Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2018, Vol. 44 ›› Issue (8): 1229-1236.doi: 10.3724/SP.J.1006.2018.01229

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Parameter Optimization in APSIM-Based Simulation Model for Yield Formation of Dryland Wheat Using Shuffled Frog Leaping Algorithm

Zhi-Gang NIE1,2(),Guang LI3,*(),Cui-Ping LUO2,Wei-Wei MA3,Yong-Qiang DAI2   

  1. 1 College of Resource and Environment Science, Gansu Agricultural University, Lanzhou 730070, Gansu, China
    2 College of Information Science and Technology, Gansu Agricultural University, Lanzhou 730070, Gansu, China
    3 College of Forestry, Gansu Agricultural University, Lanzhou 730070, Gansu, China
  • Received:2017-07-27 Accepted:2018-03-26 Online:2018-08-10 Published:2018-04-24
  • Contact: Guang LI E-mail:niezg@gsau.edu.cn;lig@gsau.edu.cn
  • Supported by:
    the National Natural Science Foundation of China(31660348);the National Natural Science Foundation of China(31560378);the National Natural Science Foundation of China(31560343);the Youth Tutor Foundation of Gansu Agricultural University(GAU-QNDS-201701)

Abstract:

The rapid and accurate estimation of model parameters is an important prerequisite for the application of yield formation model. In the process of localization parameters calibration for yield formation based on APSIM (agricultural production systems simulator) model of dryland wheat, there are some deficiencies such as large scale, long time consuming, a lack of precision and low efficiency. In this study, intelligent algorithm was used to remedy the deficiencies. We collected and analyzed the field experimental data in Mazichuan village, Lijiabao town, Anding district, Dingxi city from 2002 to 2005, and Anjiagou village, Fengxiang town, Anding district, Dingxi city from 2015 to 2016, and the historical and meteorological data in Anding district, Dingxi city from 1971 to 2016. According to the characteristics of the yield formation model for parameters nonlinearity and multidimensional change, making full use of the intelligent strategy of advanced group rotation and global information exchange in shuffled frog leaping algorithm and the self-organization, self-learning intelligent algorithm characteristics, the estimation parameters more difficult to obtain in the model of the dryland wheat yield formation based on APSIM platform were optimized and tested by correlation analysis method. This optimization method could use frog intelligent group biology evolution learning strategy to estimate the yield formation model parameters of dryland wheat. Compared with the method of attempting to eliminate the error, which is used in the localization parameters calibration of APSIM platform usually, the accuracy of simulation output was significantly improved. The root mean square error (RMSE) reduced from 79.13 kg ha -1 to 35.36 kg ha -1, the normalized root mean square error (NRMSE) decreased from 5.97% to 2.63%, and the model effectiveness index (ME) increased from 0.939 to 0.989. This method has strong global optimization ability, reasonable calculation quantity, and fast convergence speed.

Key words: Wheat, Shuffled frog leaping algorithm, APSIM, Parameters optimization

Table 1

Soil property parameters in the experiment site used for specifying APSIM platform and lower water limit of wheat"

项目
Item
土层深度 Soil depth
5 cm 10 cm 30 cm 50 cm 80 cm 110 cm 140 cm 170 cm 200 cm
容重 BD (g cm-3) 1.29 1.23 1.32 1.20 1.14 1.14 1.13 1.12 1.11
萎蔫系数 WC (mm mm-1) 0.08 0.08 0.08 0.08 0.09 0.09 0.11 0.13 0.13
最大持水量 DUL (mm mm-1) 0.27 0.27 0.27 0.27 0.26 0.27 0.26 0.26 0.26
饱和水分含量 SM (mm mm-1) 0.46 0.49 0.45 0.50 0.52 0.52 0.48 0.53 0.53
风干系数 CA (mm mm-1) 0.01 0.01 0.05 0.07 0.07 0.07 0.07 0.07 0.07
土壤导水率 SWC (mm h-1) 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60
小麦有效水分下限 LLW (mm mm-1) 0.09 0.09 0.09 0.09 0.09 0.10 0.11 0.13 0.15

