Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2017, Vol. 43 ›› Issue (08): 1149-1160.doi: 10.3724/SP.J.1006.2017.01149

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

QTL Mapping for Seed Size and Shape in Common Bean

GENG Qing-He,WANG Lan-Fen,WU Jing,WANG Shu-Min*   

  1. Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
  • Received:2016-12-21 Revised:2017-04-20 Online:2017-08-12 Published:2017-04-27
  • Contact: Wang Shumin, E-mail: wangshumin@caas.cn E-mail:17710428642@163.com
  • Supported by:
    This study was supported by the National Natural Science Foundation of China (3141559), the China Agriculture Research System (CARS-09), and the National Key Technology R&D Program of China (2013BAD01B05-2-4).

Abstract: Common bean is one of the most important food legumes worldwide. Seed size and shape have a great effect on yield and seed quality. This research used a F2 population derived from a cross of Andean cultivar Long 270709 ? Mesoamerican cultivar F5910 planted in Harbin, Heilongjiang and Beijing respectively to analyze the correlation among seed weight, seed length, seed width, seed height, seed length-to-width ratio and seed length-to-height ratio, and to detect QTL related to these traits. The correlation analysis showed that seed weight had a significant correlation with other traits related to seed size and shape. Software IciMapping 4.1 based on inclusive composite interval mapping was used to identify the additive QTL for seed size and shape. A total of 38 QTL were detected on 10 chromosomes except the first chromosome in Harbin environment with the PVE between 2.39% and 17.37%. A total of 21 QTL were detected on seven chromosomes (Chr.1, Chr.3, Chr.6, Chr.7, Chr.8, Chr.9, Chr.11) in Beijing environment with the PVE between 5.92% and 22.53%. Among them, four pairs of QTL were detected on the same marker interval, including seed weight QTL SW7 and SW7’, seed weight QTL SW6.1 and SW6’, seed length QTL SL6.1 and SL6.1’, and seed height QTL SH11 and SH11’. The PVE of SW7, SW6.1, SL6.1, SW6’, and SL6.1’ was larger than 10%.

Key words: Common bean, Seed size, Seed shape, Quantitative trait locus (QTL)

