Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2017, Vol. 43 ›› Issue (02): 263-276.doi: 10.3724/SP.J.1006.2017.00263

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Effects of Nitrogen Application Rates on Dry Matter Productivity and Nitrogen Utilization of Different Type Maize Hybrids

ZHOU Pei-Lu1,REN Hong2,QI Hua2,ZHAO Ming1,*,LI Cong-Feng1,*   

  1. 1 Institute of Crop Science, Chinese Academy of Agricultural Sciences / Key Laboratory of Crop Physiology and Ecology, Ministry of Agriculture, Beijing 100081, China; 2 Shenyang Agricultural University, Shenyang 110161, China
  • Received:2016-03-07 Revised:2016-09-18 Online:2017-02-12 Published:2016-09-29
  • Contact: 李从锋,E-mail: licongfeng2008@sina.com, Tel: 010-82106042;赵明,E-mail: zhaomingcau@163.net,Tel: 010-82108752 E-mail:zhpeilu@163.com
  • Supported by:

    This study was supported by the National Natural Science Foundation of China (31401342), the National Key Research and Developing Program of China (2016YFD0300103), and the China Agriculture Research System (NYCYTX-02).

Abstract:

To understand the relationship between dry matter productivity, nitrogen utilization and grain yield of spring maize hybrids in Northeast China, we conducted a field experiment in 2014 and 2015. Using two maize hybrids (Xianyu 335 and Zhangdan 958), under two planting densities (90 000 plants ha-1 and 67 500 plants ha-1) and five N application rates [0 kg ha-1 (N0); 100 kg ha-1 (N1); 200 kg ha-1 (N2); 300 kg ha-1 (N3); and 400 kg ha-1 (N4)]. The average maximum grain yield in two years was higher in Xianyu 335 (XY335), while, the optimum N application rate was 4.8%-10.6% lower than that in Zhengdan 958 (ZD958). Compared with ZD958, total dry matter accumulation, dry matter accumulation after flowering, and dry matter translocation efficiency of XY335 were higher in nitrogen treatments, but lower in treatments without nitrogen application. At the same time, dry matter accumulation and dry matter translocation efficiency were increased gradually with increasing N application in XY335, especially under high density plantation. N concentration in leaf and stem of XY335 was different, showing higher at silking (P<0.05) and lower at harvest, which was due to better translocation efficiency in XY335 than in ZD958 after silking. The grain N content had small difference between two cultivars under high plant density, and significantly increased in XY335 under lower plant density (P < 0.05). In nitrogen treatments, XY335 had higher N accumulation at pre-silking and post-silking and significantly higher (P < 0.05) contribution of leaf N translocation to grain yield was than ZD958. At optimal nitrogen application rate, N use efficiency(NUE) and N recovery efficiency(NRE) were significantly higher (P < 0.05) in XY335 under both planting densities, while agronomic nitrogen efficiency (ANUE) and partial factor productivity from applied N (PFPN) were not significantly different between XY335 and ZD958. In XY335, NUE was significantly higher under high planting density due to higher dry matter production and better translocation efficiency during filling stage. Our results suggest that XY335 is a high nitrogen efficient (HNE) spring maize variety in the northeast of China, and can be better used to obtain high yield and high efficiency in intensive farming.

Key words: Maize Hybrids, Nitrogen, Dry matter productivity, Nitrogen utilization

