Acta Agron Sin ›› 2015, Vol. 41 ›› Issue (06): 861-871.doi: 10.3724/SP.J.1006.2015.00861
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
ZHONG Zhen-Quan**,LUO Wen-Long**,LIU Yong-Zhu,WANG Hui,CHEN Zhi-Qiang*,GUO Tao*
[1]Hu G, Richter T E, Hulbert S H, Pryor T. Disease lesion mimicry caused by mutations in the rust resistance gene rp1. Plant Cell, 1996, 8: 1367–1376[2]Huang Q N, Yang Y, Shi Y F, Chen J, Wu J L. Recent advances in research on spotted leaf mutants of rice (Oryza sativa). Rice Sci, 2010, 24: 108–115 [3]Dietrich R A, Delaney T P, Uknes S J, Ward E R, Ryals J A, Dangl J L. Arabidopsis mutants simulating disease resistance response. Cell, 1994, 77: 565–577[4]Dangl J L, Dietrich R A, Richberg M H. Death don't have no mercy: Cell death programs in Plant-Microbe lnteractions. Plant Cell, 1966, 8: 1793–1807[5]王建军, 朱旭东, 王林友, 张利华, 薛庆中, 何祖华. 水稻类病变突变体lrd40的抗病性与细胞学分析. 中国水稻科学, 2005, 19: 111–116 Wang J J, Zhu X D, Wang L Y, Zhang L H, Xue Q Z, He Z H. Disease resistance and cytological analyses on lesion resembling disease mutant lrd40 in Oryza sativa. Chin J Rice Sci, 2005, 19: 111–116 (in Chinese with Englinsh abstract)[6]陈析丰, 金杨, 马伯军. 水稻类病变突变体及抗病性的研究进展. 植物病理学报, 2011, 41: 1–9Chen X F, Jin Y, Ma B J. Progress on the studies of rice lesion mimics and their resistant mechanism to the pathogens. Acta Phytopathol Sin, 2011, 41: 1–9 (in Chinese with Englinsh abstract)[7]Qiao Y L, Jiang W Z, Lee J H, Park B S, Choi M S, Piao R H, Woo M O, Roh J H, Han L Z, Paek N C,Seo H S, Koh H J. SPL28 encodes a clathrin-associated adaptor protein complex 1, medium subunit μ1 (AP1M1) and is responsible for spotted leaf and early senescence in rice (Oryza sativa). New Phytol, 2010, 185: 258–274[8]Wu C J, Bordeos A, Madamba M R S, Baraoidan M, Ramos M, Wang G L, Leach J E, Leung H. Rice lesion mimic mutants with enhanced resistance to diseases. Mol Genet Genomics, 2008, 279: 605–619[9]Zhong C Y, Jun C, Li R Z, Mei L G, Hei L, Gurdev S K, Wang G L. Characterizing rice lesion mimic mutants and identifying a mutant with broad-spectrum resistance to rice blast and bacterial blight. Mol Plant-Microbe Interact, 2000, 13: 869–876[10]Chen X F, Hao L, Pan J W, Zheng X X, Jiang G H, Jin Y, Gu Z M, Qian Q, Zhai W X, Ma B J. SPL5, a cell death and defense-related gene, encodes a putative splicing factor 3b subunit 3 (SF3b3) in rice. Mol Breed, 2012, 30: 939–949[11]Yamanouchi U, Yano M, Lin H X, Ashikari M, Yamada K. A rice spotted leaf gene, Spl7, encodes a heat stress transcription factor protein. Proc Natl Acad Sci USA, 2002, 99: 7530–7535[12]Zeng L R. Spotted leaf 11, a negative regulator of plant cell death and defense, encodes a U-Box/Armadillo repeat protein endowed with E3 ubiquitin ligase activity. Plant Cell Online, 2004, 16: 2795–2808[13]Mori M, Tomita C, Sugimoto K, Hasegawa, Hayashi N, Dubouzet J, Ochiai H, Sekimoto H, Hirochika H, Kikuchi S. Isolation and molecular characterization of a Spotted leaf 18 mutant by modified activation-tagging in rice. Plant Mol Biol, 2007, 63: 847–860[14]Wang L, Pei Z, Tian