Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2016, Vol. 42 ›› Issue (12): 1805-1816.doi: 10.3724/SP.J.1006.2016.01805

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Effect of Cutting Roots Vertically at a Place with Different Horizontal Distance from Plant on Yield and Grain Storage Capacity of Summer Maize

XU Zhen-He1,**,LIANG Ming-Lei1,2,**,LU Du-Xu1,LIU Mei1,LIU Peng1,*,DONG Shu-Ting1, ZHANG Ji-Wang1,ZHAO Bin1,LI Geng1   

  1. 1 State Key Laboratory of Crop Biology / Agronomy College of Shandong Agricultural University, Tai’an 271018, China; 2 Liaocheng Agriculture Committee, Liaocheng 25200, China ;3 Shandong Denghai Seeds Co. Ltd. / Shandong Provincial Key Laboratory of Corn Breeding and Cultivation Technology, Laizhou 261448, China
  • Received:2016-04-15 Revised:2016-06-20 Online:2016-12-12 Published:2016-07-28
  • Supported by:

    This study was supported by the National Natural Science Foundation of China (31371576, 31401339), National Key Technology Support Program of China (2013BAD07B06–2), the Special Fund for Agro-scientific Research in the Public Interest (201103100, 201203096), Shandong Modern Agricultural Technology & Industry System (SDAIT-02-08), the China Agriculture Research System (CARS-02-20), Agriculture Technology Innovation Project of Shandong Province, and Shandong Provincial Key Laboratory of Corn Breeding and Cultivation Technology.

Abstract:

A field experiment was conducted using two summer maize cultivars, Zhengdan 958 (ZD, shallow root type) and Denghai 661 (DH, deep root type). At the V12 stage, we cut roots vertically at different horizontal distance of 10 cm, 20 cm and 30 cm from maize plant in 60 cm soil depth, with no roots cutting as contrast check, which were referred to as ZDCK, ZD10, ZD20, ZD30 and DHCK, DH10, DH20, DH30 respectively. Roots of ZD10 and ZD20 decreased 24.81%, 11.69% and those of DH10, DH20 decreased 16.82%, 7.52% after cutting roots, respectively. Grain yield of summer maize decreased significantly after cutting roots, with a decrease of 13.09%, 9.10% for ZD10 and ZD20, respectively, and 9.81%, 4.64% for DH10 and DH20. After cutting roots, grains per ear and 1000-grain weight of ZD20, ZD10, DH20, and DH10 declined 4.90%, 5.60%, 4.37%, 7.88%, and 3.38%, 5.15%, 1.15%, 4.97%, respectively, which is the important factors resulting in lower grain yield. Grain sink and setting rate were also decreased to a different extent after cutting roots. Cutting roots decreased days to the maximum grain filling rate (Tmax), weight at the time up to the maximum grain filling rate (Wmax), maximum grain filling rate (Gmax), the phase of active grain filling, and average grain filling rate of two cultivars, with more decrease in Zhengdan 958 than in Denghai661.