Fig. 1

SFLA-based parameters optimization process for wheat yield formation model based on APSIM"

Table 2

Comparison between the SFLA-based optimized and default values in wheat yield formation model"

参数
Parameter
默认值
Default value
优化值
Optimized value
每克茎籽粒数
Grain number per gram stem (grain g-1)
25 26
开花到灌浆开始日潜在籽粒平均灌浆速率
Daily potential rate of grain filling from flowering to start of grain filling (g grain-1)
0.00100 0.00112
灌浆期日潜在籽粒平均灌浆速率
Daily potential rate of grain filling during grain filling (g grain-1)
0.00200 0.00249
日潜在籽粒平均氮积累速率
Daily potential rate of nitrogen accumulation (g grain-1)
0.000055 0.000067
日籽粒氮积累速率下限
Minimum rate of nitrogen accumulation (g grain-1)
0.000015 0.000018
单株最大籽粒干重
Maximum grain dry weight per plant (g)
0.0400 0.0437

Fig. 2

Relationship of simulated and observed values of wheat yield in dryland"

Table 3

Test results of simulation on wheat yield formation model before and after parameters optimization"

模型参数
Model parameter
麻子川村 Mazichuan 安家沟村 Anjiagou
RMSE (kg hm-2) NRMSE (%) ME RMSE (kg hm-2) NRMSE (%) ME
默认值 Default value 64.21 4.33 0.966 94.05 7.61 0.912
优化值 Optimized value 33.64 2.27 0.991 36.88 2.99 0.986
[1] 邹薇, 刘铁梅, 孔德艳, 汤亮, 曹卫星 . 大麦产量构成模型. 应用生态学报, 2009,20:396-402
Zou W, Liu T M, Kong D Y, Tang L, Cao W X . Simulation model on barley yield formation. Chin J Appl Ecol, 2009,20:396-402 (in Chinese with English abstract)
[2] 郑秀琴, 冯利平, 刘荣花 . 冬小麦产量形成模拟模型研究. 作物学报, 2006,32:260-266
doi: 10.3321/j.issn:0496-3490.2006.02.018
Zheng X Q, Feng L P, Liu R H . A simulation model for yield components and final yield in winter wheat. Acta Agron Sin, 2006,32:260-266 (in Chinese with English abstract)
doi: 10.3321/j.issn:0496-3490.2006.02.018
[3] 庄嘉祥, 姜海燕, 刘蕾蕾, 王芳芳, 汤亮, 朱艳, 曹卫星 . 基于个体优势遗传算法的水稻生育期模型参数优化. 中国农业科学, 2013,46:2220-2231
Zhuang J X, Jiang H Y, Liu L L, Wang F F, Tang L, Zhu Y, Cao W X . Parameters optimization of rice development stages model based on individual advantages genetic algorithm. Sci Agric Sin, 2013,46:2220-2231 (in Chinese with English abstract)
[4] 房全孝 . 根系水质模型中土壤与作物参数优化及其不确定性评价. 农业工程学报, 2012,28(10):118-123
doi: 10.3969/j.issn.1002-6819.2012.10.019
Fang Q X . Optimizing and uncertainty evaluation of soil and crop parameters in root zone water quality model. Trans CSAE, 2012,28(10):118-123 (in Chinese with English abstract)
doi: 10.3969/j.issn.1002-6819.2012.10.019
[5] 刘志娟, 杨晓光, 王静, 吕硕, 李克南, 荀欣, 王恩利 . APSIM玉米模型在东北地区的适应性. 作物学报, 2012,38:740-746
doi: 10.3724/SP.J.1006.2012.00740
Liu Z J, Yang X G, Wang J, Lyu S, Li K N, Xun X, Wang E L . Adaptability of APSIM maize model in Northeast China. Acta Agron Sin, 2012,38:740-746 (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2012.00740
[6] Mansouri M, Destain M F . An improved particle filtering for time-varying nonlinear prediction of biomass and grain protein content. Comput Electron Agric, 2015,114:145-153