[1] 张赤红, 曹永生, 宗绪晓, 王志刚, 王述民. 普通菜豆种质资源形态多样性鉴定与分类研究. 中国农业科学, 2005, 38: 27~32 Zhang C H, Cao Y S, Zong X X, Wang Z G, Wang S M. Morphological diversity and classification of common bean (Phaseolus vulgaris L.) germplasm resource in China. Sci Agric Sin, 2005, 38: 27–32 (in Chinese with English abstract) [2] Pérez-Vega E, Pa?eda A, Rodríguez-Suárez C, Campa A, Giraldez R, Ferreira J J. Mapping of QTLs for morpho-agronomic and seed quality traits in a RIL population of common bean (Phaseolus vulgaris L.). Theor Appl Genet, 2010, 120: 1367–1380 [3] Schmutz J, Mcclean P E, Mamidi S, Wu G A, Cannon S B, Grimwood J, Jenkins J, Shu S Q, Song Q J, Chavarro C, Torres-Torres M, Geffroy V, oghaddam S M, Gao D Y, Abernathy B, Barry K, Blair M, Brick M A, Chovatia M, Gepts P, Goodstein D M, Gonzales M, Hellsten U, Hyte D L, Jia G F, Kelly J D, Kudrna D, Lee R, Richard M M S, Miklas P N, Osorno J M, Rodrigues J, Thareau V, Urrea C A, Wang M, Yu Y, Zhang M, Wing R A, Cregan P B, Rokhsar D S, Jackson S A. A reference genome for common bean and genome-wide analysis of dual domestications. Nat Genet, 2014, 46: 707–713 [4] Fan C C, Xing Y Z, Mao H L, Lu T T, Han B, Xu C G, Li X H, Zhang Q F. GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. Theor Appl Genet, 2006, 112: 1164–1171 [5] Song X J, Huang W, Shi M, Zhu M Z, Lin H X. A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nat Genet, 2007, 39: 623–630 [6] Shomura A, Izawa T, Ebana K, Ebitani T, Kanegae H, Konishi S, Yano M. Deletion in a gene associated with grain size increased yields during rice domestication. Nat Genet, 2008, 40: 1023–1028 [7] Weng J F, Gu S H, Wan X Y, Gao H, Guo T, Su N, Lei C L, Zhang X, Cheng Z J, Guo X P, Wang J L, Jiang L, Zhai H Q, Wan J M. Isolation and initial characterization of GW5, a major QTL associated with rice grain width and weight. Cell Res, 2008, 18: 1199–1209 [8] Wang E T, Wang J J, Zhu X D, Hao W, Wang L Y, Li Q, Zhang L X, He W, Lu B R, Lin H X, Ma H, Zhang G Q, He Z H. Control of rice grain-filling and yield by a gene with a potential signature of domestication. Nat Genet, 2008, 40: 1370–1374 [9] Li Y B, Fan C C, Xing Y Z, Jiang Y H, Luo L J, Sun L, Shao D, Xu C J. Natural variation in GS5 plays an important role in regulating grain size and yield in rice. Nat Genet, 2011, 43: 1266–1269 [10] Wang S K, Wu K, Yuan Q B, Liu X Y, Liu Z B, Lin X Y, Zeng R Z, Zhu H T. Control of grain size, shape and quality by OsSPL16 in rice. 2012, Nat Genet, 44: 950–954 [11] Sax K. The association of size differences with seed-coat pattern and pigmentation in PHASEOLUS VULGARIS. Genetics, 1923, 8: 552–560 [12] Vallejos C E, Chase C D. Linkage between isozyme markers and a locus affecting seed size in Phaseolus vulgaris L. Theor Appl Genet, 1991, 81: 413–419 [13] Blair M W, Iriarte G, Beebe S. QTL analysis of yield traits in an advanced backcross population derived from a cultivated Andean × wild common bean (Phaseolus vulgaris L.) cross. Theor Appl Genet, 2006, 112: 1149–1163 [14] Yuste-Lisbona F J, González A N, Capel C, Garcia-Alcazar M, Capel J, Ron A M D, Lozano R, Santalla M. Genetic analysis of single-locus and epistatic QTLs for seed traits in an adapted×nu?a RIL population of common bean (Phaseolus vulgaris L.). Theor Appl Genet, 2014, 127: 897–912 [15] Vlasova A, Capella-Gutiérrez S, Rendón-Anaya M, Hernández-O?ate M, E. Minoche A, Erb I, Camara F, Prieto-Barja P, Corvelo A, Sanseverino W, Westergaard G, C. Dohm J, J. Pappas Jr G, Saburido-Alvarez S, Kedra D, Gonzalez I, Cozzuto L, Gómez-Garrido J, A. Aguilar-Morón M, Andreu N, Aguilar O, Garcia-Mas J, Zehnsdorf M, P. Vázquez M, Delgado-Salinas A, Delaye L, Lowy E, Mentaberry A, P. Vianello-Brondani R, García J, Alioto T, Sánchez F, Himmelbauer H, Santalla M, Notredame C, Gabaldón