Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2019, Vol. 45 ›› Issue (4): 522-537.doi: 10.3724/SP.J.1006.2019.82045

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Locating QTL controlling yield traits in overwintering cultivated rice

YAN Chao,ZHENG Jian,DUAN Wen-Jing,NAN Wen-Bin,QIN Xiao-Jian,ZHANG Han-Ma,LIANG Yong-Shu()   

  1. Chongqing Key Laboratory of Molecular Biology of Plant Environmental Adaptations / Chongqing Normal University, Chongqing 401331, China
  • Received:2018-08-31 Accepted:2019-01-12 Online:2019-04-12 Published:2019-01-12
  • Contact: Yong-Shu LIANG E-mail:yongshuliang@yeah.net
  • Supported by:
    This study was supported by the Chongqing Natural Science Foundation of China(cstc2018jcyjAX0768);Chongqing Education Commission Natural Science Foundation of China(KJ1703058);Open Project of Rice Biology State Key Laboratory of China(150201)

Abstract:

Overwintering cultivated rice is a type of special rice that can survive through cold-winter season, germinate in spring of the coming year, seed and be harvested. In this study, four genetic linkage maps contained 108, 116, 111, and 184 SSR markers were constructed using three half-sib F2 populations from overwintering cultivated rice for the identification of QTLs affecting yield traits, respectively. Phenotypic values for yield traits were investigated for QTL mapping and other statistical analysis using Microsoft Excel 2003, GraphPadPrism 5.0, and QTL IciMapping 4.10. The phenotypic values for yield traits exhibited a continuously normal distribution and might be controlled by quantitative trait locus (QTL). A total of 37 QTLs affecting 15 yield traits and 26 epistatic QTL pairs with one or more interactions were detected in the three populations, explaining the wide phenotypic variance ranging from 2.32% to 36.31% and from 1.04% to 2.05% respectively. Among these QTLs, nine QTLs affecting two or more traits were detected on chromosomes 1, 3, 6, 8, 11, and 12 respectively. Thirteen QTLs affecting yield-related traits were detected by nested association mapping (NAM) mapping; four out of thirteen were overlapped with QTLs detected in single mapping population. The additive-dominance QTL affecting yield traits played an important role than that of epistatic QTL. Overall, this research lays a good foundation for the mining of yield-related genes from overwintering cultivated rice and their breeding innovation and utilization.

Key words: QTL mapping, yield traits, overwintering cultivated rice

Fig. 1

Field performance of W1, W2, and W3 in spring of 2016"

Table 1

Field performance of yield traits in the biparents, hybrid F1, and F2 populations"

性状
Trait
亲本 Parent T测验值 T-test value 杂种F1 Hybrid F1 平均值±标准差 Means±SD 变幅 Range
绵恢725
Mianhui 725
W1 W2 W3 W1 W2 W3 OW1 OW2 OW3 OW1 OW2 OW3 OW1 OW2 OW3
株高PH (cm) 122.67 139.13 99.79 115.70 2.26 3.27* 3.01* 155.58 143.75 142.80 133.51±19.58 112.97±15.50 128.22±18.88 89.80-174.80 84.20-151.3 88.50-176.50
有效穗数PN 12 17 21 23 2.38 4.92** 3.31* 18 16 115 15.63±5.92 13.26±5.08 13.10±6.54 5-29 5-29 4-43
穗长PL (cm) 29.27 27.43 19.67 19.23 3.76* 18.02** 29.96** 32.50 24.50 26.50 27.75±2.84 22.70±2.79 25.41±3.43 20.86-30.57 18.23-29.87 18.75-33.21
穗实粒数 NFG 334 188 192 142 6.41** 6.27** 25.56** 105 95 87 144.06±80.47 133.47±75.20 142.14±78.10 2-379 6-308 2-327
穗空粒数NEG 16.33 47.38 39.00 40.80 3.19* 1.07 3.90* 282 226 215 118.15±73.44 135.90±67.83 140.75±91.52 24-387 26-310 6-423
穗总粒数SPP 350 235 231 183 5.76** 5.63** 14.07** 387 321 302 262.22±77.31 269.37±70.59 280.20±86.51 76-442 108-441 133-603
结实率 SSR (%) 95.33 79.86 83.10 77.68 3.42* 1.33 7.12** 27.13 29.60 28.81 51.80±12.90 46.44±9.67 50.64±4.82 7.69-60.98 14.29-52.53 25.00-55.88
穗粒密度GSD 11.96 8.57 11.70 7.90 5.13** 0.31 4.23** 11.90 13.10 11.35 9.47±2.94 11.96±3.25 11.02±3.06 2.84-15.13 5.80-20.31 4.71-19.82
粒长GL (mm) 9.74 7.11 7.13 6.84 15.65** 10.58** 16.16** 8.11 8.25 8.30 8.27±0.57 7.83±0.83 7.94±0.43 7.16-9.66 2.80-9.41 7.11-9.20
粒宽GW (mm) 2.34 3.43 3.42 3.26 11.61** 8.14** 13.29** 3.25 3.18 3.20 2.84±0.26 2.88±0.61 2.89±0.28 2.27-3.65 2.15-7.67 2.38-3.60
粒厚GT (mm) 1.92 2.44 2.41 2.20 2.25 5.77** 6.60** 2.55 2.45 2.35 2.01±0.09 2.05±0.13 2.06±0.16 1.82-2.21 1.70-2.34 1.60-2.59
粒长宽比LWR 4.18 2.08 2.09 2.09 17.65** 14.25** 13.90** 2.20 2.60 2.60 2.93±0.33 2.78±0.44 2.78±0.31 2.32-3.69 0.98-3.95 2.14-3.46
千粒重TGW (g) 21.06 22.49 23.33 24.78 2.38 1.49 7.95** 24.70 25.50 24.80 21.76±1.85 20.94±1.57 23.34±1.84 15.0-31.90 15.10-49.50 16.20-40.00
主穗重MPW (g) 7.26 4.15 3.43 3.36 8.52** 10.10** 25.81** 2.45 2.04 1.85 3.83±1.84 3.47±1.56 3.94±1.83 0.45-8.77 0.90-7.10 1.06-9.87
单株产量GYP (g) 69.02 59.43 55.85 50.47 0.93 0.26 1.50 47.85 37.56 33.56 32.71±24.28 24.79±20.13 30.60±31.11 0.39-126.30 0.46-76.96 0.78-188.85

