Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2019, Vol. 45 ›› Issue (1): 1-9.doi: 10.3724/SP.J.1006.2019.82032

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS •     Next Articles

Identification and mapping of round seed related gene in rice (Oryza sativa L.)

Ya-Ping CHEN,Rong MIAO,Xi LIU,Ben-Jia CHEN,Jie LAN,Teng-Fei MA,Yi-Hua WANG,Shi-Jia LIU,Ling JIANG()   

  1. State Key Laboratory of Crop Genetics and Germplasm Enhancement / Research Center of Jiangsu Plant Gene Engineering, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
  • Received:2018-06-07 Accepted:2018-10-08 Online:2018-11-01 Published:2018-11-09
  • Contact: Ling JIANG E-mail:jiangling@njau.edu.cn
  • Supported by:
    This study was supported by the National Key Research and Development Program of China(2016YFD0100101-08);the Key Projects of National Natural Science Foundation(91535302);the National University Student Innovation Program(201710307014)

Abstract:

It is significant to clarify the genetic and molecular mechanism of genes related to rice grain size for rice yield. A mutant round seed (rs) was screened from japonica variety “Ningjing 3” mutagenized by ethyl methane sulfonate (EMS). Genetic analysis revealed that the phenotype of rs was controlled by a single recessive nuclear gene. Scanning electron microscope observation indicated that the change of cell number was responsible for the mutant phenotype of rs. Compared with the wild type, the expression of cell cycle related-genes increased significantly in rs. RS was located in the 589 kb region of chromosome 3, between markers RM3413 and N3-5. The RS mutation affected BR signal pathway, and changed the expression of grain size-related genes. This research contributes to elucidating the molecular mechanism of rice grain development.

Key words: rice (Oryza sativa L.), round seed mutant, phenotypic analysis, gene mapping

Table 1

Molecular markers for fine-mapping"

标记
Marker
正向引物序列
Forward primer sequence (5°→3°)
反向引物序列
Reverse primer sequence (5°→3°)
N3-5 GTCTGTGCGCTCCTTGTTCTAGC CCTGGACCAATTTGTATGGTTGG
N3-9 GATGCAGTAGGAACACCAAACAGC ATCGAGTACCAAGTGCCTGTGC
N3-10 GGTTTGGGAGCCCATAATCT CTGGGCTTCTTTCACTCGTC
RM3413 TTAGAGGAGATGATGGTGCAACG AGCAGCCATTGAATGTGTTTGG
RM14282 CCCAAACACAAACACAAAGAGAGC AACACGCAGGTCCTCTTGAACC
I3-2 TACTTTAATTTTGCAGCTC TTTTACCCCACTCCATCT

Table 2

Comparison of agronomic traits between wild type and rs"

性状 Trait 野生型 Wild type 突变体 rs
粒长 Grain length (mm) 7.50±0.009 6.39±0.023**
粒宽 Grain width (mm) 3.13±0.021 3.58±0.003**
长/宽比 Length/width ratio 2.42±0.013 1.80±0.009**
粒厚 Grain thickness (mm) 1.14±0.025 1.28±0.062**
千粒重 1000-grain weight (g) 25.45±0.890 22.51±0.252**
株高 Plant height (cm) 91.40±2.633 90.50±2.121
穗长 Panicle length (cm) 17.35±0.803 17.19±0.709
分蘖数 Number of tillers 11.00±2.160 10.1±2.025
结实率 Seed setting rate (%) 72.69±2.430 56.90±4.270**

Table 3

Genetic analysis of the mutant rs"

杂交组合
Cross-combination
总株数
Total number
of plants
正常表现
Wild-type
phenotype
突变表现
Mutant
phenotype
χ2(3:1)
rs/WT 174 135 39 0.62
WT/rs 207 161 46 0.85

Fig. 1

Phenotypes of the wild type and the rs mutant A: plants of the wild type and the rs mutant at heading stage. Bar = 10 cm. B, C: grain phenotypes of the wild type and rs. Bar = 6 mm. D, F: comparisons of grain length, width, and the 1000-grain weight. ** Significant difference at P = 0.01 level between the wild type and the mutant rs."