doi: 10.1016/j.compag.2015.04.006
[7] 刘铁梅, 王燕, 邹薇, 孙东发, 汤亮, 曹卫星 . 大麦叶面积指数模拟模型. 应用生态学报, 2010,21:121-128
Liu T M, Wang Y, Zou W, Sun D F, Tang L, Cao W X . Simulation model of barley leaf area index. Chin J Appl Ecol, 2010,21:121-128 (in Chinese with English abstract)
[8] 李广, 黄高宝, William B, 陈文 . APSIM模型在黄土丘陵沟壑区不同耕作措施中的适用性. 生态学报, 2009,29:2655-2663
doi: 10.3321/j.issn:1000-0933.2009.05.056
Li G, Huang G B, William B, Chen W . The applicability of APSIM model in different tillage measures in hilly gully region of the Loess Plateau. Acta Ecol Sin, 2009,29:2655-2663 (in Chinese with English abstract)
doi: 10.3321/j.issn:1000-0933.2009.05.056
[9] 鲍士旦 . 土壤农化分析(第3版). 北京: 中国农业出版社, 2000. pp 263-268
Bao S D. Soil Agricultural Chemistry Analysis, 3rd edn. Beijing: China Agriculture Press, 2000. pp 263-268(in Chinese)
[10] 李广, 李玥, 黄高宝, 罗珠珠, 王琦, 刘强, 燕振刚, 赵有益 . 基于APSIM模型旱地春小麦产量对温度和CO2浓度升高的响应. 中国生态农业学报, 2012,20:1088-1095
doi: 10.3724/SP.J.1011.2012.01088
Li G, Li Y, Huang G B, Luo Z Z, Wang Q, Liu Q, Yan Z G, Zhao Y Y . Response of dryland spring wheat yield to elevated CO2 concentration and temperature by APSIM model. Chin J Eco- Agric, 2012,20:1088-1095 (in Chinese with English abstract)
doi: 10.3724/SP.J.1011.2012.01088
[11] 聂志刚, 李广 . 基于APSIM的旱地小麦叶面积指数模拟模型构建. 干旱地区农业研究, 2013,31(4):94-98
doi: 10.3969/j.issn.1000-7601.2013.04.018
Nie Z G, Li G . Modeling of APSIM-based simulation of leaf area index of wheat in dryland. Agric Res Arid Areas, 2013,31(4):94-98 (in Chinese with English abstract)
doi: 10.3969/j.issn.1000-7601.2013.04.018
[12] 王伟, 黄义德, 黄文江, 李存军, 王娴 . 作物生长模型的适用性评价及冬小麦产量预测. 农业工程学报, 2010,26(3):233-237
doi: 10.3969/j.issn.1002-6819.2010.03.039
Wang W, Huang Y D, Huang W J, Li C J, Wang X . Applicability evaluation of CERES-Wheat model and yield prediction of winter wheat. Trans CSAE, 2010,26(3):233-237 (in Chinese with English abstract)
doi: 10.3969/j.issn.1002-6819.2010.03.039
[13] 何亮, 赵刚, 靳宁, 庄伟, 于强 . 不同气候区和不同产量水平下APSIM-Wheat模型的参数全局敏感性分析. 农业工程学报, 2015,31(14):148-157
doi: 10.11975/j.issn.1002-6819.2015.14.021
He L, Zhao G, Jin N, Zhuang W, Yu Q . Global sensitivity analysis of APSIM-Wheat parameters in different climate zones and yield levels. Trans CSAE, 2015,31(14):148-157 (in Chinese with English abstract)
doi: 10.11975/j.issn.1002-6819.2015.14.021
[14] 董朝阳, 刘志娟, 杨晓光 . 北方地区不同等级干旱对春玉米产量影响. 农业工程学报, 2015,31(11):157-164
doi: 10.11975/j.issn.1002-6819.2015.11.023
Dong C Y, Liu Z J, Yang X G . Effect of different grade drought on grain yield of spring maize in northern China. Trans CSAE, 2015,31(11):157-164 (in Chinese with English abstract)
doi: 10.11975/j.issn.1002-6819.2015.11.023
[15] Asseng S, Bar-Tal A, Bowden J W, Keating B A, Van Herwaarden A, Palta J A, Huth N I, Probert M E . Simulaton of grain protein content with APSIM-N wheat. Eur J Agron, 2002,16:25-42