Y, He C. OsLSD1, a rice zinc finger protein, regulates programmed cell death and callus differentiation. Mol Plant Microbe Interact, 2005, 18: 375–384[15]Chern M, Fitzgerald H A, Canlas P E, Navarre D A, Ronald P C. Over expression of a rice NPR1 homolog leads to constitutive activation of defense response and hypersensitivity to light. Mol Plant-Microbe Interact, 2005, 18: 511–520[16]Takahashi A, Agrawal G K, Yamazaki M, Onosato K, Miyao A, Kawasaki T, Shimamoto K, Hirochika H. Rice Pti1a negatively regulates RAR1-dependent defense responses. Plant Cell Online, 2007, 19: 2940–2951[17]Kim J A, Cho K, Singh R, Jung Y H, Jeong S H, Kim S H, Lee J, Cho Y S, Agrawal G K, Rakwal R, Tamogami S, Kersten B, Jeon J S, An G, Jwa N S. Rice OsACDR1 (Oryza sativa accelerated cell death and resistance 1) is a potential positive regulator of fungal disease resistance. Mol Cells, 2009, 28: 431–439[18]Jiang C J, Shimono M, Maeda S, Inoue H, Mori M, Hasegawa M,Sugano S, Takatsuji H. Suppression of the rice fatty-acid desaturase gene OsSSI2 enhances resistance to blast and leaf blight diseases in rice. Mol Plant Microbe Interact, 2009, 22: 820–829[19]Fujiwara T, Maisonneuve S, Isshiki M, Mizutani M,Chen L, Wong H L, Kawasaki T, Shimamoto K. Sekiguchi lesion gene encodes a cytochrome P450 monooxygenase that catalyzes conversion of tryptamine to serotonin in rice. J Biol Chem, 2010, 285: 11308–11313[20]Sun C H, Liu L H, Tang J Y, Lin A H, Zhang F T, Fang J, Zhang G F, Chu C C. RLIN1, encoding a putative coproporphyrinogen III oxidase, is involved in lesion initiation in rice. Genet Genomics, 2011, 38: 29–37[21]Jiao B B, Wang J J, Zhu X D, Zeng L J, Li Q, He Z H. A novel protein RLS1 with NB-ARM domains is involved in chloroplast degradation during leaf senescence in rice. Mol Plant, 2012, 5: 205–217[22]Tang J Y, Zhu X D, Wang Y Q, Liu L C, Xu B, Li F, Fang J, Chu C C. Semi-dominant mutations in the CC-NB-LRR-type R gene, NLS1, lead to constitutive activation of defense responses in rice. Plant J, 2011, 66: 996–1007[23]王丹. 水稻分蘖调控基因TE的功能分析和类病变突变体lms1的图位克隆. 中国农业科学院博士学位论文, 北京,2012Wang D. Functional Analysis of a Key Tillering Regulator TE and Map-based Cloning of Gene lms1 in Rice(Orzya sativa L.). PhD Dissertation of Chinese Academy of Agricultural Sciences, Beijing, China, 2012 (in Chinese with Englinsh abstract)[24]曹建. 水稻类病斑突变体的生理分析与LM基因的图位克隆. 中国农业科学院硕士学位论文, 2014 Cao J. Physiological Analysis of a Lesion Mimic Mutant and Map-based Cloning of Gene LM in Rice (Oryza sativa L.). MS Thesis of Chinese Academy of Agricultural Sciences, Beijing, China, 2014 (in Chinese with Englinsh abstract)[25]成晓越. 水稻类病变新基因CHL1 (chloroplastic-H2O2-induced Lesion 1) 的鉴定与克隆. 