Key words: Summer maize, Root, Root system architecture, Grain filling, Yield

[1]王玉贞, 李维岳, 尹枝瑞. 玉米根系与产量关系的研究进展. 吉林农业科学, 1999, 24(4): 6–8
Wang Y Z, Li W Y, Yin Z R. The research progress of corn root system and production relations. Jilin Agric Sci, 1999, 24(4): 6–8 (in Chinese with English abstract)
[2]Lynch J P. Root architecture and pant productivity. Plant Physiol, 1995, 109(1): 7–13
[3]Lynch J P. Steep, cheap and deep: an ideotype to optimize water and N acquisition by maize root systems. Ann Bot, 2013, 112(2): 347–357
[4]Zhu J M, Kaeppler S M, Lynch J P. Topsoil foraging and phosphorus acquisition efficiency in maize (Zea mays). Funct Plant Biol, 2005, 32(8): 749–762
[5]米国华, 陈范骏, 吴秋平, 赖宁薇, 袁力行, 张福锁. 玉米高效吸收氮素的理想根构型. 中国科学: 生命科学, 2010, 40: 1112–1116
Mi G H, Chen F J, Wu Q P, Lai N W, Yuan L X, Zhang F S. Ideotype root architecture for efficient nitrogen acquisition by maize in intensive cropping systems. Sci China Life Sci, 2010, 40: 1112–1116 (in Chinese with English abstract)
[6]宋日, 吴春胜, 王成己, 郭继勋. 玉米深层根系对地上部营养生长和产量的影响. 玉米科学, 2002, 10(3): 63–66
Song R, Wu C S, Wang C J, Gu J X. Effects of deep root system on above-ground vegetative growth and yield in maize. J Maize Sci, 2002, 10(3): 63–66 (in Chinese with English abstract)
[7]Hammer G L, Dong Z S, Mclean G, Doherty A, Messina C, Schussler J, Zinselmeier C, Paszkiewicz S, Cooper M. Can changes in canopy and/or root system architecture explain historical maize yield trends in the U.S. corn belt? Crop Sci, 2009, 49: 299–312
[8]齐文增, 刘慧慧, 李耕, 邵立杰, 王飞飞, 刘鹏, 董树亭, 张吉旺, 赵斌. 超高产夏玉米根系时空分布特性. 植物营养与肥料学报, 2012, 18: 69–76
Qi W Z, Liu H H, Li G, Shao L J, Wang F F, Liu P, Dong S T, Zhang J W, Zhao B. Temporal and spatial distribution characteristics of super-high-yield summer maize root. Plant Nutr Fert Sci, 2012, 18: 69–76 (in Chinese with English abstract)
[9]蔡红光, 刘剑钊, 张秀芝, 闫孝贡, 张洪喜, 袁静超, 盖嘉慧, 任军. 不同根构型玉米的根系形态及其对密度的响应. 玉米科学, 2014, 22(5): 81–85
Cai H G, Liu J Z, Zhang X Z, Yan X G, Zhang H X, Yuan J C, Gai J H, Ren J. Root morphology and its response to planting density in different genotypes with root architecture. J Maize Sci, 2014, 22(5): 81–85 (in Chinese with English abstract)
[10]王飞飞, 张善平, 邵立杰, 李耕, 陈晓璐, 刘鹏, 赵秉强, 董树亭, 张吉旺, 赵斌. 夏玉米不同土层根系对花后植株生长及产量形成的影响. 中国农业科学, 2013, 46: 4007–4017
Wang F F, Zhang S P, Shao L J, Li G, Chen X L, Liu P, Zhao B Q, Dong S T, Zhang J W, Zhao B. Effect of root in different soil layers on plant growth and yield formation after anthesis in summer maize. Sci Agric Sin, 2013, 46: 4007–4017 (in Chinese with English abstract)
[11]王敬锋, 刘鹏, 赵秉强, 董树亭, 张吉旺, 赵明, 杨吉顺, 李耕. 不同基因型玉米根系特性与氮素吸收利用的差异. 中国农业科学, 2011, 44: 699–707
Wang J F, Liu P, Zhao B Q, Dong S T, Zhang J W, Zhao M, Yang J S, Li G. Comparison of root characteristics and nitrogen uptake and use efficiency in different corn genotypes. Sci Agric Sin, 2011, 44: 699–707 (in Chinese with English abstract)
[12]姜平, 张承福. 淀粉含量的测定——旋光法. 发酵科技通讯, 1992,(1): 59–61