T, Herrera-Estrella A, Guigó R. Genome and transcriptome analysis of the Mesoamerican common bean and the role of gene duplications in establishing tissue and temporal specialization of genes. Genome Biol, 2016, 17: 1–18 [16] Murray M G, Thompson W F. Rapid isolation of high molecular weight plant DNA. Nucl Acids Res, 1980, 8: 4321–4325 [17] Li H H, Ye G Y, Wang J K. A modified algorithm for the improvement of composite interval mapping. Genetics, 2007, 175: 361–374 [18] Meng L, Li H H, Zhang L Y, Wang J K. QTL IciMapping: integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental population. Crop J, 2015, 3: 269–283 [19] Wan X Y, Wan J M, Jiang L, Wang J K, Zhai H Q, Weng J F, Wang H L, Lei C L, Wang J K, Zhang X. QTL analysis for rice grain length and fine mapping of an identified QTL with stable and major effects. Theor Appl Genet, 2006, 112: 1258–1270 [20] 高用明, 朱军, 宋佑胜, 何慈信, 石春海, 邢永忠. 水稻永久F2群体抽穗期QTL的上位性及其与环境互作效应的分析. 作物学报, 2004, 30: 849–854 Gao Y M, Zhu J, Song Y S, He C X, Shi C H, Xing Y Z. Use of permanent F2 population to analyze epistasis and their interaction effects with environments for QTLs controlling heading date in rice. Acta Agron Sin, 2004, 30: 849–854 (in Chinese with English abstract) [21] Hoyos-Villegas V, Song Q, Wright E M, Beebe S E, Kelly D J. Joint linkage QTL mapping for yield and agronomic traits in a composite map of three common bean RIL populations. Crop Sci, 2016, 56: 1–18 [22] Tanksley S D. Mapping ploygenes. Annu Rev Genet, 1993, 27: 205–233 [23] 陈秀华, 于丽娟, 罗黎明, 陈洪梅, 刘丽. 玉米分子标记辅助育种及标记开发研究进展. 中国农业科技导报, 2016, 18(1): 26–31 Chen X H, Yu L J, Luo L M, Chen H M, Liu L. Research progress on maize molecular marker-assisted breeding and marker development. J Agric Sci Technol, 2016, 18(1): 26–31 (in Chinese with English abstract) [24] 赵洪波, 李明丽, 鲁绍雄, 连林生, 李国治. 群体规模和性状遗传力对F2设计下QTL定位效果的影响. 云南农业大学学报, 2007, 22(2): 159–163 Zhao H B, Li M L, Lu S X, Lian L S, Li G Z. Study on the effects of population size and trait heritability on the accuracy of QTL mapping under F2 design. J Yunnan Agric Univ, 2007, 22(2): 159–163 (in Chinese with English abstract) [25] Groos C, Robert N, Bervas E, Charmet G. Genetic analysis of grain protein-content, grain yield and thousand-kernel weight in bread wheat. Theor Appl Genet, 2003, 106: 1032–1040 [26] 张坤普, 徐宪斌, 田纪春. 小麦籽粒产量及穗部相关性状的QTL定位. 作物学报, 2009, 35: 270–278 Zhang K P, Xu X B, Tian J C. QTL mapping for grain yield and spike related traits in common wheat. Acta Agron Sin, 2009, 35: 270–278 (in Chinese with English abstract) [27] 李文福, 刘宾, 彭涛, 袁倩倩, 韩淑晓, 田纪春. 利用DH和IF2两个群体进行小麦粒重、粒型和硬度的QTL分析. 中国农业科学, 2012, 45: 3453–3462 Li W F, Liu B, Peng T, Yuan Q Q, Han S X, Tian J C. Detection of QTL for kernel weight, grain size, and grain hardness in wheat using DH and immortalized F2 population. Sci Agric Sin, 2012, 45: 3453–3462 (in Chinese with English abstract) [28] 覃鸿妮, 晏萌, 王召辉, 郭莹, 王辉, 孙海燕, 刘志斋, 蔡一林. 玉米籽粒中花色苷和黑色素含量的QTL分析. 作物学报, 2012, 38: 275–284 Qin H N, Yan M, Wang Z H, Guo Y, Wang H, Sun H Y, Liu Z Z, Cai Y L. QTL mapping for anthocyanin and melanin contents in maize kernel. Acta Agron Sin, 2012, 38: 275–284 (in Chinese with English abstract) [29] 郑德波, 杨小红, 李建生, 严建兵, 张士龙, 贺正华, 黄益勤. 基于SNP标记的玉米株高及穗位高QTL定位. 作物学报, 2013: 549–556 Zheng D B, Yang X H, Li J S, Yan J B, Zhang S L, He Z H, Huang Y Q. QTL identification for plant height and ear height based on SNP mapping in maize(Zea mays L.). Acta Agron Sin, 2013, 39: 549–556 (in Chinese with English abstract) [30] Tuberosa R, Salvi S, Sanguineti M C, Landi P, Maccaferri M, Conti S. Mapping QTLs regulating morpho-physiological traits and yield: case studies, shortcomings and perspectives in drought-stressed maize. Ann Bot, 2002, 89: 941–963