[1] 刘建安, 米国华, 张福锁. 不同基因型玉米氮效率差异的比较研究. 农业生物技术学报, 1999, 7(3): 248–254
Liu J A, Mi G H, Zhang F S. Difference in nitrogen efficiency among maize genotypes. J Agric Biotechnol, 1999, 7(3): 248–254 (in Chinese with English abstract)
[2] Chen F J, Fang Z G, Gao Q, Ye Y L. Jia L L, Yuan L X, Mi G H, Zhang F S. Evaluation of the yield and nitrogen use efficiency of the dominant maize hybrids grown in North and Northeast China. Sci China Life Sci, 2013, 43: 342–350
[3] 刘宗华, 卫晓轶, 胡彦民, 谭晓军, 汤继华. 低氮胁迫对不同基因型玉米生物产量和氮吸收率动态变化的影响. 玉米科学, 2010, 18(5): 53–59.
Liu Z H, Wei X Y, Hu Y M, Tan X J, Tang J H. Dynamic variation of biomass and nitrogen absorption ratio of different genotypes in maize under low nitrogen stress. Maize Sci, 2010, 18(5):53–59 (in Chinese with English abstract)
[4] 张世煌, 彭泽斌, 李新海. 玉米杂种优势与种质扩增、改良和创新. 中国农业科学, 2000, 33(增刊-1): 34–39
Zhang S H, Peng Z B, Li X H. Heterosis and germplasm enhancement, improvement and development of maize. Sci Agric Sin, 2000, 33(suppl 1): 34–39(in Chinese with English abstract)
[5] 王懿波, 王振华, 陆利行, 王永普, 张新, 田曾元. 中国玉米种质基础、杂种优势群划分与杂优模式研究. 玉米科学, 1998, 6(1): 9–13
Wang Y B, Wang Z H, Lu L X, Wang Y P, Zhang X, Tian Z Y. Studies on maize germplasm base, division of heterosis groups and utilizing models of heterosis in China. Maize Sei, 1998, 6(1): 9–13(in Chinese with English abstract)
[6] 丰光, 李妍妍, 邢锦丰, 黄长玲. 美国先锋玉米育种经验的启示. 玉米科学, 2010, 18(2): 133–135
Feng G, Li Y Y, Xing M F, Huang C L. Enlightenment of maize breeding from pioneer USA. Maize Sci, 2010, 18(2): 133–135 (in Chinese with English abstract)
[7] Tuberosa R, Gill B S, Quarrie S A. Cereal genomics: ushering in a brave new world. Plant Mol Biol, 2002, 48: 445–449
[8] 杨晓钦, 张仁和, 薛吉全, 邰书静, 张兴华, 路海东, 郭艳萍, 郭德林. 非生物胁迫对玉米杂交种及其亲本自交系产量性状的影响. 作物学报, 2013, 39: 1325−1329
Yang X Q, Zhang R H, Xue J Q, Tai S J, Zhang X H, Lu H D, Guo Y P, Guo D L. Effects of abiotic stress on yield traits of maize hybrids and their parental inbred lines. Acta Agron Sin, 2013, 39: 1325–1329 (in Chinese with English abstract)
[9] Yan P , Yue S C , Qiu M L, Chen X P, Cui Z L, Chen F J. Using maize hybrids and in-season nitrogen management to improve grain yield and grain nitrogen concentrations. Field Crops Res, 2014, 166: 38–45
[10] 彭云峰, 张吴平, 李春俭. 不同氮吸收效率玉米品种的根系构型差异比较:模拟与应用. 中国农业科学, 2009, 42: 843–853
Peng Y F, Zhang W P, Li C J. Relationship between nitrogen efficiency and root architecture of maize plants: simulation and application. Sci Agric Sin, 2009, 42: 843–853 (in Chinese with English abstract)
[11] 申丽霞, 王璞, 张软斌. 施氮对不同种植密度下夏玉米产量及子粒灌浆的影响. 植物营养与肥料学报, 2005, 11: 314–319
Shen L X, Wang P, Zhang R B. Effect of nitrogen supply on yield and grain filling in summer maize with different crop density. Plant Nutr Fert Sci, 2005, 11: 314–319 (in Chinese with English abstract)
[12] 米国华, 陈范骏, 春亮, 郭亚芬, 田秋英, 张福锁. 玉米氮高效品种的生物学特征. 植物营养与肥料学报, 2007, 13: 155–159