Jiang P, Zhang C F. Determination of starch content—polarimeter. Fermentation Technol Commun, 1992, (1): 59–61 (in Chinese with English abstract)
[13]李晓龙, 高聚林, 胡树平, 于晓芳, 王志刚, 苏治军, 谢岷. 不同深耕方式对土壤三相比及玉米根系构型的影响. 干旱地区农业研究, 2015, 33(4): 1–7
Li X L, Gao J L, Hu S P, Yu X F, Wang Z G, Su Z J, Xie M. Effects of various cultivation approaches on the three-phase ratio of soil and root system structure of maize. Agric Res Arid Areas, 2015, 33(4): 1–7 (in Chinese with English abstract)
[14]于晓芳, 高聚林, 叶君, 王志刚, 孙继颖, 胡树平, 苏治军. 深松及氮肥深施对超高产春玉米根系生长、产量及氮肥利用效率的影响. 玉米科学, 2013, 21(1): 114–119
Yu X F, Gao J L, Ye J, Wang Z G, Sun J Y, Hu S P, Su Z J. Effects of deep loosening with nitrogen deep placement on root growth, grain yield and nitrogen use efficiency of super high-yield spring maize. J Maize Sci, 2013, 21(1): 114–119 (in Chinese with English abstract)
[15]王群, 李潮海, 郝四平, 张永恩, 韩锦峰. 下层土壤容重对玉米生育后期光合特性和产量的影响. 应用生态学报, 2008, 19: 787–793
Wang Q, Li C H, Hao S P, Zhang Y E, Han J F. Effects of subsoil bulk density on late growth stage photo synthetic characteristics and grain yield of maize. Chin J Appl Ecol, 2008, 19: 787–793 (in Chinese with English abstract)
[16]张玉芹, 张恒山, 高聚林, 张瑞富, 王志刚, 徐寿军, 范秀艳, 毕文波. 超高产春玉米的根系特征. 作物学报, 2011, 37: 735–743
Zhang Y Q, Zhang H S, Gao J L, Zhang R F, Wang Z G, Xu S J, Fan X Y, Bi W B. Root characteristics of super high-yield spring maize. Acta Agron Sin, 2011, 37: 735–743 (in Chinese with English abstract)
[17]Jackson R B, Sperry J S, Dawson T E. Root water uptake and transport: Using physiological processes in global predictions. Trends Plant Sci, 2000, 5: 482–488
[18]刘子会, 柳斌辉, 李运朝, 郭秀林. 起身期断根对冬小麦后期光合和生长的影响. 华北农学报, 2007, 22(5): 189–190
Liu Z H, Liu B H, Li Y Z, Guo X L. Effect of roots-cutting in double ridge stage on the photosynthetic rate and later growth of winter wheat. Acta Agric Boreali-Sin, 2007, 22(5): 189–190 (in Chinese with English abstract)
[19]王化岑, 刘万代, 王晨阳. 超高产小麦根系生长规律与垂直分布状态研究. 中国农学通报, 2002, 18(2): 6–8
Wang H C, Liu W D, Wang C Y. Study on the root growth regularity and the vertical distribution state of super high-yield wheat. Chin Agric Sci Bull, 2002, 18(2): 6–8 (in Chinese with English abstract)
[20]李飒, 彭云峰, 于鹏, 张瑜, 方正, 李春俭. 不同年代玉米品种干物质积累与钾素吸收及其分配. 植物营养与肥料学报, 2011, 17: 325–332
Li S, Peng Y F, Yu P, Zhang Y, Fang Z, Li C J. Accumulation and distribution of dry matter and potassium in maize varieties released in different years. Plant Nutr Fert Sci, 2011, 17: 325–332 (in Chinese with English abstract)
[21]戴明宏, 赵久然, 杨国航, 王荣焕, 陈国平. 不同生态区和不同品种玉米的源库关系及碳氮代谢. 中国农业科学, 2011, 44: 1585–1595
Dai M H, Zhao J R, Yang G H, Wang R H, Chen G P. Source-sink relationship and carbon–nitrogen metabolism of maize in different ecological regions and varieties. Sci Agric Sin, 2011, 44:1585–1595 (in Chinese with English abstract)
[22]Karlen D L, Sadler E J, Camp C R. Dry matter nitrogen, phosphorus and potassium accumulation rate by corn on Norfolk loamy sand. Agron J, 1987, 79: 649–656
[23]梁建生, 曹显祖. 杂交水稻叶片的若干生理指标与根系伤流强度关系. 江苏农学院学报, 1993, 14(4): 25–30