[1] HUANG Li, CHEN Yu-Ning, LUO Huai-Yong, ZHOU Xiao-Jing, LIU Nian, CHEN Wei-Gang, LEI Yong, LIAO Bo-Shou, JIANG Hui-Fang. Advances of QTL mapping for seed size related traits in peanut [J]. Acta Agronomica Sinica, 2022, 48(2): 280-291.
[2] WANG Xiao-Lei, LI Wei-Xing, ZENG Bo-Hong, SUN Xiao-Tang, OU-YANG Lin-Juan, CHEN Xiao-Rong, HE Hao-Hua, ZHU Chang-Lan. QTL detection and stability analysis of rice grain shape and thousand-grain weight based on chromosome segment substitution lines [J]. Acta Agronomica Sinica, 2020, 46(10): 1517-1525.
[3] ZENG Xin-Ying,GUO Jian-Bin,ZHAO Jiao-Jiao,CHEN Wei-Gang,QIU Xi-Ke,HUANG Li,LUO Huai-Yong,ZHOU Xiao-Jing,JIANG Hui-Fang,HUANG Jia-Quan. Identification of QTL related to seed size in peanut (Arachis hypogaea L.) [J]. Acta Agronomica Sinica, 2019, 45(8): 1200-1207.
[4] Zhi-Jun TONG,Yi-Han ZHANG,Xue-Jun CHEN,Jian-Min ZENG,Dun-Huang FANG,Bing-Guang XIAO. Mapping of quantitative trait loci conferring resistance to brown spot in cigar tobacco cultivar Beinhart1000-1 [J]. Acta Agronomica Sinica, 2019, 45(3): 477-482.
[5] Ren-Feng XUE, Li WANG, Ming FENG, Wei-De GE. Identification and Expression Analysis of Likely Orthologs of Tobacco Salicylic Acid Binding Protein 2 in Common Beans [J]. Acta Agronomica Sinica, 2018, 44(05): 642-649.
[6] Lan-Fen WANG, Jing WU, Zhao-Li WANG, Ji-Bao CHEN, Li YU, Qiang WANG, Shu-Min WANG. Adaptability and Phenotypic Variations of Agronomic Traits in Common Bean Germplasm Resources in Different Environments [J]. Acta Agronomica Sinica, 2018, 44(03): 357-368.
[7] ZHONG Jie,WEN Pei-Zheng,SUN Zhi-Guang,XIAO Shi-Zhuo,HU Jin-Long,ZHANG Le,JIANG Ling,CHENG Xia-Nian,LIU Yu-Qiang,WAN Jian-Min. Identification of QTLs Conferring Small Brown Planthopper Resistance in Rice (Oryza sativa L.) Using MR1523/Suyunuo F2:3 Population [J]. Acta Agron Sin, 2017, 43(11): 1596-1602.
[8] BAI Na,LI Yong-Xiang*,JIAO Fu-Chao,CHEN Lin,LI Chun-Hui,ZHANG Deng-Feng,SONG Yan-Chun,WANG Tian-Yu,LI Yu,SHI Yun-Su*. Fine Mapping andGenetic Effect Analysis of qKRN5.04, a Major QTL Associated with Kernel Row Number [J]. Acta Agron Sin, 2017, 43(01): 63-71.
[9] CHEN Qiang,YAN Long,DENG Ying-Ying,Xiao Er-ning,Liu Bing-Qiang,YANG Chun-Yan*,ZHANG Meng-Chen*. Mapping Quantitative Trait Loci for Seed Size and Shape Traits in Soybean [J]. Acta Agron Sin, 2016, 42(09): 1309-1318.
[10] LI Long,WANG Lan-Fen,WU Jing,JING Rui-Lian,WANG Shu-Min*. Identification of Drought Resistence at Seedlings Stage in Common Bean (Phaseolus vulgaris L.) Varieties [J]. Acta Agron Sin, 2015, 41(06): 963-971.
[11] LIU Xin-Yan,ZHU Kong-Zhi,ZHANG Chang-Quan,HONG Ran,SUN Peng,TANG Su-Zhu,GU Ming-Hong,LIU Qiao-Quan. Mapping of Minor QTLs for Rice Gelatinization Temperature Using Chromosome Segment Substitution Lines from Indica 9311 in the Japonica Background [J]. Acta Agron Sin, 2014, 40(10): 1740-1747.
[12] CHEN Ming-Li,WANG Lan-Fen,WU Jing,ZHANG Xiao-Yan,YANG Guang-Dong,WANG Shu-Min. Development of Genomic SSR Markers in Common Bean and Their Transferability in Cowpea and Adzuki Bean [J]. Acta Agron Sin, 2014, 40(05): 924-933.
[13] LI Long,WANG Lan-Fen,WU Jing,JING Rui-Lian,WANG Shu-Min. Physiological Characteristics of Drought Resistance in Common Bean (Phaseolus vulgaris L.) [J]. Acta Agron Sin, 2014, 40(04): 702-710.
[14] ZHANG Jian,Aijaz Ahmed SOOMRO,CHAI Lu,CUI Yan-Ru,WANG Xiao-Qian,ZHENG Tian-Qing,XU Jian-Long,LI Zhi-Kang. Mapping of QTL for Ferrous and Zinc Toxicity Tolerance at Seedling Stage Using a Set of Reciprocal Introgression Lines in Rice [J]. Acta Agron Sin, 2013, 39(10): 1754-1765.
[15] NIU Yuan,XIE Fang-Teng,BU Shu-Hong,XIE Shang-Qian,HAN Shi-Feng,GENG Qing-Chun,LIU Bing,ZHANG Yuan-Ming. Fine Mapping of Quantitative Traits Loci for Seed Shape Traits in Soybean [J]. Acta Agron Sin, 2013, 39(04): 609-616.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!