Mi G H, Chen F J, Chun L, Guo Y F, Tian Q Y, Zhang F S. Biological characteristics of nitrogen efficient maize genotypes. Plant Nutr Fert Sci, 2007, 13: 155–159 (in Chinese with English abstract) 
[13] 吕鹏, 张吉旺, 刘伟, 杨今胜, 苏凯, 刘鹏, 董树亭, 李登海. 施氮时期对超高产夏玉米产量及氮素吸收利用的影响. 植物营养与肥料学报, 2011, 17: 1099–1107
Lü P, Zhang j W, Liu W, Yang J S, Su K, Liu P, Dong S T, Li D H. Effects of nitrogen application dates on yield and nitrogen use efficiency of summer maize in super-high yield conditions. Plant Nutr Fert Sci, 2011, 17: 1099–1107 (in Chinese with English abstract)
[14] 崔超, 高聚林, 于晓芳, 王志刚, 孙继颖, 胡树平, 苏治军, 谢岷. 不同氮效率基因型高产春玉米花粒期干物质与氮素运移特性的研究. 植物营养与肥料学报, 2013, 19: 1337–1345
Cui C, Gao J L, Yu X F, W Z G., Sun J Y, Hu S P, Su Z J, Xie M. Dry matter accumulation and nitrogen migration of high-yielding spring maize for different nitrogen efficiency in the flowering and milking stages. Plant Nutr Fert Sci, 2013, 19: 1337–1345 (in Chinese with English Abstract)
[15] Worku M, Banziger M, Setal E G. Nitrogen uptake and utilization in contrasting nitrogen efficient tropical maize hybrids. Crop Sci, 2007, 47: 519–28
[16] 陈新平, 周金池, 王兴仁, 张福锁, 宝德俊, 贾晓红. 小麦–玉米轮作制中氮肥效应模型的选择——经济和环境效益分析. 土壤学报, 2000, 37: 346–354
Chen X P, Zhou J C, Wang X R, Zhang F S, Bao D J, Jia X H. Economic and environmental evaluation on models for describing crop yield response to nitrogen fertilizers at winter–wheat and summer–corn rotation system. Acta Pedol Sin, 2000, 37: 346–354 (in Chinese with English Abstract)
[17] Cerrato M E, Blackmer A M. Comparison of models for describing corn yield response to nitrogen fertilizer. Agron J, 1990, 82: 138–143
[18] Despo K P, Gagianas A. Nitrogen and dry matter accumulation remobilization and losses for Mediterranean wheat during grain filling. Agron J, 1991, 83: 864–870
[19] Cassman K G, Peng S, Olk D C, Ladhab J K, Reichardt W, Dobermann A, Singh U. Opportunities for increased nitrogen use efficiency from improved resource management in irrigated rice systems. Field Crops Res, 1998, 56: 7–38
[20] 郑洪建, 董树亭, 王空军, 郭玉秋, 胡昌浩, 张吉旺. 生态因素对玉米品种产量影响及调控的研究. 作物学报, 2001, 27: 862–868
Zheng H J, Dong S T, Wang K J, Guo Y Q, Hu C H, Zhang J W. Effects of ecological factors on maize (Zea mays L.) yield of different varieties and corresponding regulative measure. Acta Agron Sin, 2001, 27: 862–868 (in Chinese with English abstract)
[21] 张福锁, 米国华, 刘建安. 玉米氮效率遗传改良及其应用. 农业生物技术学报, 1997, 2(5): 112–117
Zhang F S, Mi G H, Liu J A. Advances in the genetic improvement of nitrogen efficiency in maize. J Agric Biotechnol, 1997, 2(5): 112–117 (in Chinese with English abstract)
[22] Osaki M, Morikawa K, Shinano T, Tadano T. Productivity of high-yielding crops: II. Comparison of N, P, K, Ca and Mg accumulation and distribution among high-yielding crops. Soil Sci Plant Nutr, 1991, 37(8): 445–454