Fig. 2

Histological analysis of spikelet hulls A, B; scanning electron microscope analysis of the outer surfaces of glumes. Bar=200 μm. C, D: comparison of cell length and width in outer glumes. E, F: comparison of cell number in outer glumes. Data are given as means ± SD. *P = 0.05; **P = 0.01."

Fig. 3

Expression levels of cell cycle-related genesCycA2;1, CycD4, E2F2, CycT1, CDKB, CDKA1, CycA2;2, Cdc20, and CycA2;3 Values are mean±SD (n = 3). * and ** indicate significant differences between WT and rs at P = 0.05 and P = 0.01 by Student’s t-test."

Fig. 4

Fine mapping of the RS gene The black circle means the centromere; the thick vertical line means a co-segregate marker; the number under the markers means the number of extreme individuals."

Fig. 5

Response test to 2,4-epiBL in the wild type and rs A: performance of lamina joint to 2,4-epiBL in wild-type (up) and rs (down). B: changes of lamina inclination to 2,4-epiBL. C: expression levels of BR synthesis and signal transduction pathway genes in the wild type and rs. ** Significant difference at the 0.01 level between wild type and rs."

Fig. 6

Expression levels of grain shape-related genes in wild type (WT) and rs"

[1] Xing Y, Zhang Q . Genetic and molecular bases of rice yield. Annu Rev Plant Biol, 2010,61:421-442.
doi: 10.1146/annurev-arplant-042809-112209 pmid: 20192739
[2] Mao H, Sun S, Yao J, Wang C, Yu S, Xu C, Li X, Zhang Q . Linking differential domain functions of the GS3 protein to natural variation of grain size in rice. Proc Natl Acad Sci USA, 2010,107:19579-19584.
doi: 10.1073/pnas.1014419107
[3] Song X J, Huang W, Shi M, Zhu M Z, Lin H X . A QTL for rice grain width and weight encodes a previously unknown RING- type E3 ubiquitin ligase. Nat Genet, 2007,39:623-630.
doi: 10.1038/ng2014 pmid: 17417637
[4] Hu J, Wang Y, Fang Y, Zeng L, Xu J, Yu H, Shi Z, Pan J, Zhang D, Kang S, Zhu L, Dong G, Guo L, Zeng D, Zhang G, Xie L, Xiong G, Li J, Qian Q . A rare allele of GS2 enhances grain size and grain yield in rice. Mol Plant, 2015,8:1455-1465.
doi: 10.1016/j.molp.2015.07.002 pmid: 26187814
[5] Wu W, Liu X, Wang M, Meyer R S, Luo X, Ndjiondjop M N, Tan L, Zhang J, Wu J, Cai H, Sun C, Wang X, Wing RA, Zhu Z . A single-nucleotide polymorphism causes smaller grain size and loss of seed shattering during African rice domestication. Nat Plants, 2017,3:17064-17071.
doi: 10.1038/nplants.2017.64 pmid: 28481332
[6] Wang Y, Xiong G, Hu J, Jiang L, Yu H, Xu J, Fang Y, Zeng L, Xu E, Xu J, Ye W, Meng X, Liu R, Chen H, Jing Y, Wang Y, Zhu X, Li J, Qian Q . Copy number variation at the GL7 locus contributes to grain size diversity in rice. Nat Genet, 2015,47:944-952.
doi: 10.1038/ng.3346 pmid: 26147619
[7] Xu C, Liu Y, Li Y, Xu X, Xu C, Li X, Xiao J, Zhang Q . Differential expression of GS5 regulates grain size in rice. J Exp Bot, 2015,66:2611-2634.
doi: 10.1093/jxb/erv058 pmid: 25711711
[8] Li J, Chu H, Zhang Y, Mou T, Wu C, Zhang Q, Xu J . The rice HGW gene encodes a ubiquitin-associated (UBA) domain protein that regulates heading date and grain weight. PLoS One, 2012,7:e34231.