Fig. 2

Frequency distribution of yield traits in three populations"

Table 2

Correlation (r) coefficients among yield traits in three populations"

性状
Trait
群体
Population
穗数
NP
穗长
PL
穗实粒数
NFG
穗空粒数
NEG
穗总粒数
SPP
结实率
SSR
穗粒密度
GSD
粒长
GL
粒宽
GW
粒厚
GT
长宽比
LWR
单穗重
MPW
千粒重
TGW
单株重
GYP
株高 PH OW1 0.17* 0.45** 0.36** 0.01 0.38** 0.23** 0.25** 0.17* 0.02 -0.18* 0.10 0.48** 0.12 0.31**
OW2 0.12 0.55** 0.22** 0.06 0.29** 0.12 0.04 0.18* -0.15* -0.14 0.25** 0.27** -0.05 0.25**
OW3 0.34** 0.63** 0.16* 0.18* 0.32** -0.04 0.10 0.06 0.06 -0.10 -0.04 0.03 0.21** 0.26**
穗数 NP OW1 -0.01 0.16* -0.09 0.08 0.18* 0.10 -0.02 -0.02 -0.05 0.00 0.18* -0.03 0.55**
OW2 0.02 0.29** -0.12 0.19* 0.18* 0.18* 0.08 -0.12 -0.01 0.15* 0.23** 0.01 0.63**
OW3 0.38** 0.31** -0.04 0.23** 0.17* 0.08 -0.06 0.10 -0.02 -0.07 0.17* 0.04 0.73**
穗长PL OW1 0.18* 0.04 0.23** 0.10 -0.09 0.21** 0.04 0.09 0.09 0.21** -0.09 0.11
OW2 0.06 0.12 0.18* 0.03 -0.25** 0.16* -0.22** -0.16* 0.27** 0.18* 0.01 0.11
OW3 0.29** 0.17* 0.43** 0.04 0.02 0.24** 0.08 -0.21** 0.13 0.07 0.17* 0.38**
穗实粒数 NFG OW1 -0.50** 0.57** 0.84** 0.51** 0.02 -0.15* 0.00 0.09 0.94** 0.02 0.69**
OW2 -0.52** 0.57** 0.88** 0.54** 0.16* -0.08 -0.11 0.23** 0.88** -0.19* 0.78**
OW3 -0.45** 0.41** 0.81** 0.32** 0.01 0.05 0.15* 0.03 0.21** 0.08 0.67**
穗空粒数 NEG OW1 0.43** -0.81** 0.43** -0.07 0.11 -0.17* -0.12 -0.36** -0.02 -0.37**
OW2 0.41** -0.81** 0.34** -0.12 0.07 -0.07 -0.22** -0.43** 0.07 -0.45**
OW3 0.63** -0.83** 0.62** -0.01 -0.11 -0.27** 0.20** -0.13 -0.20** -0.35**
穗总粒数 SPP OW1 0.11 0.95** -0.05 -0.05 -0.16* -0.01 0.64** 0.00 0.36**
OW2 0.16* 0.90** 0.05 -0.02 -0.18* 0.03 0.53** -0.13 0.40**
OW3 -0.14 0.90** 0.00 -0.08 -0.14 0.22** 0.05 -0.13 0.22**
结实率 SSR OW1 0.07 0.05 -0.13 0.17* 0.11 0.74** 0.03 0.60**
OW2 0.16* 0.13 -0.09 -0.03 0.24** 0.76** -0.19* 0.68**
OW3 -0.17* 0.01 0.11 0.28** -0.10 0.21** 0.22** 0.57**
穗粒密度 GSD OW1 -0.13 -0.06 -0.20** -0.05 0.58** 0.02 0.34**
OW2 -0.01 0.09 -0.10 -0.09 0.44** -0.14 0.35**
OW3 -0.12 -0.11 -0.06 0.18* 0.03 -0.21** 0.07
粒长 GL OW1 0.04 -0.02 0.59** 0.10 0.24** 0.07
OW2 0.06 -0.12 0.62** 0.23** 0.05 0.19*
OW3 -0.05 -0.24** 0.42** -0.14 0.03
粒宽GW OW1 0.36** -0.78** -0.04 0.23** -0.06
OW2 0.14 -0.66** -0.04 0.16* -0.12
OW3 -0.02 -0.71** 0.06 0.01 0.21**
粒厚 GT OW1 -0.30** 0.03 0.09 0.07
OW2 -0.32** 0.00 0.38** -0.11
OW3 -0.20** 0.05 0.39** 0.08
长宽比 LWR OW1 0.06 -0.04 0.06
OW2 0.18* -0.23** 0.25**
OW3 -0.24** -0.25** -0.16*
单穗重 MPW OW1 0.10 0.68**
OW2 0.09 0.78**
OW3 0.16* 0.16*
千粒重TGW OW1 0.20**
OW2 -0.02
OW3 0.15*

Table 3

Locating QTLs for yield traits in three populations"

