Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2015, Vol. 41 ›› Issue (04): 515-523.doi: 10.3724/SP.J.1006.2015.00515

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS •     Next Articles

Identification of Powdery Mildew Resistance Gene in Pea Line X9002

WANG Zhong-Yi1,FU Hai-Ning1,2,SUN Su-Li1,DUAN Can-Xin1,WU Xiao-Fei1,YANG Xiao-Ming2,ZHU Zhen-Dong1,*   

  1. 1 National Key Facility for Crop Gene Resource and Genetic Improvement / Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China; 2 Gansu Academy of Agricultural Sciences, Lanzhou 730070, China
  • Received:2014-10-25 Revised:2015-02-06 Online:2015-04-12 Published:2015-03-03
  • Contact: 朱振东, E-mail: zhuzhendong@caas.cn, Tel: 010-82109609 E-mail:wdtashwzy@163.com

Abstract:

Powdery mildew is one of the major diseases in pea, causing severe economic loss worldwide. Planting resistant cultivars is the most effective, economical and eco-friendly method for controlling the disease. So far, two recessive resistance genes (er1, er2) and one dominant resistance gene (Er3) have been identified in pea, and er1 has been utilized in breeding programs worldwide. Gene er1 is a member of MLO gene family, and er1 resistance is caused by the loss of function at a PsMLO1 locus in pea. X9002 with resistance to powdery mildew is an afila pea line bred by Gansu Academy of Agricultural Sciences. Here, we identified the powdery mildew resistance gene in X9002, and developed molecular marker for the gene selection. Genetic analysis for powdery mildew resistance showed that X9002 carries a recessive resistance gene. The resistance gene was mapped in a region carrying er1 locus on the pea linkage group VI using SSR markers, and was linked to SSR marker AD60 and gene marker c5DNAmet. PsMLO1 sequence analysis revealed that X9002 carries an insertion of unknown size and identity. The same mutation also existed in pea cultivars Stratagem and Franklin carrying er1-2 allele, indicating that the resistance gene is er1-2 in X9002. A functional marker PsMLO1-650 for er1-2 was developed, and the marker was a coupling-phase marker that was detected only in susceptible plants. PsMLO1-650 can be used effectively in marker-assisted selection.

Key words: Pisum sativum L., Powdery mildew, Resistance gene, PsMLO1 gene, Functional marker

[1]Smýkal P, Aubert G, Burstin J, Coyne C J, Ellis N T H, Flavell A J, Ford R, Hýbl M, Macas J, Neumann P, McPhee K E, Redden R J, Rubiales D, Weller J L, Warkentin T D. Pea (Pisum sativum L.) in the genomic era. Agronomy, 2012, 2: 74–115



[2]Li L, Redden R J, Zong X X, Berger J D, Bennett S J. Ecogeographic analysis of pea collection sites from China to determine potential sites with abiotic stresses. Genet Resour Crop Evol, 2013, 60: 1801–1815



[3]FAOSTAT 2013. Available online: http://faostat3.fao.org /(accessed on 13 October 2014)



[4]Ghafoor A, McPhee K. 2012. Marker assisted selection (MAS) for developing powdery mildew resistant pea cultivars. Euphytica, 2012, 186: 593–607



[5]Fondevilla S, Rubiales D. Powdery mildew control in pea. A review. Agron Sust Dev, 2012, 32: 401–409



[6]Harland S C. Inheritance of immunity to mildew in Peruvian forms of Pisum sativum. Heredity, 1948, 2: 263–269



[7]Heringa R J, Norel A, Tazelaar M F. Resistance to powdery mildew (Erysiphe polygoni DC.) in peas (Pisum sativum L.). Euphytica, 1969, 18: 163–169



[8]Tiwari K R, Penner G A, Warkentin T D. Inheritance of powdery mildew resistance in pea. Can J Plant Sci, 1997, 77: 307–310