doi: 10.1371/journal.pone.0034231 pmid: 22457828
[9] Wang E, Wang J, Zhu X, Hao W, Wang L, Li Q, Zhang L, He W, Lu B, Lin H, Ma H, Zhang G, He Z . Control of rice grain-filling and yield by a gene with a potential signature of domestication. Nat Genet, 2008,40:1370-1374.
doi: 10.1038/ng.220 pmid: 18820698
[10] Ishimaru K, Hirotsu N, Madoka Y, Murakami N, Hara N, Onodera H, Kashiwagi T, Ujiie K, Shimizu B, Onishi A, Miyagawa H, Katoh E . Loss of function of the IAA-glucose hydrolase gene TGW6 enhances rice grain weight and increases yield. Nat Genet, 2013,45:707-711.
doi: 10.1038/ng.2612 pmid: 23583977
[11] Wang S, Wu K, Yuan Q, Liu X, Liu Z, Lin X, Zeng R, Zhu H, Dong G, Qian Q, Zhang G, Fu X . Control of grain size, shape and quality by OsSPL16 in rice. Nat Genet, 2012,44:950-954.
doi: 10.1038/ng.2327 pmid: 22729225
[12] Liu J, Chen J, Zheng X, Wu F, Lin Q, Heng Y, Tian P, Cheng Z, Yu X, Zhou K, Zhang X, Guo X, Wang J, Wang H, Wan J M . GW5 acts in the brassinosteroid signaling pathway to regulate grain width and weight in rice. Nat Plants, 2017,3:17043-17080.
doi: 10.1038/nplants.2017.43 pmid: 28394310
[13] Hong Z, Ueguchi-Tanaka M, Umemura K, Uozu S, Fujioka S, Takatsuto S, Yoshida S, Ashikari M, Kitano H, Matsuoka M . A rice brassinosteroid-deficient mutant,ebisu dwarf (d2), is caused by a loss of function of a new member of cytochrome P450. Plant Cell, 2003,15:2900-2910.
doi: 10.1105/tpc.014712 pmid: 14615594
[14] Liu L, Tong H, Xiao Y, Che R, Xu F, Hu B, Liang C, Chu J, Li J, Chu C . Activation of Big Grain1 significantly improves grain size by regulating auxin transport in rice. Proc Natl Acad Sci USA, 2015,112:11102-11107.
doi: 10.1073/pnas.1512748112 pmid: 26283354
[15] Abbasi F, Onodera H, Toki S, Tanaka H, Komatsu S . OsCDPK13, a calcium-dependent protein kinase gene from rice, is induced in response to cold and gibberellin in rice leaf sheath. Plant Mol Biol, 2004,55:541-552.
doi: 10.1007/s11103-004-1178-y pmid: 15604699
[16] Yamamuro C, Ihara Y, Wu X, Noguchi T, Fujioka S, Takatsuto S, Ashikari M, Kitano H, Matsuoka M . Loss of function of a rice brassinosteroid insensitive1 homolog prevents internode elongation and bending of the lamina joint. Plant Cell, 2000,12:1591-1605.
[17] Liu S, Hua L, Dong S, Chen H, Zhu X, Jiang J, Zhang F, Li Y, Fang X, Chen F . OsMAPK6, a mitogen-activated protein kinase, influences rice grain size and biomass production. Plant J, 2015,84:672-681.
doi: 10.1111/tpj.13025 pmid: 26366992
[18] Xia K, Ou X, Tang H, Wang R, Wu P, Jia Y, Wei X, Xu X, Kang S H, Kim S K, Zhang M . Rice microRNA osa-miR1848 targets the obtusifoliol 14α-demethylase gene OsCYP51G3 and mediates the biosynthesis of phytosterols and brassinosteroids during development and in response to stress. New Phytol, 2015,208:790-802.
[19] Zhang S, Wu T, Liu S, Liu X, Jiang L, Wan J . Disruption of OsARF19 is critical for floral organ development and plant architecture in rice( Oryza sativa L.). Plant Mol Biol Rep, 2016,34:748-760.
doi: 10.1007/s11105-015-0962-y
