaves of drought tolerant P. acutifolius gray and drought-sensitive P. vulgaris L. subjected to polyethylene glycol mediated water stress. Plant Sci, 2005, 168: 223–231



[30]金怡, 刘合芹, 汪得凯, 陶跃之. 植物光呼吸分子机制研究进展. 中国农学通报, 2011, 27(3): 232–236



Jing Y, Liu H Q, Wang D K, TaoY Z. The progress of molecular mechanisms of photorespiration in plants. Chin Agric Sci Bull, 2011, 27(3): 232–236



[31]杜伟莉, 高杰, 胡富亮, 郭德林, 张改生, 张仁和, 薛吉全. 玉米叶片光合作用和渗透调节对干旱胁迫的响应. 作物学报, 2013, 39: 530–536



Du W L, Gao J, Hu F L, Guo D L, Zhang G S, Zhang R H, Xue J Q. Responses of drought stress on photosynthetic trait and osmotic adjustment in two maize cultivars. Acta Agron Sin, 2013, 39: 530–536

[1] WANG Xia, YIN Xiao-Yu, Yu Xiao-Ming, LIU Xiao-Dan. Effects of drought hardening on contemporary expression of drought stress memory genes and DNA methylation in promoter of B73 inbred progeny [J]. Acta Agronomica Sinica, 2022, 48(5): 1191-1198.
[2] DING Hong, XU Yang, ZHANG Guan-Chu, QIN Fei-Fei, DAI Liang-Xiang, ZHANG Zhi-Meng. Effects of drought at different growth stages and nitrogen application on nitrogen absorption and utilization in peanut [J]. Acta Agronomica Sinica, 2022, 48(3): 695-703.
[3] ZHANG Hai-Yan, XIE Bei-Tao, JIANG Chang-Song, FENG Xiang-Yang, ZHANG Qiao, DONG Shun-Xu, WANG Bao-Qing, ZHANG Li-Ming, QIN Zhen, DUAN Wen-Xue. Screening of leaf physiological characteristics and drought-tolerant indexes of sweetpotato cultivars with drought resistance [J]. Acta Agronomica Sinica, 2022, 48(2): 518-528.
[4] ZHANG Ming-Cong, HE Song-Yu, QIN Bin, WANG Meng-Xue, JIN Xi-Jun, REN Chun-Yuan, WU Yao-Kun, ZHANG Yu-Xian. Effects of exogenous melatonin on morphology, photosynthetic physiology, and yield of spring soybean variety Suinong 26 under drought stress [J]. Acta Agronomica Sinica, 2021, 47(9): 1791-1805.
[5] LI Jie, FU Hui, YAO Xiao-Hua, WU Kun-Lun. Differentially expressed protein analysis of different drought tolerance hulless barley leaves [J]. Acta Agronomica Sinica, 2021, 47(7): 1248-1258.
[6] LI Peng-Cheng, BI Zhen-Zhen, SUN Chao, QIN Tian-Yuan, LIANG Wen-Jun, WANG Yi-Hao, XU De-Rong, LIU Yu-Hui, ZHANG Jun-Lian, BAI Jiang-Ping. Key genes mining of DNA methylation involved in regulating drought stress response in potato [J]. Acta Agronomica Sinica, 2021, 47(4): 599-612.
[7] QIN Tian-Yuan, LIU Yu-Hui, SUN Chao, BI Zhen-Zhen, LI An-Yi, XU De-Rong, WANG Yi-Hao, ZHANG Jun-Lian, BAI Jiang-Ping. Identification of StIgt gene family and expression profile analysis of response to drought stress in potato [J]. Acta Agronomica Sinica, 2021, 47(4): 780-786.
[8] ZHOU Lian, LIU Chao-Xian, XIONG Yu-Han, ZHOU Jing, CAI Yi-Lin. Functional analysis of plasma membrane intrinsic protein ZmPIP1;1 involved in drought tolerance and photosynthesis in maize [J]. Acta Agronomica Sinica, 2021, 47(3): 472-480.
[9] LIU Ya-Wen, ZHANG Hong-Yan, CAO Dan, LI Lan-Zhi. Prediction of drought and salt stress-related genes in rice based on multi-platform gene expression data [J]. Acta Agronomica Sinica, 2021, 47(12): 2423-2439.
[10] WANG Shi-Ya, ZHENG Dian-Feng, FENG Nai-Jie, LIANG Xi-Long, XIANG Hong-Tao, FENG Sheng-Jie, JIN Dan, LIU Mei-Ling, MU Bao-Min. Effects of uniconazole on physiological characteristics and microstructure under waterlogging stress at seedling stage in soybean [J]. Acta Agronomica Sinica, 2021, 47(10): 1988-2000.
[11] QIN Tian-Yuan, SUN Chao, BI Zhen-Zhen, LIANG Wen-Jun, LI Peng-Cheng, ZHANG Jun-Lian, BAI Jiang-Ping. Identification of drought-related co-expression modules and hub genes in potato roots based on WGCNA [J]. Acta Agronomica Sinica, 2020, 46(7): 1033-1051.
[12] ZHANG Hai-Yan, WANG Bao-Qing, FENG Xiang-Yang, LI Guang-Liang, XIE Bei-Tao, DONG Shun-Xu, DUAN Wen-Xue, ZHANG Li-Ming. Effects of drought treatments at different growth stages on growth and the activity of osmotic adjustment in sweet potato [Ipomoea batatas (L.) Lam.] [J]. Acta Agronomica Sinica, 2020, 46(11): 1760-1770.
[13] LI Xu-Kai,LI Ren-Jian,ZHANG Bao-Jun. Identification of rice stress-related gene co-expression modules by WGCNA [J]. Acta Agronomica Sinica, 2019, 45(9): 1349-1364.
[14] Yi YUAN,Shuang ZHU,Ting-Ting FANG,Jin-Jin JIANG,You-Ping WANG. Analysis of drought resistance and DNA methylation level of resynthesized Brassica napus [J]. Acta Agronomica Sinica, 2019, 45(5): 693-704.
[15] Hai-Ming TANG,Xiao-Ping XIAO,Chao LI,Wen-Guang TANG,Li-Jun GUO,Ke WANG,Kai-Kai CHENG,Xiao-Chen PAN,Gen SUN. Effects of different soil tillage systems on physiological characteristics and yield of double-cropping rice [J]. Acta Agronomica Sinica, 2019, 45(5): 740-754.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!