浙江师范大学硕士学位论文, 浙江杭州, 2013Cheng X Y. Identification and Cloning of a Novel Rice Lesion Mimic Gene CHL1 (Chloroplastic-H2O2-induced Lesion 1). MS Thesis of Zhejiang Normal University, Zhejiang, China, 2013 (in Chinese with Englinsh abstract)[26]Buschges R, Hollricher K, Panstruga R, Simons G, Wolter M, Frijters A, Van D R, Vander L T, Diergaarde P, Groenendijk J, Topsch S, Vos P, Salamini F, Schulze L P. The barley MLO gene: a novel control element of plant pathogen resistance. Cell, 1997, 88: 695–705[27]Joergensen J H. Discovery, characterization and exploitation of Mlo powdery mildew resistance in barley. Euphytica, 1992, 63: 141–152 [28]Mizobuchi R, Hirabayashi H, Kaji R, Nishizawa Y, Yoshimura A, Satoh H. Isolation and characterization of rice lesion-mimic mutants with enhanced resistance to rice blast and bacterial blight. Plant Sci, 2002, 163: 345–353[29]Wu C J, Bordeos A, Madamba M R S, Baraoidan M, Ramos M, Wang G L, Leach J E, Leung H. Rice lesion mimic mutants with enhanced resistance to diseases. Mol Genet Genomics, 2008, 279: 605–619[30]Huang Q N, Shi Y F, Yang Y, Feng B H, Wei Y L, Chen J, Baraoidan M, Leung H, Wu J L. Characterization and genetic analysis of a light-and temperature-sensitive spotted-leaf mutant in rice. J Integr Plant Biol, 2011,53: 671–681[31]代高猛, 朱小燕, 李云峰, 凌英华, 赵芳明, 杨正林, 何光华. 水稻类病斑突变体spl31的遗传分析与基因定位. 作物学报, 2013, 39: 1223–1230 Dai G M, Zhu X Y, Li Y F, Ling Y H, Zhao F M, Yang Z L, He G H. Genetic analysis and fine mapping of a lesion mimic mutant spl31 in rice. Acta Agron Sin, 2013, 39: 1223–1230 (in Chinese with Englinsh abstract)[32]王建军, 朱旭东, 王友林, 张利华, 薛庆中, 何祖华. 水稻类病斑突变体的生理与遗传分析. 植物生理与分子生物学报, 2004, 30: 331–338Wang J J, Zhu X D, Wang Y L, Zhang L H, Xue Q Z, He Z H. Physiological and genetic analysis of lesion mimic mutants in rice. J Plant Physiol Mol Biol, 2004, 30: 331–338 (in Chinese with Englinsh abstract)[33]Yin Z, Chen J, Zeng L, Goh M, Leung H, Khush G S, Wang G L. Characterizing rice lesion mimic mutants and identifying a mutant with broad-spectrum resistance to rice blast and bacterial blight. Mol Plant Microbe Interact, 2000, 13: 869–876[34]张志良, 瞿伟菁. 植物生理学实验指导(第3版). 北京: 高等教育出版社, 2003. pp 123–124 Zhang Z L, Qu W J. Plant Physiology Experimental Guidance, 3rd edn. Beijing: Higher Education Press, 2003. pp 123–124 (in Chinese)[35]赵亚华. 生物化学实验技术教程. 广州: 华南理工大学出版社, 2000. pp 153–154Zhao Y H. Biochemical Experimental Techniques Tutorial. Guangzhou: South China Science and Technology University Press, 2000. pp 153–154 (in Chinese)[36]中国科学院上海植物生理研究所. 现代植物生理学实验指南. 北京: 科学出版社, 1999. pp 305–306 Institute of Plant Physiology and Ecology, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences. Modern Laboratory Manual of Plant Physiology. Beijing: Science Press, 1999. pp 305–306 (in Chinese)[37]杨敏文. 快速测定植物叶片叶绿素含量方法的探讨. 光谱实验室, 2002, 19: 478–481Yang M W. Study on Rapid Determination of Chlorophyll Content of Leaves. Spectrographic Lab, 2002, 19: 478–481 (in Chinese with English abstract)[38]Lichtenthaler H K. Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. Methods Enzymol, 1987, 148: 350–382[39]Michelmore R W, Paran I, Kesseli R V. Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Aca. Sci USA, 1991, 88: 9828–9832[40]Rogers S O, Bendich A J. Extraction of DNA from milligram amounts of fresh, herbarium and mummified plant tissues. Plant Mol Biol, 1985, 5: 69–76[41]Shen H C, Wang H M, Huang Q N, Xu X, Lu X G, Wu J L. Characterization and genetic analysis of a novel rice spotted-leaf mutant HM47 with broad-spectrum resistance to Xanthomonas oryzae pv. oryzae. Integr Plant Biol, 2013, 55: 473–483[42]梁颖, 李加纳, 唐章林, 谌利, 张学昆. 