[20] Horiguchi G, Ferjani A, Fujikura U, Tsukaya H . Coordination of cell proliferation and cell expansion in the control of leaf size in Arabidopsis thaliana. J Plant Res, 2006,119:37-42.
doi: 10.1007/s10265-005-0232-4 pmid: 16284709
[21] Horvath B M, Magyar Z, Zhang Y, Hamburger A W, Bako L, Visser R G, Bachem C W, Bogre L . EBP1 regulates organ size through cell growth and proliferation in plants. EMBO J, 2006,25:4909-4920.
[22] Ishimaru K, Hirotsu N, Madoka Y, Murakami N, Hara N, Onodera H, Kashiwagi T, Ujiie K, Shimizu B, Onishi A, Miyagawa H, Katoh E . Loss of function of the IAA-glucose hydrolase gene TGW6 enhances rice grain weight and increases yield. Nat Genet, 2013,45:707-718.
doi: 10.1038/ng.2612 pmid: 23583977
[23] Nakamura A, Matsuoka M . The role of OsBRI1 and its homologous genes, OsBRL1 and OsBRL3, in rice. Plant Physiol, 2006,140:580-590.
[24] Andrzej B . Metabolism of brassinosteroids in plants. Plant Physiol Biochem, 2007,45:95-107.
doi: 10.1016/j.plaphy.2007.01.002 pmid: 17346983
[25] Hong Z, Ueguchitanaka M, Shimizusato S, Inukai Y, Fujioka S, Shimada Y, Takatsuto S, Agetsuma M, Yoshida S, Watanabe Y, Uozu S, Kitano H, Ashikari M, Matsuoka M . Loss-of-function of a rice brassinosteroid biosynthetic enzyme, C-6 oxidase, prevents the organized arrangement and polar elongation of cells in the leaves and stem. Plant J, 2002,32:495-508.
doi: 10.1046/j.1365-313X.2002.01438.x
[26] Sakamoto T, Morinaka Y, Inukai Y, Kitano H, Fujioka S . Auxin signal transcription factor regulates expression of the brassinosteroid receptor gene in rice. Plant J, 2013,73:676-688.
doi: 10.1111/tpj.12071 pmid: 23146214
[27] Gui J, Zheng S, Liu C, Shen J, Li J, Li L . OsREM4.1 interacts with OsSERK1 to coordinate the interlinking between abscisic acid and brassinosteroid signaling in rice. Dev Cell, 2016,38:201-214.
doi: 10.1016/j.devcel.2016.06.011 pmid: 27424498
[28] Zhu X, Liang W, Cui X, Chen M, Yin C, Luo Z, Zhu J, Lucas W J, Wang Z, Zhang D . Brassinosteroids promote development of rice pollen grains and seeds by triggering expression of Carbon Starved Anther, a MYB domain protein. Plant J, 2015,82:570-581.
doi: 10.1111/tpj.12820 pmid: 25754973
[29] Bai M Y, Zhang L Y, Gampala S S, Zhu S W, Song W Y, Chong K, Wang Z Y . Functions of OsBZR1 and 14-3-3 proteins in brassinosteroid signaling in rice. Proc Natl Acad Sci USA, 2007,104:13839-13844.
doi: 10.1073/pnas.0706386104
[1] TIAN Tian, CHEN Li-Juan, HE Hua-Qin. Identification of rice blast resistance candidate genes based on integrating Meta-QTL and RNA-seq analysis [J]. Acta Agronomica Sinica, 2022, 48(6): 1372-1388.
[2] ZHENG Chong-Ke, ZHOU Guan-Hua, NIU Shu-Lin, HE Ya-Nan, SUN wei, XIE Xian-Zhi. Phenotypic characterization and gene mapping of an early senescence leaf H5(esl-H5) mutant in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2022, 48(6): 1389-1400.
[3] LIU Lei, ZHAN Wei-Min, DING Wu-Si, LIU Tong, CUI Lian-Hua, JIANG Liang-Liang, ZHANG Yan-Pei, YANG Jian-Ping. Genetic analysis and molecular characterization of dwarf mutant gad39 in maize [J]. Acta Agronomica Sinica, 2022, 48(4): 886-895.