doi: 10.1016/S1161-0301(01)00116-2
[16] 代永强 . 混合蛙跳算法的改进与应用. 甘肃农业大学硕士学位论文, 甘肃兰州, 2011
Dai Y Q . The Improvement and Application of Shuffled Frog Leaping Algorithm. MS Thesis of Gansu Agricultural University, Lanzhou, China, 2011 ( in Chinese with English abstract)
[17] 康立军, 张仁陟, 吴丽丽 . 基于混合蛙跳算法的灌溉制度寻优应用研究. 节水灌溉, 2012, ( 5):73-75
Kang L J, Zhang R Z, Wu L L . Study on application of SFLA-based irrigation schedule optimization. Water Saving Irrig, 2012, ( 5):73-75 (in Chinese with English abstract)
[18] 郭小燕, 刘学录, 王联国 . 基于混合蛙跳算法的土地利用格局优化. 农业工程学报, 2015,31(24):281-288
doi: 10.11975/j.issn.1002-6819.2015.24.043
Guo X Y, Liu X L, Wang L G . Land use pattern optimization based on shuffled frog leaping algorithm. Trans CSAE, 2015,31(24):281-288 (in Chinese with English abstract)
doi: 10.11975/j.issn.1002-6819.2015.24.043
[19] Zhang X C . Calibration, refinement, and application of the WEPP model for simulating climatic impact on wheat production. Trans ASAE, 2004,47:1075-1085
doi: 10.13031/2013.16580
[20] Zheng B Y, Chenu K, Doherty A, Chapman S . The APSIM-Wheat Module (7.5 R3008) Documentation. Toowoomba: APSRU, 2014. pp 18-19
[21] 杨文雄 . 中国西北春小麦. 北京: 中国农业出版社, 2016. pp 155-161
Yang W X. Spring wheat in Northwest China. Beijing: China Agriculture Press, 2016. pp 155-161(in Chinese)
[22] 蒋纪芸, 苏珮 . 小麦灌浆期间营养器官对籽粒氮积累的影响. 西北农业学报, 1993,2(3):43-47
doi: 10.7606/j.issn.1004-1389.1993.3.010
Jiang J Y, Su P . The effect of nutrition organs of winter wheat to the accumulation of N substance in seed during the fill period. Acta Agric Boreali-Occident Sin, 1993,2(3):43-47 (in Chinese with English abstract)
doi: 10.7606/j.issn.1004-1389.1993.3.010
[1] HU Wen-Jing, LI Dong-Sheng, YI Xin, ZHANG Chun-Mei, ZHANG Yong. Molecular mapping and validation of quantitative trait loci for spike-related traits and plant height in wheat [J]. Acta Agronomica Sinica, 2022, 48(6): 1346-1356.
[2] GUO Xing-Yu, LIU Peng-Zhao, WANG Rui, WANG Xiao-Li, LI Jun. Response of winter wheat yield, nitrogen use efficiency and soil nitrogen balance to rainfall types and nitrogen application rate in dryland [J]. Acta Agronomica Sinica, 2022, 48(5): 1262-1272.
[3] LEI Xin-Hui, WAN Chen-Xi, TAO Jin-Cai, LENG Jia-Jun, WU Yi-Xin, WANG Jia-Le, WANG Peng-Ke, YANG Qing-Hua, FENG Bai-Li, GAO Jin-Feng. Effects of soaking seeds with MT and EBR on germination and seedling growth in buckwheat under salt stress [J]. Acta Agronomica Sinica, 2022, 48(5): 1210-1221.
[4] FU Mei-Yu, XIONG Hong-Chun, ZHOU Chun-Yun, GUO Hui-Jun, XIE Yong-Dun, ZHAO Lin-Shu, GU Jia-Yu, ZHAO Shi-Rong, DING Yu-Ping, XU Yan-Hao, LIU Lu-Xiang. Genetic analysis of wheat dwarf mutant je0098 and molecular mapping of dwarfing gene [J]. Acta Agronomica Sinica, 2022, 48(3): 580-589.