性状
Trait
群体
Population
QTL 染色体
Chr.
标记区间
Marker interval
LOD值
LOD value
加性效应
Additive
显性效应
Dominant
贡献率
R2(%)
作图群体或参考文献Mapping populations
株高 PH OW1 qPH1 1 RM3362-RM3738 7.18 18.19 15.29 36.31 [30]
穗数 PN OW2 qPN10 10 RM1146-RM25664 3.10 2.43 -3.09 5.42
穗数 PN OW2 qPN12 12 RM7018-RM1227 3.17 4.53 -4.84 15.70 W2
穗数 PN OW3 qPN11 11 RM5599-RM7240 3.35 -6.39 -8.75 5.11
穗空粒数NEG OW1 qNEG1 1 RM7405-RM8084 5.48 71.96 -85.60 8.67
穗空粒数NEG OW1 qNEG5 5 RM6517-RM3170 7.25 69.77 -112.64 9.22
穗空粒数NEG OW1 qNEG6a 6 RM276-RM1369 3.44 89.52 -71.69 8.43
穗空粒数NEG OW2 qNEG11 11 RM4746-RM254 3.83 -12.01 113.53 2.93
穗空粒数NEG OW3 qNEG6b 6 RM8242-RM3138 3.71 -30.06 81.06 20.68 Mianhui 725
穗总粒数SPP OW1 qSPP1 1 RM3604-RM5359 3.19 -61.55 -16.63 20.99 [31]
结实率SSR OW1 qSSR3a 3 RM5686-RM6291 3.58 1.57 -23.13 14.23 W1
结实率SSR OW1 qSSR5 5 RM3170-RM3348 3.44 8.62 11.50 9.33 W1
结实率SSR OW1 qSSR8 8 RM22418-RM6838 3.94 0.44 -21.23 12.41
结实率SSR OW2 qSSR3b 3 RM1350-RM487 3.54 -11.85 -6.74 9.91
性状
Trait
群体
Population
QTL 染色体
Chr.
标记区间
Marker interval
LOD值
LOD value
加性效应
Additive
显性效应
Dominant
贡献率
R2(%)
作图群体或参考文献Mapping populations
结实率SSR OW3 qSSR6 6 RM8242-RM3138 3.22 8.82 -29.68 16.24 [35]
穗粒密度 GSD OW1 qGSD1 1 RM3604-RM5359 4.49 -2.39 -0.49 26.30
粒长 GL OW1 qGL3 3 RM6291-RM6038 4.87 -0.47 -0.09 25.30 [32]
粒长 GL OW2 qGL7 7 RM3859-RM1306 3.23 2.52 2.64 2.32
粒宽 GW OW1 qGW3a 3 RM15281-RM6959 3.70 0.16 0.02 16.06 [33-34]
粒宽 GW OW1 qGW5 5 RM1024-RM6517 4.99 0.19 -0.01 25.56 [39]
粒宽GW OW2 qGW3b 3 RM5639-RM1284 3.25 -1.22 1.30 6.69
粒宽 GW OW2 qGW11 11 RM26652-RM4746 21.43 -0.05 4.82 25.02
粒长宽比LWR OW1 qLWR3 3 RM15281-RM6959 7.69 -0.26 -0.12 23.81 [36-37]
粒长宽比 LWR OW1 qLWR4 4 RM6540-RM5979 3.06 -0.07 0.24 10.18 [38]
粒长宽比LWR OW1 qLWR6 6 RM276-RM1369 3.51 -0.20 0.12 12.92 Mianhui 725
粒长宽比LWR OW3 qLWR8 8 RM5637-RM6948 4.84 -1.21 1.35 5.10
千粒重TGW OW1 qTGW1a 1 RM3362-RM3738 6.04 10.26 10.00 5.17
千粒重TGW OW1 qTGW1b 1 RM3738-RM6887 6.56 10.39 9.74 5.19
千粒重TGW OW1 qTGW3a 3 RM6509-RM85 9.72 -10.66 8.70 5.40
千粒重TGW OW1 qTGW3b 3 RM85-RM186 9.80 -11.60 7.26 6.20
千粒重TGW OW1 qTGW6 6 RM1370-RM6395 3.43 -9.84 10.39 3.81 [40]
单株产量 GYP OW2 qGYP3a 3 RM1350-RM487 3.24 -19.29 -18.18 6.19
单株产量 GYP OW2 qGYP3b 3 RM487-RM6484 4.52 -19.23 -22.11 6.28
单株产量 GYP OW2 qGYP11 11 RM4746-RM254 4.24 1.33 39.74 7.01
单株产量 GYP OW2 qGYP12 12 RM7018-RM1227 6.23 22.07 -20.40 6.50 [41]
单株产量 GYP OW3 qGYP5 5 RM5994-RM1237 3.77 -59.59 -57.78 7.06
单株产量 GYP OW3 qGYP8 8 RM5637-RM6948 5.31 49.58 -57.95 8.04

Fig. 3

QTL for yield traits detected in three half-sib populations"

Table 4

Pleiotropic QTLs for yield traits in three populations"

性状
Trait
群体
Population
QTL 染色体
Chr.
标记区间
Marker interval
LOD值
LOD value
加性效应
Additive
显性效应
Dominant
贡献率
R2 (%)
株高 PH OW1 qPH1 1 RM3362-RM3738 7.18 18.19 15.29 36.31
千粒重TGW OW1 qTGW1a 1 RM3362-RM3738 6.04 10.26 10.00 5.17
穗总粒数SPP OW1 qSPP1 1 RM3604-RM5359 3.19 -61.55 -16.63 20.99
穗粒密度GSD OW1 qGSD1 1 RM3604-RM5359 4.49 -2.39 -0.49 26.30
粒宽GW OW1 qGW3 3 RM15281-RM6959 3.70 0.16 0.02 16.06
粒长宽比LWR OW1 qLWR3b 3 RM15281-RM6959 7.69 -0.26 -0.12 23.81
穗空粒数NEG OW1 qNEG6 6 RM276-RM1369 3.44 89.52 -71.69 8.43
粒长宽比LWR OW1 qLWR6 6 RM276-RM1369 3.51 -0.20 0.12 12.92
结实率SSR OW2 qSSR3b 3 RM1350-RM487 3.54 -11.85 -6.74 9.91
单株产量 GYP OW2 qGYP3a 3 RM1350-RM487 3.24 -19.29 -18.18 6.19
穗空粒数NEG OW2 qNEG11 11 RM4746-RM254 3.83 -12.01 113.53 2.93
单株产量GYP OW2 qGYP11 11 RM4746-RM254 4.24 1.33 39.74 7.01
有效穗数 PN OW2 qPN12 12 RM7018-RM1227 3.17 4.53 -4.84 15.70
单株产量GYP OW2 qGYP12 12 RM7018-RM1227 6.23 22.07 -20.40 6.50
穗空粒数NEG OW3 qNEG6b 6 RM8242-RM3138 3.71 -30.06 81.06 20.68
结实率SSR OW3 qSSR6 6 RM8242-RM3138 3.22 8.82 -29.68 16.24
粒长宽比LWR OW3 qLWR8 8 RM5637-RM6948 4.84 -1.21 1.35 5.10
单株产量 GYP OW3 qGYP8 8 RM5637-RM6948 5.31 49.58 -57.95 8.04