[9]Vaid A, Tyagi P D. Genetics of powdery mildew resistance in pea. Euphytica, 1997, 96: 203–206



[10]Sharma B. The Pisum genus has only one recessive gene for powdery mildew resistance. Pisum Genet, 2003, 35: 22–27



[11]Sharma B. Identification of recessive er gene for powdery mildew resistance in a landrace of Pisum sativum. Pisum Genet, 2003, 35: 30–31



[12]Liu S M, O’Brien L, Moore S G. A single recessive gene confers effective resistance to powdery mildew of field pea grown in northern New South Wales. Aust J Exp Agric, 2003, 43: 373–378



[13]Fondevilla S, Carver T L W, Moreno M T, Rubiales D. Macroscopic and histological characterization of genes er1 and er2 for powdery mildew resistance in pea. Eur J Plant Pathol, 2006, 115: 309–321



[14]Fondevilla S, Torres A M, MorenoM T, Rubiales D. Identi?cation of a new gene for resistance to powdery mildew in Pisum fulvum, a wild relative of pea. Breed Sci, 2007, 57: 181–184



[15]Dirlewanger E, Isaac P G, Ranade S, Belajouza M, Cousin R, Vienne D. Restriction fragment length polymorphism analysis of loci associated with disease resistance genes and developmental traits in Pisum sativum L. Theor Appl Genet, 1994, 88: 17–27



[16]Katoch V, Sharma S, Pathania S, Banayal D K, Sharma S K, Rathour R. Molecular mapping of pea powdery mildew resistance gene er2 to pea linkage group III. Mol Breed, 2010, 25: 229–237



[17]Timmerman G M, Frew T J, Weeden N F. Linkage analysis of er1, a recessive Pisum sativum gene for resistance to powdery mildew fungus (Erysiphe pisi DC.). Theor Appl Genet, 1994, 88: 1050–1055



[18]Tiwari K R., Penner G A, Warkentin T D. Identification of coupling and repulsion phase RAPD markers for powdery mildew resistance gene er-1 in pea. Genome, 1998, 41: 440–444



[19]Janila P, Sharma B. RAPD and SCAR markers for powdery mildew resistance gene er1 in pea. Plant Breed, 2004, 12: 271–274



[20]Ek M, Eklund M, Von Post R, Dayteg C, Henriksson T, Weibull P, Ceplitis A, Isaac P, Tuvesson S. Microsatellite markers for powdery mildew resistance in pea (Pisum sativum L.). Hereditas, 2005, 142: 86–91



[21]Pereira G, Marques C, Ribeiro R, Formiga S, Dâmaso M, Sousa T M, Farinhó M, Leitão J M. Identification of DNA markers linked to an induced mutated gene conferring resistance to powdery mildew in pea (Pisum sativum L.). Euphytica, 2010, 171: 327–335



[22]Srivastava R K, Mishra S K, Singh K, Mohapatra T. Development of a coupling-phase SCAR marker linked to the powdery mildew resistance gene er1 in pea (Pisum sativum L.). Euphytica, 2012, 186: 855–866



[23]Jørgensen J H. Discovery, characterization and exploitation of Mlo powdery mildew resistance in barley. Euphytica, 1992, 63: 141–152



[24]Pereira G, Leitão J. Two powdery mildew resistance mutations induced by ENU in Pisum sativum L. affect the locus er1. Euphytica, 2010, 171: 345–354



[25]Humphry M, Reinstädler A, Ivanov S, Bisseling T, Panstruga R. Durable broad-spectrum powdery mildew resistance in pea er1 plants is conferred by natural loss-of-function mutations in PsMLO1. Mol Plant Pathol, 2011, 12: 866–878



[26]Pavan S, Schiavulli A, Appiano M, Marcotrigiano A R, Cillo F, Visser R G F, Bai Y, Lotti C, Luigi Ricciardi L. Pea powdery mildew er1 resistance is associated to loss-of-function mutations at a MLO homologous locus. Theor Appl Genet, 2011, 123: 1425–1431