[23] 马国胜, 薛吉全, 路海东, 张仁和. 密度对不同类型饲用玉米光合产物积累与转运的影响. 华北农学报, 2006, 21(3): 46–50
Ma G S, Xue J Q, Lu H D, Zhang R H. Effect of density on accumulation and transformation of photosynthesis product of different type forage corn. Acta Agric Boreali-Sin, 2006, 21(3): 46–50 (in Chinese with English Abstract)
[24] 李从锋, 赵明, 刘鹏, 张吉旺, 杨今胜, 董树亭. 中国不同年代玉米亲本自交系的灌浆特性与氮素运转. 作物学报, 2014, 40(11): 1990–1998
Li C F, Zhao M, Liu P, Zhang J W, Yang J S, Dong S T. Characteristics of grain filling and nitrogen translocation of maize parent lines released in different eras in china. Acta Agron Sin, 2014, 40(11): 1990–1998(in Chinese with English abstract)
[25] 叶东靖, 高强, 何文天, 何萍. 施氮对春玉米氮素利用及农田氮素平衡的影响. 植物营养与肥料学报, 2010, 16(3): 552–558
Ye D J, Gao Q, He W T, He P. Effect of N application on N utilization and N balance in spring maize. Plant Nutr Fert Sci, 2010, 16(3): 552–558(in Chinese with English Abstract)
[26] 陈范骏, 米国华, 张福锁, 王艳, 刘向生, 春亮. 华北区部分主栽玉米杂交种的氮效率分析. 玉米科学, 2003, 11(2): 78–82
Chen F J, Mi G H, Zhang F S, Wang Y, Liu X S, Chun L. Nitrogen use efficiency in some of main maize hybrids grown in north China. Maize Sci, 2003, 11(2): 78–82 (in Chinese with English abstract)
[27] 王玲敏, 叶优良, 陈范骏, 尚云峰. 施氮对不同品种玉米产量、氮效率的影响. 中国生态农业学报, 2012, 20: 529–535
Wang L M, Ye Y L, Chen F J, Shang Y F. Effect of nitrogen fertilization on maize yield and nitrogen efficiency of different maize varieties. Chin J Eco-agric, 2012, 20: 529–535 (in Chinese with English abstract)
[28] 周江明, 赵琳, 董越勇, 徐进, 边武英, 毛杨仓, 张秀福. 氮肥和栽植密度对水稻产量及氮肥利用率的影响. 植物营养与肥料学报, 2010, 16: 274–281
Zhou J M, Zhao L, Dong Y Y, Xu J, Bian W Y, Mao Y C, Zhang X F. Nitrogen and transplanting density interactions on the rice yield and N use rate . Plant Nutr Fert Sci, 2010, 16: 274–281 (in Chinese with English Abstract)
[29] 春亮, 陈范骏, 张福锁, 米国华. 不同氮效率玉米杂交种的根系生长?氮素吸收与产量形成. 植物营养与肥料学报, 2005, 11: 615–619
Chun L, Chen F J, Zhang F S, Mi G H. Root growth, nitrogen uptake and yield formation of hybrid maize with different N efficiency. Plant Nutr Fert Sci, 2005, 11: 615–619 (in Chinese with English abstract)
[30] 李淑文, 文宏达, 周彦珍, 李雁鸣, 肖凯. 不同氮效率小麦品种氮素吸收和物质生产特性. 中国农业科学, 2006, 39: 1992–2000
Li S W, Wen H D, Zhou Y Z, Li Y M, Xiao K. Characterization of nitrogen uptake and dry matter production. Sci Agric Sin, 2006, 39: 1992–2000 (in Chinese with English abstract)
[31] 颜军, 杨德光. 4个玉米品种氮素利用效率的比较研究. 玉米科学, 2010, 18(2): 91–95
Yan J, Yang D G. Comparison on N utilization efficiency of four maize varieties. Maize Sci, 2010, 18(2): 91–95 (in Chinese with English abstract)
[32] 李敏, 张洪程, 李国业, 魏海燕, 殷春渊, 马群, 杨雄. 水稻氮效率基因型差异及其机理研究进展. 核农学报, 2011, 25: 1057–1063
Li M, Zhang H C, Li G Y, Wei H Y, Yin C Y, Ma Q, Yang X. Genotypic difference of nitrogen use efficiency in rice and its morphological and physiological mechanisms. Acta Agric Nucl Sin, 2011, 25: 1057–1063 (in Chinese with English abstract)