油菜光合生理指标与产量的关联分析. 西南农业大学学报, 1999, 21: 38–41 Liang Y, Li J N, Tang Z L, Chen L, Zhang X K. Correlative analysis of photosynthesis physiological targets and yield of rape. J Southwest Agric Univ, 1999, 21: 38–41 (in Chinese with English abstract)[43]王忠华. 植物类病变突变体的诱发与突变机制. 细胞生物学杂志, 2005, 27: 530–534Wang Z H. Induction and mutation mechanism of plant lesion mimic mutants. Chin J Cell Biol, 2005, 27: 530–534 (in Chinese with English abstract)[44]Frye C A, Tang D , Innes R W. Negative regulation of defense responses in plants by a conserved MAPKK kinase. Proc Natl Acad Sci USA, 2001, 98: 373–378[45]金杨, 周丽芬, 陈析丰, 刘峰, 马伯军. 水稻类病变突变体spl5细胞坏死机制的分析. 浙江师范大学学报(自然科学版), 2009, 32: 329–330Jin Y, Zhou L F, Chen X F, Liu F, Ma B J. Mechanisms of cell death in rice lesion mimic muant spl5. J Zhejiang Norm Univ (Nat Sci), 2009, 32: 326–331 (in Chinese with English abstract)[46]虞玲锦. 一种水稻类病斑突变体生理分析与基因初定位, 南京林业大学硕士学位论文, 江苏南京, 2012Yu L J. Physiological Analysis and Mapping of a Lesion Mimic Mutant in Rice (Oryza sativa L.). MS Thesis of Nanjing Forestry University, Nanjing, China, 2012 (in Chinese with English abstract)[47]章琦. 水稻白叶枯病抗性基因鉴定进展及其利用. 中国水稻科学, 2005, 19: 453–459Zhang Q. Highlights in identification and application of resistance genes to bacterial blight. Chin J Rice Sci, 2005, 19: 453–459 (in Chinese with English abstract)[48]鄂志国, 张丽靖, 焦桂爱, 程本义, 王磊. 稻瘟病抗性基因的鉴定及利用进展. 中国水稻科学, 2008, 22: 533–540E Z G, Zhang L J, Jiao G A, Cheng B Y, Wang L. Highlights in identification and application of resistance genes to rice blast. Chin J Rice Sci, 2008, 22: 533–540 (in Chinese with English abstract)[49]林艳, 陈在杰, 田大刚, 杨广阔, 杨绍华, 刘华清, 陈松彪, 王锋. 水稻类病斑及早衰突变体lms1的鉴定及基因初步定位. 福建农业学报, 2014, 29(1): 29–34Lin Y, Chen Z J, Tian D G, Yang G K, Yang S H, Liu H Q, Chen S B, Wang F. Identification and gene mapping of a lesion mimic and senescence mutant lms1 in rice. Fujian J Agric Sci, 2014, 29(1): 29–34 (in Chinese with English abstract) |
[1] | ZHENG Chong-Ke, ZHOU Guan-Hua, NIU Shu-Lin, HE Ya-Nan, SUN wei, XIE Xian-Zhi. Phenotypic characterization and gene mapping of an early senescence leaf H5(esl-H5) mutant in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2022, 48(6): 1389-1400. |
[2] | YU Chun-Miao, ZHANG Yong, WANG Hao-Rang, YANG Xing-Yong, DONG Quan-Zhong, XUE Hong, ZHANG Ming-Ming, LI Wei-Wei, WANG Lei, HU Kai-Feng, GU Yong-Zhe, QIU Li-Juan. Construction of a high density genetic map between cultivated and semi-wild soybeans and identification of QTLs for plant height [J]. Acta Agronomica Sinica, 2022, 48(5): 1091-1102. |
[3] | WANG Hao-Rang, ZHANG Yong, YU Chun-Miao, DONG Quan-Zhong, LI Wei-Wei, HU Kai-Feng, ZHANG Ming-Ming, XUE Hong, YANG Meng-Ping, SONG Ji-Ling, WANG Lei, YANG Xing-Yong, QIU Li-Juan. Fine mapping of yellow-green leaf gene (ygl2) in soybean (Glycine max L.) [J]. Acta Agronomica Sinica, 2022, 48(4): 791-800. |