[27]Santo T, Rashkova M, Alabaca C, Leitao J. The ENU-induced powdery mildew resistant mutant pea (Pisum sativum L.) lines S(er1mut1) and F(er1mut2) harbour early stop codons in the PsMLO1 gene. Mol Breed, 2013, 32: 723–727



[28]Pavan S, Schiavulli A, Appiano M, Miacola C, Visser R G F, Bai Y L, Lotti C, Ricciardi L. Identification of a complete set of functional markers for the selection of er1 powdery mildew resistance in Pisum sativum L. Mol Breed, 2013, 31: 247–253



[29]Ond?ej M, Dostálová R, Hýbl M, Odstr?ilová L, Tyller R, Trojan R. Utilization of afila types of pea (Pisum sativum L.) resistant to powdery mildew (Erysiphe pisi DC.) in the breeding programs. Plant Soil Environ, 2003, 49: 481–485



[30]曾亮, 李敏权, 杨晓明. 豌豆种质资源白粉病抗性鉴定. 草原与草坪, 2012, 32: 35–38



Zeng L, Li M Q, Yang X M. Identification of resistance of peas resources to powdery mildew. Grassland & Turf, 2012, 32(4): 35–38 (in Chinese with English abstract)



[31]王仲怡, 包世英, 段灿星, 宗绪晓, 朱振东. 豌豆抗白粉病资源筛选及分子鉴定. 作物学报, 2013, 39: 1030–1038



     Wang Z Y, Bao S Y, Duan C X, Zong X X, Zhu Z D. Screening and molecular identification of resistance to powdery mildew in pea germplasm. Acta Agron Sin, 2013, 39: 1030−1038 (in Chinese with English abstract)



[32]付海宁, 孙素丽, 朱振东, 段灿星, 杨晓明. 加拿大豌豆品种(系)抗白粉病表型和基因型鉴定. 植物遗传资源学报, 2014, 15: 1028−1033



Fu H N, Sun S L, Zhu Z D, Duan C X, Yang X M. Phenotypic and genotypic identification of powdery mildew resistance in pea cultivars or lines from



Canada. J Plant Genet Resour, 2014, 15: 1028−1033 (in Chinese with English abstract)



[33]Rana J C, Banyal D K, Sharma K D, Sharma M K, Gupta S K, Yadav S K. Screening of pea germplasm for resistance to powdery mildew. Euphytica, 2013, 189: 271–282



[34]Michelmore R W, Paran I, Kesseli R V. Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating population. Proc Natl Acad Sci USA, 1991, 88: 9828–9832



[35]Loridon K, McPhee K, Morin J, Dubreuil P, Pilet-Nayel M L, Aubert G, Rameau C, Baranger A, Coyne C, Lejeune-Henaut I, Burstin J. Microsatellite marker polymorphism and mapping in pea (Pisum sativum L.). Theor Appl Genet, 2005, 111: 1022–1031



[36]Bordat A,Savois V, Nicolas M, Salse J, Chauveau A, Bourgeois M, Potier J, Houtin H, Rond C, Murat F, Marget P, Aubert G, Burstin J. Translational genomics in legumes allowed placing in silico 5460 unigenes on the pea functional map and identified candidate genes in Pisum sativum L. Genes Genome Genet, 2011, 1: 93–103



[37]Lander E S, Green P, Abrahamson J, Barlow A, Daly M J, Lincoln S E, Newburg L. MAPMAKER: an interactive computer package for constructing primary genetic maps of experimental and natural populations. Genomics, 1987, 1: 174–181



[38]Kosambi D D. The estimation of map distances from recombination values. Ann Eugen, 1944, 12: 172–175



[39]Sharma B, Yadav Y. Pisum fulvum carries a recessive gene for powdery mildew resistance. Pisum Genet, 2003, 35: 31