[1] QIN Lu, HAN Pei-Pei, CHANG Hai-Bin, GU Chi-Ming, HUANG Wei, LI Yin-Shui, LIAO Xiang-Sheng, XIE Li-Hua, LIAO Xing. Screening of rapeseed germplasms with low nitrogen tolerance and the evaluation of its potential application as green manure [J]. Acta Agronomica Sinica, 2022, 48(6): 1488-1501.
[2] GUO Xing-Yu, LIU Peng-Zhao, WANG Rui, WANG Xiao-Li, LI Jun. Response of winter wheat yield, nitrogen use efficiency and soil nitrogen balance to rainfall types and nitrogen application rate in dryland [J]. Acta Agronomica Sinica, 2022, 48(5): 1262-1272.
[3] PENG Xi-Hong, CHEN Ping, DU Qing, YANG Xue-Li, REN Jun-Bo, ZHENG Ben-Chuan, LUO Kai, XIE Chen, LEI Lu, YONG Tai-Wen, YANG Wen-Yu. Effects of reduced nitrogen application on soil aeration and root nodule growth of relay strip intercropping soybean [J]. Acta Agronomica Sinica, 2022, 48(5): 1199-1209.
[4] YAN Yu-Ting, SONG Qiu-Lai, YAN Chao, LIU Shuang, ZHANG Yu-Hui, TIAN Jing-Fen, DENG Yu-Xuan, MA Chun-Mei. Nitrogen accumulation and nitrogen substitution effect of maize under straw returning with continuous cropping [J]. Acta Agronomica Sinica, 2022, 48(4): 962-974.
[5] LI Xin-Ge, GAO Yang, LIU Xiao-Jun, TIAN Yong-Chao, ZHU Yan, CAO Wei-Xing, CAO Qiang. Effects of sowing dates, sowing rates, and nitrogen rates on growth and spectral indices in winter wheat [J]. Acta Agronomica Sinica, 2022, 48(4): 975-987.
[6] YUAN Jia-Qi, LIU Yan-Yang, XU Ke, LI Guo-Hui, CHEN Tian-Ye, ZHOU Hu-Yi, GUO Bao-Wei, HUO Zhong-Yang, DAI Qi-Gen, ZHANG Hong-Cheng. Nitrogen and density treatment to improve resource utilization and yield in late sowing japonica rice [J]. Acta Agronomica Sinica, 2022, 48(3): 667-681.
[7] DING Hong, XU Yang, ZHANG Guan-Chu, QIN Fei-Fei, DAI Liang-Xiang, ZHANG Zhi-Meng. Effects of drought at different growth stages and nitrogen application on nitrogen absorption and utilization in peanut [J]. Acta Agronomica Sinica, 2022, 48(3): 695-703.
[8] FENG Jian-Chao, XU Bei-Ming, JIANG Xue-Li, HU Hai-Zhou, MA Ying, WANG Chen-Yang, WANG Yong-Hua, MA Dong-Yun. Distribution of phenolic compounds and antioxidant activities in layered grinding wheat flour and the regulation effect of nitrogen fertilizer application [J]. Acta Agronomica Sinica, 2022, 48(3): 704-715.
[9] LIU Yun-Jing, ZHENG Fei-Na, ZHANG Xiu, CHU Jin-Peng, YU Hai-Tao, DAI Xing-Long, HE Ming-Rong. Effects of wide range sowing on grain yield, quality, and nitrogen use of strong gluten wheat [J]. Acta Agronomica Sinica, 2022, 48(3): 716-725.
[10] WANG Yan, CHEN Zhi-Xiong, JIANG Da-Gang, ZHANG Can-Kui, ZHA Man-Rong. Effects of enhancing leaf nitrogen output on tiller growth and carbon metabolism in rice [J]. Acta Agronomica Sinica, 2022, 48(3): 739-746.
[11] XU Long-Long, YIN Wen, HU Fa-Long, FAN Hong, FAN Zhi-Long, ZHAO Cai, YU Ai-Zhong, CHAI Qiang. Effect of water and nitrogen reduction on main photosynthetic physiological parameters of film-mulched maize no-tillage rotation wheat [J]. Acta Agronomica Sinica, 2022, 48(2): 437-447.
[12] DONG Yan-Kun, HUANG Ding-Quan, GAO Zhen, CHEN Xu. Identification, expression profile of soybean PIN-Like (PILS) gene family and its function in symbiotic nitrogen fixation in root nodules [J]. Acta Agronomica Sinica, 2022, 48(2): 353-366.
[13] ZHANG Te, WANG Mi-Feng, ZHAO Qiang. Effects of DPC and nitrogen fertilizer through drip irrigation on growth and yield in cotton [J]. Acta Agronomica Sinica, 2022, 48(2): 396-409.
[14] ZHANG Jun, ZHOU Dong-Dong, XU Ke, LI Bi-Zhong, LIU Zhong-Hong, ZHOU Nian-Bing, FANG Shu-Liang, ZHANG Yong-Jin, TANG Jie, AN Li-Zheng. Nitrogen fertilizer reduction and precise application model on mechanical transplanting japonica rice with good taste quality under straw returning in Huaibei Area [J]. Acta Agronomica Sinica, 2022, 48(2): 410-422.
[15] XIE Cheng-Hui, MA Hai-Zhao, XU Hong-Wei, XU Xi-Yang, RUAN Guo-Bing, GUO Zheng-Yan, NING Yong-Pei, FENG Yong-Zhong, YANG Gai-He, REN Guang-Xin. Effects of nitrogen rate on growth, grain yield, and nitrogen utilization of multiple cropping proso millet after spring-wheat in Irrigation Area of Ningxia [J]. Acta Agronomica Sinica, 2022, 48(2): 463-477.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!