Table 5

Epistasis QTL underlying yield traits in te three populations"

名称
ID
群体
Population
性状
Trait
染色体
Chr.
区间1
Interval 1
染色体
Chr.
区间2
Interval 2
LOD值
LOD value
贡献率
R2(%)
加性1
Add 1
加性2
Add 2
显性1
Dom 1
显性2
Dom 2
加性-加性
Add by Add
加性-显性
Add by Dom
显性-加性
Dom by Add
显性-显性
Dom by Dom
IA-1 OW1 TGW 3 RM85-RM186 1 RM7405-RM8084 15.43 1.32 3.65 2.92 11.06 8.17 -6.49 -2.29 -5.61 -14.63
IA-2 OW1 TGW 3 RM85-RM186 8 RM6976-RM7631 14.55 1.22 -0.20 -0.15 -1.15 -7.33 1.01 -12.62 -1.49 7.11
IA-3 OW1 NEG 5 RM6517-RM3170 11 RM5599-RM202 7.90 1.23 54.35 52.43 29.34 -17.72 66.90 -96.47 -111.77 -52.55
IA-4 OW1 NEG 6 RM276-RM1369 1 RM7405-RM8084 8.73 1.34 66.13 64.19 -156.91 -93.93 -17.74 -39.60 -63.95 96.94
IA-5 OW2 NEG 5 RM6229-RM289 7 RM3859-RM1306 5.28 1.92 16.05 4.43 78.99 17.93 13.54 -59.95 77.93 10.25
IA-6 OW2 NEG 11 RM4746-RM254 3 RM1350-RM487 5.49 2.05 20.12 1.88 39.89 130.61 -12.33 33.49 -75.32 -146.32
IA-7 OW2 NEG 11 RM4746-RM254 10 RM1146-RM25664 5.01 1.67 18.62 -30.10 -34.46 43.81 10.42 -97.83 36.29 71.52
IA-8 OW2 SSR 3 RM1350-RM487 1 RM572-RM129 5.43 2.04 0.47 5.70 17.32 22.18 -21.60 3.53 -14.12 -54.89
IA-9 OW2 SSR 3 RM1350-RM487 6 RM6395-RM1340 5.71 2.45 -9.59 -15.15 -0.19 -7.41 -7.56 -22.14 34.33 6.11
IA-10 OW2 SSR 5 RM1024-RM163 7 RM3859-RM1306 5.44 2.35 2.47 -6.13 -13.23 13.23 12.19 5.73 5.066 -41.14
IA-11 OW2 SSR 5 RM1024-RM163 9 RM6497-RM24085 5.67 2.23 1.21 -0.00 42.36 10.05 11.01 -24.85 -4.23 -37.28
IA-12 OW2 SSR 5 RM1024-RM163 10 RM590-RM1146 5.49 2.29 11.22 -9.96 -9.73 -14.86 -2.95 -36.15 37.65 11.41
IA-13 OW2 GL 7 RM3859-RM1306 11 RM4746-RM254 10.63 1.43 1.05 1.51 1.46 0.77 -1.19 -0.44 -1.49 -0.03
IA-14 OW2 GW 3 RM5639-RM1284 5 RM6229-RM289 17.48 1.18 0.46 0.75 -0.63 -1.88 0.68 -1.61 -0.85 2.20
IA-15 OW2 GW 3 RM5639-RM1284 12 RM7018-RM1227 17.57 1.18 -0.11 -1.15 0.08 -0.37 -1.31 -0.02 1.30 0.12
IA-16 OW2 GW 11 RM26652-RM4746 5 RM6229-RM289 25.85 1.91 -0.04 -0.06 -0.07 2.45 0.10 2.42 0.10 -2.32
IA-17 OW2 GW 11 RM26652-RM4746 8 RM6838-RM22418 28.02 2.03 0.17 -0.06 -0.08 2.12 -0.05 -2.86 0.07 -1.84
IA-18 OW2 TGW 8 RM6838-RM22418 7 RM3859-RM1306 13.57 1.39 -7.92 6.58 -19.26 -8.18 -5.14 7.88 2.00 19.47
IA-19 OW2 TGW 8 RM6838-RM22418 11 RM4746-RM254 13.12 1.56 4.33 9.93 -7.15 -16.13 5.78 6.95 -10.99 13.79
IA-20 OW2 GYP 3 RM1350-RM487 7 RM3859-RM1306 10.88 1.33 -7.87 1.96 -37.45 -37.77 15.86 1.93 -3.76 52.98
IA-21 OW2 GYP 3 RM1350-RM487 11 RM4746-RM254 8.69 1.30 -24.38 5.65 -12.24 6.35 -8.16 45.26 4.54 -8.83
IA-22 OW3 PN 11 RM5599-RM7240 1 RM3604-RM1287 6.27 1.82 -6.87 -8.03 -0.70 2.06 5.14 0.02 7.39 -10.36
IA-23 OW3 LWR 8 RM5637-RM6948 9 RM1328-RM1189 9.37 1.04 -0.02 0.07 -0.14 -1.38 -0.06 -1.17 -0.35 1.50
IA-24 OW3 GYP 5 RM5994-RM1237 1 RM3738-RM6470 7.80 1.22 -2.53 7.25 39.42 -13.38 -10.94 0.65 -74.54 -35.93
IA-25 OW3 GYP 5 RM5994-RM1237 6 RM8242-RM3138 9.46 1.45 7.72 15.93 -30.03 27.63 0.44 -75.59 -11.40 -11.70
IA-26 OW3 GYP 11 RM5599-RM7240 5 RM5994-RM1237 8.26 1.41 4.01 -19.14 -29.06 29.10 -1.18 -73.32 14.84 -9.05

Table 6

QTL underlying yield traits detected by ICIM-ADD (JICIM) mapping"