[4] XU Ning-Kun, LI Bing, CHEN Xiao-Yan, WEI Ya-Kang, LIU Zi-Long, XUE Yong-Kang, CHEN Hong-Yu, WANG Gui-Feng. Genetic analysis and molecular characterization of a novel maize Bt2 gene mutant [J]. Acta Agronomica Sinica, 2022, 48(3): 572-579.
[5] WANG Yan, CHEN Zhi-Xiong, JIANG Da-Gang, ZHANG Can-Kui, ZHA Man-Rong. Effects of enhancing leaf nitrogen output on tiller growth and carbon metabolism in rice [J]. Acta Agronomica Sinica, 2022, 48(3): 739-746.
[6] ZHENG Xiang-Hua, YE Jun-Hua, CHENG Chao-Ping, WEI Xing-Hua, YE Xin-Fu, YANG Yao-Long. Xian-geng identification by SNP markers in Oryza sativa L. [J]. Acta Agronomica Sinica, 2022, 48(2): 342-352.
[7] JIANG Jian-Hua, ZHANG Wu-Han, DANG Xiao-Jing, RONG Hui, YE Qin, HU Chang-Min, ZHANG Ying, HE Qiang, WANG De-Zheng. Genetic analysis of stigma traits with genic male sterile line by mixture model of major gene plus polygene in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2021, 47(7): 1215-1227.
[8] JIANG Cheng-Gong, SHI Hui-Min, WANG Hong-Wu, LI Kun, HUANG Chang-Ling, LIU Zhi-Fang, WU Yu-Jin, LI Shu-Qiang, HU Xiao-Jiao, MA Qing. Phenotype analysis and gene mapping of small kernel 7 (smk7) mutant in maize [J]. Acta Agronomica Sinica, 2021, 47(2): 285-293.
[9] GUO Qing-Qing, ZHOU Rong, CHEN Xue, CHEN Lei, LI Jia-Na, WANG Rui. Location and InDel markers for candidate interval of the orange petal gene in Brassica napus L. by next generation sequencing [J]. Acta Agronomica Sinica, 2021, 47(11): 2163-2172.
[10] HUANG Yan, HE Huan-Huan, XIE Zhi-Yao, LI Dan-Ying, ZHAO Chao-Yue, WU Xin, HUANG Fu-Deng, CHENG Fang-Min, PAN Gang. Physiological characters and gene mapping of a dwarf and wide-leaf mutant osdwl1 in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2021, 47(1): 50-60.
[11] JIANG Hong-Rui, YE Ya-Feng, HE Dan, REN Yan, YANG Yang, XIE Jian, CHENG Wei-Min, TAO Liang-Zhi, ZHOU Li-Bin, WU Yue-Jin, LIU Bin-Mei. Identification and gene localization of a novel rice brittle culm mutant bc17 [J]. Acta Agronomica Sinica, 2021, 47(1): 71-79.
[12] SHI Hui-Min, JIANG Cheng-Gong, WANG Hong-Wu, MA Qing, LI Kun, LIU Zhi-Fang, WU Yu-Jin, LI Shu-Qiang, HU Xiao-Jiao, HUANG Chang-Ling. Phenotype identification and gene mapping of defective kernel 48 mutant (dek48) in maize [J]. Acta Agronomica Sinica, 2020, 46(9): 1359-1367.
[13] HAN Zhan-Yu,GUAN Xian-Yue,ZHAO Qian,WU Chun-Yan,HUANG Fu-Deng,PAN Gang,CHENG Fang-Min. Individual and combined effects of air temperature at filling stage and nitrogen application on storage protein accumulation and its different components in rice grains [J]. Acta Agronomica Sinica, 2020, 46(7): 1087-1098.
[14] TIAN Shi-Ke, QIN Xin-Er, ZHANG Wen-Liang, DONG Xue, DAI Ming-Qiu, YUE Bing. Genetic analysis and characterization of male sterile mutant mi-ms-3 in maize [J]. Acta Agronomica Sinica, 2020, 46(12): 1991-1996.
[15] XIE Yuan-Hua,LI Feng-Fei,MA Xiao-Hui,TAN Jia,XIA Sai-Sai,SANG Xian-Chun,YANG Zheng-Lin,LING Ying-Hua. Phenotype characterization and gene mapping of the semi-outcurved leaf mutant sol1 in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2020, 46(02): 204-213.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!