Liang J S, Cao X Z. Studies on the relationship between several physiological characteristics of leaf and bleeding rate of roots in hybrid rice. J Jiangsu Agric Coll, 1993, 14(4): 25–30 (in Chinese with English abstract)
[24]Qi W Z, Liu H H, Liu P, Dong S T, Zhao B Q, So H B, Li G, Liu H D, Zhang J W, Zhao B. Morphological and physiological characteristics of corn (Zea mays L.) roots from cultivars with different yield potentials. Eur J Agron, 2012, 38: 54–63
[25]宋海星, 王学立. 玉米根系活力及吸收面积的空间分布变化. 西北农业学报, 2005, 14: 137–141
Song H X, Wang X L. The space distribution of the maize root activity and its absorbing area. Acta Agric Boreali-Occid Sin, 2005, 14: 137–141 (in Chinese with English abstract)
[26]慕自新, 张岁岐, 郝文芳, 梁爱华, 梁宗锁. 玉米根系形态性状和空间分布对水分利用效率的调控. 生态学报, 2005, 25(11): 103–108
Mu Z X, Zhang S Q, Hao W F, Liang A H, Liang Z S. The effect of root morphological traits and spatial distribution on WUE in maize. Acta Ecol Sin, 2005, 25(11): 103–108 (in Chinese with English abstract)
[27]周小平, 张岁岐, 杨晓青, 刘小芳, 刘立生. 玉米根系活力杂种优势及其与光合特性的关系. 西北农业学报, 2008, 17(4): 84–90
Zhou X P, Zhang S Q, Yang X Q, Liu X F, Liu L S. Heterosis of maize root activity and its relationship with photosynthetic characteristics. Acta Agric Boreali-occident Sin, 2008, 17(4): 84–90 (in Chinese with English abstract)
[28]刘殿英, 石立岩, 董庆裕. 不同时期追施肥水对冬小麦根系、根系活性和植株性状的影响. 作物学报, 1993, 19: 149–155
Liu D Y, Shi L Y, Dong Q Y. The effect of top-dressing and irrigation time on the root system, root activities and plant character in winter wheat. Acta Agron Sin, 1993, 19: 149–155 (in Chinese with English abstract)
[29]Otegui M E, Bonhomme R. Grain yield components in maize: I. Ear growth and grain set. Field Crops Res, 1998, 56: 247–256
[30]Paponov I A, Sambo P, Erley G S A, Presterl T, Geiger H H, Engels C. Grain yield and grain weight of two maize genotypes differing in nitrogen use efficiency at various levels of nitrogen and carbohydrate availability during flowering and grain filling. Plant Soil, 2005, 272: 111–123
[31]Borrás L, Westgate M E, Otegui M E. Control of grain weight and grain water relations by post-flowering source-sink ratio in maize. Ann Bot, 2003, 91: 857–867
[32]Costa C L, Dwyer L M, Zhou X M, Dutilleul P. Hamel C, Reid L M, Smith D L. Root morphology of contrasting maize genotypes. Agron J, 2002, 94: 96–101
[33]刘惠惠. 超高产夏玉米根系生理特性及其对籽粒发育的调控. 山东农业大学硕士学位论文, 山东泰安, 2012
Liu H H. Study on Effect of Root Physiological Characters on Grain Development of Super High-yield Summer Maize. MS Thesis of Shandong Agricultural University, Tai’an, China, 2012 (in Chinese with English abstract)
[34]常二华, 王朋, 唐成, 刘立军, 王志琴, 杨建昌. 水稻根和籽粒细胞分裂素和脱落酸浓度与籽粒灌浆及蒸煮品质的关系. 作物学报, 2006, 32: 540–547
Chang E H, Wang P, Tang C, Liu L J, Wang Z Q, Yang J C. Concentrations of cytokinin and abscisic acid in roots and grains and its relationship with grain filling and cooking quality of rice. Acta Agron Sin, 2006, 32: 540–547 (in Chinese with English abstract)