性状
Trait
Chr. 标记区间
Marker intervals
LOD值
LOD value
贡献率
R2(%)
LOD_OW1 LOD_OW2 LOD_OW3 Add_OW1 Add_OW2 Add_OW3
株高 PH 7 RM3859-RM20882 3.17 4.71 0.05 2.53 0.59 -1.48 8.27 4.56
穗长PL 1 RM493-RM7075 3.10 4.30 0.20 2.39 0.51 -0.28 -0.95 0.52
穗长PL 2 RM6611-RM6509 3.14 5.95 3.03 0.10 0.00 -1.40 -0.30 0.05
穗长PL 6 RM3827-RM3138 3.79 6.83 1.86 0.05 1.88 -0.99 0.17 -1.24
穗空粒数NEG 11 RM1341-RM206 3.40 7.73 0.12 1.26 2.03 5.48 -16.72 -29.72
结实率SSR 5 RM1366-RM289 3.42 5.97 3.27 0.15 0.00 21.44 -3.52 -0.33
结实率SSR 5 RM6229-RM18452 3.19 1.04 2.94 0.08 0.17 9.02 -1.54 2.36
穗粒密度GSD 8 RM7356-RM7631 4.02 5.84 1.91 0.80 1.30 -1.00 -0.94 -0.96
粒长GL 3 RM3545-RM6038 3.44 8.48 2.79 0.51 0.14 -0.20 -0.13 -0.04
粒长GL 3 RM6929-RM15281 3.35 8.53 2.78 0.36 0.20 -0.18 -0.10 0.04
粒宽GW 6 RM6818-RM20092 3.19 0.87 3.06 0.01 0.13 0.10 0.01 -0.22
粒厚GT 7 RM6776-RM418 3.33 5.31 2.12 0.75 0.47 0.03 -0.02 0.02
长宽比LWR 3 RM15281-RM1350 6.33 7.34 4.78 0.99 0.56 -0.19 -0.11 -0.08
[1] Xiao J H, Li J M, Yuan L P, Tanksley S D . Dominance is the major genetic basis of heterosis in rice as revealed by QTL analysis using molecular markers. Genetics, 1995,140:745-754.
doi: 10.1007/BF01441162 pmid: 7498751
[2] Xue W Y, Xing Y Z, Weng X Y, Zhao Y, Tang W J, Wang L, Zhou H J, Yu S B, Xu C G, Li X H, Zhang Q F . Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nat Genet, 2008,40:761-767.
[3] Mao H L, Sun S Y, Yao J L, Wang C R, Yu S B, Xu C G, Li X H . Linking differential domain functions of the GS3 protein to natural variation of gain size in rice. Proc Natl Acad Sci USA, 2010,107:19579-19584.
[4] Wang Y X, Xiong G S, Hu J, Jiang L, Yu H, Xu J, Fang Y X, Zeng L J, Xu E B, Xu J, Ye W J, Meng X B, Liu R F, Chen H Q, Jing Y H, Wang Y H, Zhu X D, Li J Y, Qian Q . Copy number variation at the GL7 locus contributes to grain size diversity in rice. Nat Genet, 2015,47:944-948.
doi: 10.1038/ng.3346 pmid: 26147619
[5] Ashikari M, Sakakibara H, Lin S Y, Yamamoto T, Takashi T, Nishimura A, Angeles E R, Qian Q, Kitano H, Matsuoka M . Cytokinin oxidase regulates rice grain production. Science, 2005,309:741-745.
doi: 10.1126/science.1113373 pmid: 15976269
[6] Song X J, Huang W, Shi M, Zhu M Z, Lin H X . A QTL for rice grain width and weight encodes a previously unknown RING- type E3 ubiquitin ligase. Nat Genet, 2007,39:623-630.
doi: 10.1038/ng2014 pmid: 17417637
[7] Weng J F, Gu S H, Wan X Y, Guo T, Su N, Lei C L, Zhang X, Cheng Z J, Guo X P, Wang J L, Jiang L, Zhai H Q, Wan J M . Isolation and initial characterization of GW5, a major QTL associated with rice grain width and weight. Cell Res, 2008,18:1199-1209.
doi: 10.1038/cr.2008.307 pmid: 19015668
[8] Wang S K, Wu K, Yuan Q B, Liu X Y, Liu Z B, Lin X Y, Zeng R Z, Zhu H T, Dong G J, Qian Q, Zhang G Q, Fu X D . Control of grain size, shape and quality by OsSPL16 in rice. Nat Genet, 2012,44:950-954.
doi: 10.1038/ng.2327 pmid: 22729225
[9] Ishimaru K, Hirotsu N, Madoka Y, Murakami N, Hara N, Onodera H, Kashiwagi T, Ujiie K, Shimizu B, Onishi A, Miyagawa H, Katoh E . Loss of function of the IAA-glucose hybrolase gene TGW6 enhances rice grain weight and increases yield. Nat Genet, 2013,45:707-711.
doi: 10.1038/ng.2612 pmid: 23583977
[10] He G, Luo X, Tian F, Li K, Zhu Z, Su W, Qian X, Fu Y, Wang X K, Sun C Q, Yang J C . Haplotype variation in structure and expression of a gene cluster associated with a quantitative trait locus for improved yield in rice. Genome Res, 2006,16:618-626.
doi: 10.1101/gr.4814006 pmid: 16606701
[11] Si L Z, Chen J Y, Huang X H, Gong H, Luo J H, Hou Q Q, Zhou T Y, Lu T T, Zhu J J , Shang-guan Y Y, Chen E W, Gong C X, Zhao Q, Jing Y Y, Zhao Y, Li Y, Cui L L, Fan D L, Lu Y Q, Weng Q J, Wang Y C, Zhang Q L, Liu K Y, Wei X H, An K G, An G, Han B. OsSPL13 controls grain size in cultivated rice. Nat Genet, 2016,48:447-456.
doi: 10.1038/ng.3518 pmid: 26950093
[12] 严斧 . 水稻的越冬性. 生物学通报, 1959, ( 12):551.
Yan F . Overwintering characteristic of rice. Bull Biol, 1959, ( 12):551 (in Chinese).
[13] 严斧 . 越冬再生水稻的研究现状与前景. 作物研究, 2012,26(1):79-84.