[40]Pierce W H. Resistance to powdery mildew in peas. Phytopathology, 1948, 38: 21



[41]Cousin R. Resistance to powdery mildew in pea. Ann Amélior Plantes, 1965, 15: 93–97



[42]王凤宝, 董立峰, 付金锋, 郑桂茹, 张柏昌, 梁润波, 聂亚琴, 宗云生, 李守训. 超高产豌豆新品种引种及配套栽培技术研究. 河北农业技术师范学院学报, 1998, 12(4): 17–22



Wang F B, Dong L F, Fu J F, Zheng G R, Zhang B C, Liang R P, Nie Y Q, Zong Y S, Li S X. Studies on introduction and culture techniques of a new super high yielding pea variety. J Hebei Agrotech Teachers College, 1998, 12(4): 17–22 (in Chinese with English abstract)



[43]董立峰, 王凤宝, 付金锋. 半无叶型甜豌豆新品种须菜1号的选育. 长江蔬菜, 2008, (8): 45–46



Dong L F, Wang F B, Fu J F. Development of a new semi-leafless sweet pea “Xucai No.1”. J Changjiang Vegetables, 2008, (8): 45–46 (in Chinese)



[44]Marx G A. Location of er proving elusive. Pisum Newsl, 1986, 18:39–41



[45]Wolko B, Weeden N F. Additional markers for chromosome 6. Pisum Newsl, 1990, 22: 71–74