[4] | LIU Lei, ZHAN Wei-Min, DING Wu-Si, LIU Tong, CUI Lian-Hua, JIANG Liang-Liang, ZHANG Yan-Pei, YANG Jian-Ping. Genetic analysis and molecular characterization of dwarf mutant gad39 in maize [J]. Acta Agronomica Sinica, 2022, 48(4): 886-895. |
[5] | XU Ning-Kun, LI Bing, CHEN Xiao-Yan, WEI Ya-Kang, LIU Zi-Long, XUE Yong-Kang, CHEN Hong-Yu, WANG Gui-Feng. Genetic analysis and molecular characterization of a novel maize Bt2 gene mutant [J]. Acta Agronomica Sinica, 2022, 48(3): 572-579. |
[6] | ZHAO Mei-Cheng, DIAO Xian-Min. Phylogeny of wild Setaria species and their utilization in foxtail millet breeding [J]. Acta Agronomica Sinica, 2022, 48(2): 267-279. |
[7] | HUANG Li, CHEN Yu-Ning, LUO Huai-Yong, ZHOU Xiao-Jing, LIU Nian, CHEN Wei-Gang, LEI Yong, LIAO Bo-Shou, JIANG Hui-Fang. Advances of QTL mapping for seed size related traits in peanut [J]. Acta Agronomica Sinica, 2022, 48(2): 280-291. |
[8] | ZHANG Bo, PEI Rui-Qing, YANG Wei-Feng, ZHU Hai-Tao, LIU Gui-Fu, ZHANG Gui-Quan, WANG Shao-Kui. Mapping and identification QTLs controlling grain size in rice (Oryza sativa L.) by using single segment substitution lines derived from IAPAR9 [J]. Acta Agronomica Sinica, 2021, 47(8): 1472-1480. |
[9] | JIANG Jian-Hua, ZHANG Wu-Han, DANG Xiao-Jing, RONG Hui, YE Qin, HU Chang-Min, ZHANG Ying, HE Qiang, WANG De-Zheng. Genetic analysis of stigma traits with genic male sterile line by mixture model of major gene plus polygene in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2021, 47(7): 1215-1227. |
[10] | YIN Ming, YANG Da-Wei, TANG Hui-Juan, PAN Gen, LI De-Fang, ZHAO Li-Ning, HUANG Si-Qi. Genome-wide identification of GRAS transcription factor and expression analysis in response to cadmium stresses in hemp (Cannabis sativa L.) [J]. Acta Agronomica Sinica, 2021, 47(6): 1054-1069. |
[11] | HUANG Xing, XI Jin-Gen, CHEN Tao, QIN Xu, TAN Shi-Bei, CHEN He-Long, YI Ke-Xian. Identification and expression of PAL genes in sisal [J]. Acta Agronomica Sinica, 2021, 47(6): 1082-1089. |
[12] | WU Ran-Ran, LIN Yun, CHEN Jing-Bin, XUE Chen-Chen, YUAN Xing-Xing, YAN Qiang, GAO Ying, LI Ling-Hui, ZHANG Qin-Xue, CHEN Xin. Genetic and cytological analysis of male sterile mutant msm2015-1 in mungbean [J]. Acta Agronomica Sinica, 2021, 47(5): 860-868. |
[13] | WANG Wu-Bin, TONG Fei, KHAN Mueen-Alam, ZHANG Ya-Xuan, HE Jian-Bo, HAO Xiao-Shuai, XING Guang-Nan, ZHAO Tuan-Jie, GAI Jun-Yi. Detecting QTL system of root hydraulic stress tolerance index at seedling stage in soybean [J]. Acta Agronomica Sinica, 2021, 47(5): 847-859. |
[14] | ZHOU Xin-Tong, GUO Qing-Qing, CHEN Xue, LI Jia-Na, WANG Rui. Construction of a high-density genetic map using genotyping by sequencing (GBS) for quantitative trait loci (QTL) analysis of pink petal trait in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(4): 587-598. |
[15] | LI Shu-Yu, HUANG Yang, XIONG Jie, DING Ge, CHEN Lun-Lin, SONG Lai-Qiang. QTL mapping and candidate genes screening of earliness traits in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(4): 626-637. |
|