Yan F . Research status and prospect of overwintering rice. Crop Res, 2012,26(1):79-84 (in Chinese).
[14] 陈金铨, 刘志兵, 李义珍, 王玲, 高诚, 将家换 . 多年生粳稻留桩高度研究. 福建稻麦科技, 1996,14(4):22-24.
Chen J Q, Liu Z B, Li X Z, Wang L, Gao C, Jiang J H . The study on retained stubble height of perennial japonica rice. Fujian Sci Technol Rice & Wheat, 1996,14(4):22-24 (in Chinese).
[15] 缪国民, 沈培清, 徐东方 . 自然越冬稻桩再生栽培成功. 上海农业科学, 2001, ( 3):80-81.
Miu G M, Shen P Q, Xu D F . Sucessful cultivation of natural regnerating overwintering rice. Shanghai Agric Sci, 2001, ( 3):80-81(in Chinese).
[16] 刘传光, 伍时照, 冯正炼, 王雪梅, 阳小白 . 宿根性水稻D.S89-1越冬特性及其应用前景初探. 中国稻米, 1997, ( 1):13-15.
Liu C G, Wu S Z, Ma Z L, Wang X M, Yang X B . Overwintering characteristic and application prospects of ratooning rice D .S89-1 . China Rice, 1997, ( 1):13-15 (in Chinese).
[17] 刘传光, 伍时照, 王雪梅, 阳小白 . 宿根性水稻的越冬机制初探. 作物研究, 1999,13(4):12-13.
Liu C G, Wu S Z, Wang X M, Yang X B . Preliminary study on overwintering mechanism of ratoon rice. Crop Res, 1999,13(4):12-13.
[18] 赵正武, 王述民, 李世平, 严明建, 雷树凡, 吕直文, 袁项成, 冉彦秀 . 珍稀稻种资源越冬糯稻89-1研究初报. 杂交水稻, 2000,16(3):3-4.
Zhao Z W, Wang S M, Li S P, Yan M J, Lei S F, Lu Z W, Yuan X C, Ran Y X . A preliminary study on the overwintering glutinous rice 89-1. Hybrid Rice, 2000,16(3):3-4 (in Chinese with English abstract).
[19] 赵正武, 李仕贵, 雷树凡 . 糯稻89-1越冬性遗传研究. 中国农业科学, 2006,39:2399-2405.
Zhao Z W, Li S G, Lei S F . Genetic analysis on overwintering character of glutinous rice 89-1. Sci Agric Sin, 2006,39:2399-2405 (in Chinese with English abstract).
[20] 陈大洲, 肖叶青, 皮勇华, 邬文昌, 胡兰香, 罗世友, 吴小燕 . 越冬粳稻品种“东野1号”的选育. 作物研究, 2007,21(3):254.
Chen D Z, Xiao Y Q, Pi Y H, Wu W C, Hu L X, Luo S Y, Wu X Y . Breeding japonica rice varieties overwinter of “Dongwild 1”. Crop Res, 2007,21(3):254 (in Chinese).
[21] 贺浩华, 胡达礼, 傅军如, 刘宜宾, 李海波, 邹小云, 彭小松, 陈小荣, 贺晓鹏, 朱昌兰 . 水稻越冬品系及越冬不育系的选育. 江西农业大学学报, 2005,27:659-661.
He H H, Hu D L, Fu J R, Liu Y B, Li H B, Zou X Y, Peng X S, Chen X R, He X P, Zhu C L . Breeding of surviving-in-winter lines and surviving-in-winter sterile lines in rice. Acta Agric Univ Jiangxiensis, 2005,27:659-661 (in Chinese with abstract English).
[22] 傅军如, 李海波, 胡达礼, 刘宜宾, 邹小云, 贺浩华 . 水稻越冬品系的杂种优势及配合力分析. 江西农业大学学报, 2007,29:323-330.
Fu J R, Li H B, Hu D L, Liu Y B, Zou X Y, He H H . Analysis on heterosis and combining ability of surviving in winter (SW) lines in rice. Acta Agric Univ Jiangxiensis, 2007,29:323-330 (in Chinese with abstract English).
[23] Liang Y S, Zheng J, Yan C, Li X X, Liu S F, Zhou J J, Qin X J, Nan W, Yang Y Q, Zhang H M . Locating QTLs controlling overwintering trait in Chinese perennial Dongxiang wild rice. Mol Genet Genomics, 2018,293(1):81-93.
doi: 10.1007/s00438-017-1366-5 pmid: 28879498
[24] 申宗坦 . 作物育种学实验. 中国农业出版社, 1995. pp 112-114.
Shen Z D. . Crop Breeding Experiment. Beijing: Chinese Agricultural Press, 1995. pp 112-114(in Chinese).
[25] McCouch S R, Teytelman L, Xu Y B, Lobos K B, Clare K, Walton M, Fu B Y, Maghirang R, Li Z K, Xing Y Z, Zhang Q F, Kono I, Yano M, Fjellstrom R, DeClerrck G, Schneider D, Cartinhour S, Ware D, Stein L . Development of 2240 new SSR markers for rice ( Oryza sativa L.). DNA Res, 2002,9:199-207.
[26] 张凤娟, 张满良, 朱水芳 . 一种改进的水稻总DNA的快速提取方法. 植物检疫, 2004,18:330-332.
Zhang F J, Zhang M Y, Zhu S F . An improved rapid method of plant total DNA extraction. Plant Quarant, 2004,18:330-332 (in Chinese with English abstract).
[27] Li H H, Ribaut J M, Li Z H, Wang J K . Inclusive composite interval mapping (ICIM) for digenic epistasis of quantitative traits in biparental populations. Theor Appl Genet, 2008,116:243-260.
doi: 10.1007/s00122-007-0663-5 pmid: 17985112
[28] McCouch S R, Cho Y G, Yang M . Report on QTL nomenclature. Rice Genet Newsl, 1997,14:11-13.
[29] 王建康, 李慧慧, 张学才, 尹长斌, 黎裕, 马有志, 李新海, 邱丽鹃, 万建民 . 中国作物分子设计育种, 作物学报, 2011,37:191-201.
Wang J K, Li H H, Zhang X C, Yin C B, Li Y, Ma Y Z, Li X H, Qiu L J, Wan J M . Molecular design breeding in crops in China. Acta Agron Sin, 2011,37:191-201 (in Chinese with English abstract).
[30] 张玲, 李晓楠, 王伟, 杨生龙, 李清, 王嘉宇 . 水稻株型相关性状的QTL分析. 作物学报, 2014,40:2128-2135.