[1] DENG Zhao, JIANG Nan, FU Chen-Jian, YAN Tian-Zhe, FU Xing-Xue, HU Xiao-Chun, QIN Peng, LIU Shan-Shan, WANG Kai, YANG Yuan-Zhu. Analysis of blast resistance genes in Longliangyou and Jingliangyou hybrid rice varieties [J]. Acta Agronomica Sinica, 2022, 48(5): 1071-1080.
[2] ZHU Zheng, WANG Tian-Xing-Zi, CHEN Yue, LIU Yu-Qing, YAN Gao-Wei, XU Shan, MA Jin-Jiao, DOU Shi-Juan, LI Li-Yun, LIU Guo-Zhen. Rice transcription factor WRKY68 plays a positive role in Xa21-mediated resistance to Xanthomonas oryzae pv. oryzae [J]. Acta Agronomica Sinica, 2022, 48(5): 1129-1140.
[3] SHI Yu-Qin, SUN Meng-Dan, CHEN Fan, CHENG Hong-Tao, HU Xue-Zhi, FU Li, HU Qiong, MEI De-Sheng, LI Chao. Genome editing of BnMLO6 gene by CRISPR/Cas9 for the improvement of disease resistance in Brassica napus L [J]. Acta Agronomica Sinica, 2022, 48(4): 801-811.
[4] JIANG Wei, PAN Zhe-Chao, BAO Li-Xian, ZHOU Fu-Xian, LI Yan-Shan, SUI Qi-Jun, LI Xian-Ping. Genome-wide association analysis for late blight resistance of potato resources [J]. Acta Agronomica Sinica, 2021, 47(2): 245-261.
[5] ZHANG Rong-Yue, WANG Xiao-Yan, YANG Kun, SHAN Hong-Li, CANG Xiao-Yan, LI Jie, WANG Chang-Mi, YIN Jiong, LUO Zhi-Ming, LI Wen-Feng, HUANG Ying-Kun. Identification of brown rust resistance and molecular detection of Bru1 gene in new and main cultivated sugarcane varieties [J]. Acta Agronomica Sinica, 2021, 47(2): 376-382.
[6] ZHANG Huan, LUO Huai-Yong, LI Wei-Tao, GUO Jian-Bin, CHEN Wei-Gang, ZHOU Xiao-Jing, HUANG Li, LIU Nian, YAN Li-Ying, LEI Yong, LIAO Bo-Shou, JIANG Hui-Fang. Genome-wide identification of peanut resistance genes and their response to Ralstonia solanacearum infection [J]. Acta Agronomica Sinica, 2021, 47(12): 2314-2323.
[7] ZHANG Fu-Yan, CHENG Zhong-Jie, CHEN Xiao-Jie, WANG Jia-Huan, CHEN Feng, FAN Jia-Lin, ZHANG Jian-Wei, YANG Bao-An. Molecular identification and breeding application of allelic variation of grain weight gene in wheat from the Yellow-Huai-River Valley [J]. Acta Agronomica Sinica, 2021, 47(11): 2091-2098.
[8] WEN Jing, SHEN Yan-Qi, HAN Si-Ping, XING Yue-Xian, ZHANG Ye, WANG Zi-Yu, LI Shi-Jie, YANG Xiao-Hong, HAO Dong-Yun, ZHANG Yan. Exploration of specific gene(s) for ear rot resistance to Fusarium verticilloides in maize [J]. Acta Agronomica Sinica, 2020, 46(9): 1303-1311.
[9] ZHANG Xue-Cui,ZHONG Chao,DUAN Can-Xing,SUN Su-Li,ZHU Zhen-Dong. Fine mapping of Phytophthora resistance gene RpsZheng in soybean cultivar Zheng 97196 [J]. Acta Agronomica Sinica, 2020, 46(7): 997-1005.
[10] LI Qing-Cheng,HUANG Lei,LI Ya-Zhou,FAN Chao-Lan,XIE Die,ZHAO Lai-Bin,ZHANG Shu-Jie,CHEN Xue-Jiao,NING Shun-Zong,YUAN Zhong-Wei,ZHAN Lian-Quan,LIU Deng-Cai,HAO Ming. Genetic stability of wheat-rye 6RS/6AL translocation chromosome and its transmission through gametes [J]. Acta Agronomica Sinica, 2020, 46(4): 513-519.
[11] Fang-Quan WANG,Fang-Jun FAN,Shi-Jian XIA,Shou-Yu ZONG,Tian-Qing ZHENG,Jun WANG,Wen-Qi LI,Yang XU,Zhi-Hui CHEN,Yan-Jie JIANG,Ya-Jun TAO,Wei-Gong ZHONG,Jie YANG. Interactive effects of the photoperiod-/thermo-sensitive genic male sterile genes tms5 and pms3 in rice [J]. Acta Agronomica Sinica, 2020, 46(3): 317-329.
[12] HAO Zhi-Ming,GENG Miao-Miao,WEN Shu-Min,YAN Gui-Jun,WANG Rui-Hui,LIU Gui-Ru. Development and validation of markers linked to genes resistant to Sitodiplosis mosellana in wheat [J]. Acta Agronomica Sinica, 2020, 46(02): 179-193.
[13] Wen-Jie SI,Lin-Nan WU,Li-Jian GUO,Meng-Die ZHOU,Xiang-Li LIU,Meng MA,Hui-Xian ZHAO. Development and validation of the functional marker of grain weight-related gene TaCYP78A5 in wheat (Triticum aestivum L.) [J]. Acta Agronomica Sinica, 2019, 45(12): 1905-1911.
[14] Wen-Yang XIANG,Yong-Qing YANG,Qiu-Yan REN,Tong-Tong JIN,Li-Qun WANG,Da-Gang WANG,Hai-Jian ZHI. Cloning and analysis of candidate gene resistant to SC3 in soybean [J]. Acta Agronomica Sinica, 2019, 45(12): 1822-1831.
[15] ZHANG Hong-Juan,LI Yu-Ying,MIAO Li-Li,WANG Jing-Yi,LI Chao-Nan,YANG De-Long,MAO Xin-Guo,JING Rui-Lian. Transcription factor gene TaNAC67 involved in regulation spike length and spikelet number per spike in common wheat [J]. Acta Agronomica Sinica, 2019, 45(11): 1615-1627.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!