[1] WANG Dan, ZHOU Bao-Yuan, MA Wei, GE Jun-Zhu, DING Zai-Song, LI Cong-Feng, ZHAO Ming. Characteristics of the annual distribution and utilization of climate resource for double maize cropping system in the middle reaches of Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(6): 1437-1450.
[2] WANG Wang-Nian, GE Jun-Zhu, YANG Hai-Chang, YIN Fa-Ting, HUANG Tai-Li, KUAI Jie, WANG Jing, WANG Bo, ZHOU Guang-Sheng, FU Ting-Dong. Adaptation of feed crops to saline-alkali soil stress and effect of improving saline-alkali soil [J]. Acta Agronomica Sinica, 2022, 48(6): 1451-1462.
[3] YAN Jia-Qian, GU Yi-Biao, XUE Zhang-Yi, ZHOU Tian-Yang, GE Qian-Qian, ZHANG Hao, LIU Li-Jun, WANG Zhi-Qin, GU Jun-Fei, YANG Jian-Chang, ZHOU Zhen-Ling, XU Da-Yong. Different responses of rice cultivars to salt stress and the underlying mechanisms [J]. Acta Agronomica Sinica, 2022, 48(6): 1463-1475.
[4] YANG Huan, ZHOU Ying, CHEN Ping, DU Qing, ZHENG Ben-Chuan, PU Tian, WEN Jing, YANG Wen-Yu, YONG Tai-Wen. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system [J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487.
[5] CHEN Jing, REN Bai-Zhao, ZHAO Bin, LIU Peng, ZHANG Ji-Wang. Regulation of leaf-spraying glycine betaine on yield formation and antioxidation of summer maize sowed in different dates [J]. Acta Agronomica Sinica, 2022, 48(6): 1502-1515.
[6] XU Tian-Jun, ZHANG Yong, ZHAO Jiu-Ran, WANG Rong-Huan, LYU Tian-Fang, LIU Yue-E, CAI Wan-Tao, LIU Hong-Wei, CHEN Chuan-Yong, WANG Yuan-Dong. Canopy structure, photosynthesis, grain filling, and dehydration characteristics of maize varieties suitable for grain mechanical harvesting [J]. Acta Agronomica Sinica, 2022, 48(6): 1526-1536.
[7] LI Yi-Jun, LYU Hou-Quan. Effect of agricultural meteorological disasters on the production corn in the Northeast China [J]. Acta Agronomica Sinica, 2022, 48(6): 1537-1545.
[8] SHI Yan-Yan, MA Zhi-Hua, WU Chun-Hua, ZHOU Yong-Jin, LI Rong. Effects of ridge tillage with film mulching in furrow on photosynthetic characteristics of potato and yield formation in dryland farming [J]. Acta Agronomica Sinica, 2022, 48(5): 1288-1297.
[9] SUN Si-Min, HAN Bei, CHEN Lin, SUN Wei-Nan, ZHANG Xian-Long, YANG Xi-Yan. Root system architecture analysis and genome-wide association study of root system architecture related traits in cotton [J]. Acta Agronomica Sinica, 2022, 48(5): 1081-1090.
[10] PENG Xi-Hong, CHEN Ping, DU Qing, YANG Xue-Li, REN Jun-Bo, ZHENG Ben-Chuan, LUO Kai, XIE Chen, LEI Lu, YONG Tai-Wen, YANG Wen-Yu. Effects of reduced nitrogen application on soil aeration and root nodule growth of relay strip intercropping soybean [J]. Acta Agronomica Sinica, 2022, 48(5): 1199-1209.
[11] YAN Xiao-Yu, GUO Wen-Jun, QIN Du-Lin, WANG Shuang-Lei, NIE Jun-Jun, ZHAO Na, QI Jie, SONG Xian-Liang, MAO Li-Li, SUN Xue-Zhen. Effects of cotton stubble return and subsoiling on dry matter accumulation, nutrient uptake, and yield of cotton in coastal saline-alkali soil [J]. Acta Agronomica Sinica, 2022, 48(5): 1235-1247.
[12] KE Jian, CHEN Ting-Ting, WU Zhou, ZHU Tie-Zhong, SUN Jie, HE Hai-Bing, YOU Cui-Cui, ZHU De-Quan, WU Li-Quan. Suitable varieties and high-yielding population characteristics of late season rice in the northern margin area of double-cropping rice along the Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(4): 1005-1016.
[13] LI Rui-Dong, YIN Yang-Yang, SONG Wen-Wen, WU Ting-Ting, SUN Shi, HAN Tian-Fu, XU Cai-Long, WU Cun-Xiang, HU Shui-Xiu. Effects of close planting densities on assimilate accumulation and yield of soybean with different plant branching types [J]. Acta Agronomica Sinica, 2022, 48(4): 942-951.
[14] WANG Lyu, CUI Yue-Zhen, WU Yu-Hong, HAO Xing-Shun, ZHANG Chun-Hui, WANG Jun-Yi, LIU Yi-Xin, LI Xiao-Gang, QIN Yu-Hang. Effects of rice stalks mulching combined with green manure (Astragalus smicus L.) incorporated into soil and reducing nitrogen fertilizer rate on rice yield and soil fertility [J]. Acta Agronomica Sinica, 2022, 48(4): 952-961.
[15] DU Hao, CHENG Yu-Han, LI Tai, HOU Zhi-Hong, LI Yong-Li, NAN Hai-Yang, DONG Li-Dong, LIU Bao-Hui, CHENG Qun. Improving seed number per pod of soybean by molecular breeding based on Ln locus [J]. Acta Agronomica Sinica, 2022, 48(3): 565-571.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!