[5] FENG Jian-Chao, XU Bei-Ming, JIANG Xue-Li, HU Hai-Zhou, MA Ying, WANG Chen-Yang, WANG Yong-Hua, MA Dong-Yun. Distribution of phenolic compounds and antioxidant activities in layered grinding wheat flour and the regulation effect of nitrogen fertilizer application [J]. Acta Agronomica Sinica, 2022, 48(3): 704-715.
[6] LIU Yun-Jing, ZHENG Fei-Na, ZHANG Xiu, CHU Jin-Peng, YU Hai-Tao, DAI Xing-Long, HE Ming-Rong. Effects of wide range sowing on grain yield, quality, and nitrogen use of strong gluten wheat [J]. Acta Agronomica Sinica, 2022, 48(3): 716-725.
[7] YAN Yan, ZHANG Yu-Shi, LIU Chu-Rong, REN Dan-Yang, LIU Hong-Run, LIU Xue-Qing, ZHANG Ming-Cai, LI Zhao-Hu. Variety matching and resource use efficiency of the winter wheat-summer maize “double late” cropping system [J]. Acta Agronomica Sinica, 2022, 48(2): 423-436.
[8] WANG Yang-Yang, HE Li, REN De-Chao, DUAN Jian-Zhao, HU Xin, LIU Wan-Dai, GU Tian-Cai, WANG Yong-Hua, FENG Wei. Evaluations of winter wheat late frost damage under different water based on principal component-cluster analysis [J]. Acta Agronomica Sinica, 2022, 48(2): 448-462.
[9] CHEN Xin-Yi, SONG Yu-Hang, ZHANG Meng-Han, LI Xiao-Yan, LI Hua, WANG Yue-Xia, QI Xue-Li. Effects of water deficit on physiology and biochemistry of seedlings of different wheat varieties and the alleviation effect of exogenous application of 5-aminolevulinic acid [J]. Acta Agronomica Sinica, 2022, 48(2): 478-487.
[10] XU Long-Long, YIN Wen, HU Fa-Long, FAN Hong, FAN Zhi-Long, ZHAO Cai, YU Ai-Zhong, CHAI Qiang. Effect of water and nitrogen reduction on main photosynthetic physiological parameters of film-mulched maize no-tillage rotation wheat [J]. Acta Agronomica Sinica, 2022, 48(2): 437-447.
[11] MA Bo-Wen, LI Qing, CAI Jian, ZHOU Qin, HUANG Mei, DAI Ting-Bo, WANG Xiao, JIANG Dong. Physiological mechanisms of pre-anthesis waterlogging priming on waterlogging stress tolerance under post-anthesis in wheat [J]. Acta Agronomica Sinica, 2022, 48(1): 151-164.
[12] MENG Ying, XING Lei-Lei, CAO Xiao-Hong, GUO Guang-Yan, CHAI Jian-Fang, BEI Cai-Li. Cloning of Ta4CL1 and its function in promoting plant growth and lignin deposition in transgenic Arabidopsis plants [J]. Acta Agronomica Sinica, 2022, 48(1): 63-75.
[13] WEI Yi-Hao, YU Mei-Qin, ZHANG Xiao-Jiao, WANG Lu-Lu, ZHANG Zhi-Yong, MA Xin-Ming, LI Hui-Qing, WANG Xiao-Chun. Alternative splicing analysis of wheat glutamine synthase genes [J]. Acta Agronomica Sinica, 2022, 48(1): 40-47.
[14] LI Ling-Hong, ZHANG Zhe, CHEN Yong-Ming, YOU Ming-Shan, NI Zhong-Fu, XING Jie-Wen. Transcriptome profiling of glossy1 mutant with glossy glume in common wheat (Triticum aestivum L.) [J]. Acta Agronomica Sinica, 2022, 48(1): 48-62.
[15] LUO Jiang-Tao, ZHENG Jian-Min, PU Zong-Jun, FAN Chao-Lan, LIU Deng-Cai, HAO Ming. Chromosome transmission in hybrids between tetraploid and hexaploid wheat [J]. Acta Agronomica Sinica, 2021, 47(8): 1427-1436.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!