Zhang L, Li X N, Wang W, Yang S L, Li Q, Wang J Y . Analysis of QTLs for plant type traits in rice (Oryza sativa). Acta Agron Sin, 2014,40:2128-2135 (in Chinese with English abstract).
[31] 郭龙彪, 罗利军, 邢永忠, 徐才国, 王一平, 梅捍卫, 钟代彬, 应存山, 石春海 . 水稻汕优63重组自交系重要农艺性状的QTLs和互作分析. 农业生物技术学报, 2002,10:327-333.
Guo L B, Luo L J, Xiong Y Z, Xu C G, Wang Y P, Mei H W, Zhong D B, Ying C S, Shi C H . QTL mapping and interaction analysis for the important agronomic traits of Shanyou 63 recombinant inbred lines in rice. J Agric Biotechnol, 2002,10:327-333 (in Chinese with English abstract).
[32] 陈国威, 刘荣家, 高冠军, 张庆路, 何予卿 . 水稻粒形和垩白的QTL分析. 分子植物育种, 2018,16:840-847.
Chen G W, Liu R J, Gao G J, Zhang Q L, He Y Q . QTL analysis of grain shape and chalkiness of rice. Mol Plant Breed, 2018,16:840-847 (in Chinese with English abstract).
[33] 张光恒 . 稻谷粒型、稻米胚及延伸性性状遗传分析. 浙江大学硕士学位论文, 浙江杭州, 2002.
Zhang G H . Genetics Analysis of Grain Shape, Embryo and Elongation in Rice (Oryza sativa L.). MS Thesis of Zhejiang University, Hangzhou, Zhejiang, China, 2002.
[34] 谭友斌 . 利用高世代回交群体分析水稻粒型QTLs. 华中农业大学硕士学位论文, 湖北武汉, 2006.
Tan Y B . QTLs Analysis of Rice Grain Shape by Using Advanced Backcross Populations. MS Thesis of Huazhong Agricultural University, Wuhan, Hubei,China, 2006 (in Chinese with English abstract).
[35] 圣忠华, 朱子亮, 马宁, 李威, 贺记外, 魏详进, 邵高能, 王建龙, 胡培松, 唐绍清 . 超级稻品种中嘉早17产量相关性状QTL定位研究. 中国水稻科学, 2016,30:35-43.
Sheng Z H, Zhu Z L, Ma N, Li W, He J W, Wei X J, Sao G N, Wang J L, Hu P S, Tang S Q . QTL mapping of yield related traits in super rice variety Zhongjiaozao 17. Chin J Rice Sci, 2016, 30:34-43 (in Chinese with English abstract).
[36] 刘进, 李清, 张宇, 任春元, 杨贤莉, 姚晓云, 王嘉宇 . 不同年份水稻粒形性状的QTL分析. 核农学报, 2014,28:2153-2158.
Liu J, Li Q, Zhang Y, Ren C Y, Yan X L, Yao X Y, Wang J Y . Dissection of QTLs for grain shape traits in rice in different years. J Nucl Agric Sci, 2014,28:2153-2158 (in Chinese with English abstract).
[37] 刘忠良 . 粳稻粒型和粒重QTL定位研究. 东北农业大学硕士学位论文, 黑龙江哈尔滨, 2014.
Liu Z L . Study on QTL Mapping for Grain Shape and Weight of Japonica Rice. MS Thesis of Northeast Agricultural University, Harbin, Heilongjiang,China, 2014 (in Chinese with English abstract).
[38] 徐建龙, 薛庆中, 罗利军, 黎志康 . 水稻粒重及其相关性状的遗传解析. 中国水稻科学, 2002,16:7-11.
Xu J L, Xue Q Z, Luo L J, Li Z K . Genetic dissection of grain weight and its related traits in rice (Oryza sativa L.). Chin J Rice Sci, 2002,16:6-10 (in Chinese with English abstract).
[39] 高志强 . 水稻遗传图谱构建及粒形和粒重QTL定位. 中国农业科学院硕士学位论文, 北京, 2011.
Gao Z Q . QTL Mapping for Rice Grain Shape and Grain Weight Based on Constructed Genetic Linkage Map. MS Thesis of Chinese Academy of Agricultural Sciences, Beijing,China, 2011 (in Chinese with English abstract).
[40] 李兴星, 郑剑, 周军杰, 秦小健, 南文斌, 杨永清, 张汉马, 李贤勇, 梁永书 . 粳稻资源‘热粳35’重要农艺性状的QTLs定位. 植物生理学报, 2016,52:1176-1190.
Li X X, Zheng J, Zhou J J, Qin X J, Nan W B, Yang Y Q, Zhang H M, Li X Y, Liang Y S . Locating QTLs for important agronomic traits in japonica rice ‘Rejing 35’. Plant Physiol J, 2016,52:1176-1190 (in Chinese with English abstract).
[41] 谭震波, 沈利爽, 袁祚廉, 陆朝福, 陈英, 朱立煌, 周开达, 袁祚廉 . 水稻再生能力和头季稻产量性状的QTL定位及其遗传效应分析. 作物学报, 1997,23:289-295.
Tan Z B, Shen L S, Yuan Z L, Lu C F, Chen Y, Zhou K D, Zhu L H . Identification of QTLs for rationing ability and grain yield traits of rice and analysis of their genetic effects. Acta Agron Sin, 1997,23:289-295 (in Chinese with English abstract).
[42] Yu S B, Li J X, Xu C G, Tan Y F, Li X H, Zhang Q F . Identification of quantitative trait loci and epistatic interactions for plant height and heading date in rice. Theor Appl Genet, 2002,104:19-35.
doi: 10.1007/s00122-001-0772-5 pmid: 12582666
[43] Jiang G H, Xu C G, Li X H, He Y Q . Characterization of the main effects, epistatic effects and their environmental interactions of QTL on the genetic basis of plant height and heading date in rice. Agric Sci China, 2005,4:161-168.
[44] Liang Y S, Zhan X D, Wang H M, Gao Z Q, Lin Z C, Chen D B, Shen X H, Cao L Y, Cheng S H . Locating QTLs controlling several adult root traits in an elite Chinese hybrid rice. Gene, 2013,526:331-335.
doi: 10.1016/j.gene.2013.04.010 pmid: 23624393
[1] ZHANG Bo, PEI Rui-Qing, YANG Wei-Feng, ZHU Hai-Tao, LIU Gui-Fu, ZHANG Gui-Quan, WANG Shao-Kui. Mapping and identification QTLs controlling grain size in rice (Oryza sativa L.) by using single segment substitution lines derived from IAPAR9 [J]. Acta Agronomica Sinica, 2021, 47(8): 1472-1480.
[2] ZHOU Xin-Tong, GUO Qing-Qing, CHEN Xue, LI Jia-Na, WANG Rui. Construction of a high-density genetic map using genotyping by sequencing (GBS) for quantitative trait loci (QTL) analysis of pink petal trait in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(4): 587-598.
[3] LI Shu-Yu, HUANG Yang, XIONG Jie, DING Ge, CHEN Lun-Lin, SONG Lai-Qiang. QTL mapping and candidate genes screening of earliness traits in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(4): 626-637.
[4] SHEN Wen-Qiang, ZHAO Bing-Bing, YU Guo-Ling, LI Feng-Fei, ZHU Xiao-Yan, MA Fu-Ying, LI Yun-Feng, HE Guang-Hua, ZHAO Fang-Ming. Identification of an excellent rice chromosome segment substitution line Z746 and QTL mapping and verification of important agronomic traits [J]. Acta Agronomica Sinica, 2021, 47(3): 451-461.
[5] Dai-Ling LIU,Jun-Feng XIE,Qian-Rui HE,Si-Wei CHEN,Yue HU,Jia ZHOU,Yue-Hui SHE,Wei-Guo LIU,Wen-Yu YANG,Xiao-Ling WU. QTL analysis for relative contents of glycinin and β-conglycinin fractions from storage protein in soybean seeds under monoculture and relay intercropping [J]. Acta Agronomica Sinica, 2020, 46(3): 341-353.
[6] WU Hai-Tao, ZHANG Yong, SU Bo-Hong, Lamlom F Sobhi, QIU Li-Juan. Development of molecular markers and fine mapping of qBN-18 locus related to branch number in soybean (Glycine max L.) [J]. Acta Agronomica Sinica, 2020, 46(11): 1667-1677.
[7] WANG Cun-Hu,LIU Dong,XU Rui-Neng,YANG Yong-Qing,LIAO Hong. Mapping of QTLs for leafstalk angle in soybean [J]. Acta Agronomica Sinica, 2020, 46(01): 9-19.
[8] YANG Xiao-Meng, LI Xia, PU Xiao-Ying, DU Juan, Muhammad Kazim Ali, YANG Jia-Zhen, ZENG Ya-Wen, YANG Tao. QTL mapping for total grain anthocyanin content and 1000-kernel weight in barley recombinant inbred lines population [J]. Acta Agronomica Sinica, 2020, 46(01): 52-61.
[9] WANG Da-Chuan,WANG Hui,MA Fu-Ying,DU Jie,ZHANG Jia-Yu,XU Guang-Yi,HE Guang-Hua,LI Yun-Feng,LING Ying-Hua,ZHAO Fang-Ming. Identification of rice chromosome segment substitution Line Z747 with increased grain number and QTL mapping for related traits [J]. Acta Agronomica Sinica, 2020, 46(01): 140-146.
[10] Li-Juan WEI,Rui-Ying LIU,Li ZHANG,Zhi-You CHEN,Hong YANG,Qiang HUO,Jia-Na LI. Detection of stem height QTL and integration of the loci for plant height- related traits in B. napus [J]. Acta Agronomica Sinica, 2019, 45(6): 818-828.
[11] ZHANG Chun-Xiao,LI Shu-Fang,JIN Feng-Xue,LIU Wen-Ping,LI Wan-Jun,LIU Jie,LI Xiao-Hui. QTL mapping of salt and alkaline tolerance-related traits at the germination and seedling stage in maize (Zea mays L.) using three analytical methods [J]. Acta Agronomica Sinica, 2019, 45(4): 508-521.
[12] WANG Xu-Hong,LI Ming-Xiao,ZHANG Qun,JIN Feng,MA Xiu-Fang,JIANG Shu-Kun,XU Zheng-Jin,CHEN Wen-Fu. Effect of indica pedigree on yield and milling and appearance qualities in the offspring of indica/japonica cross [J]. Acta Agronomica Sinica, 2019, 45(4): 538-545.
[13] LIU Jiang-Ning,WANG Chu-Xin,ZHANG Hong-GEN,MIAO Yi-Xu,GAO Hai-Lin,XU Zuo-Peng,LIU Qiao-Quan,TANG Shu-Zhu. Mapping of QTLs for resistance to rice black-streaked dwarf disease [J]. Acta Agronomica Sinica, 2019, 45(11): 1664-1671.
[14] Wen-Xiang WANG,Wen CHU,De-Sheng MEI,Hong-Tao CHENG,Lin-Lin ZHU,Li FU,Qiong HU,Jia LIU. Quantitative trait loci mapping for branch angle and candidate gene screening in Brassica napus L. [J]. Acta Agronomica Sinica, 2019, 45(1): 37-45.
[15] Chao LI,Zhi-Kun LI,Qi-Shen GU,Jun YANG,Hui-Feng KE,Li-Qiang WU,Guo-Ning WANG,Yan ZHANG,Jin-Hua WU,Gui-Yin ZHANG,Yuan-Yuan YAN,Zhi-Ying MA,Xing-Fen WANG. Molecular Evaluation for Chromosome Segment Substitution Lines of Gossypium barbadense and QTL Mapping for Fiber Quality and Yield [J]. Acta Agronomica Sinica, 2018, 44(8): 1114-1126.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!