Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2020, Vol. 46 ›› Issue (3): 440-447.doi: 10.3724/SP.J.1006.2020.94080

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Recovery characteristics of Bt insecticidal protein and relative physiological mechanisms after high temperature stress termination in square of Bt cotton

Zhen-Yu LIU,Gui-Xia WANG,Li-Nan LI,Ze-Zhou CAI,Pan-Pan LIANG,Xin-Ling WU,Xiang ZHANG,De-Hua CHEN()   

  1. Jiangsu Key Laboratory of Crop Genetics and Physiology / Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, Jiangsu, China
  • Received:2019-05-27 Accepted:2019-09-26 Online:2020-03-12 Published:2019-10-14
  • Contact: De-Hua CHEN E-mail:cdh@yzu.edu.cn
  • Supported by:
    This study was supported by the National Natural Science Foundation of China(31671613);the China Agriculture Research System (Cotton Post Expert Project)(CARS-18-18);the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)

Abstract:

The experiments were conducted at Key Laboratory of Genetics and Physiology of Yangzhou University. The conventional cultivar Sikang-1 and hybrid cultivar Sikang-3 were used as the experimental materials. The potted cotton at squaring stage was moved to artificial climatic chamber with 38℃ for 72 h , and 38℃ for 96 h respectively in 2017 and 2018 cotton growth season, and moved to natural conditions, then the squares were collected to measure the Bt protein concentration and nitrogen metabolic physiology at 0, 12, 24, 48, 72, 96 hours respectively after the high temperature termination. The square Bt insecticidal protein contents were able to recover to the corresponding control level, the time for the recovery was in need of longer as the stressed high temperature period increased. In 72 h high temperature treatment, the square Bt insecticidal protein content could recover to the corresponding control level at 72 h for Sikang-1 and at 48 h for Sikang-3. In 96 h high temperature treatment, the square Bt insecticidal protein content could recover to the corresponding control level at 96 h for Sikang-1 and at 72 h for Sikang-3. There were significantly positive correlations of Bt toxin content with soluble protein content, glutamate pyruvate transaminase activity and glutamate oxaloacetate transaminase activity (the correlation coefficients were 0.964 **, 0.981 **, and 0.971 **, respectively), and significantly negative correlations of Bt toxin content with free amino acid contents, and activitied of protease and peptidase (the correlation coefficients were -0.894 **, -0.912 **, and -0.834 **, respectively). Therefore, the recovery degree of Bt insecticidal protein content of cotton square can be predicted according to the duration of high temperature stress, reasonably controlling Helicoverpa armigera and related pests in production.

Key words: Bt cotton, square, high temperature stress, Bt protein, nitrogen metabolism

Fig. 1

Changes of insecticidal protein contents in flower buds of Bt cotton after 72 h high temperature stress termination Bt toxin contents at the recovery time with different lowercase letters are significantly different from the control at P < 0.05 under the same high temperature duration for the same cultivar. T: reatments for 72 hours; CK: control."

Fig. 2

Changes of insecticidal protein contents in flower buds of Bt cotton after 96 h high temperature stress termination Bt toxin contents at the recovery time with different lowercase letters are significantly different from the control at P < 0.05 under the same high temperature duration for the same cultivar. T: treatments for 96 hours; CK: control."

Table 1

Changes of square soluble protein and free amino acid contents with time after high temperature stress termination"

测定指标
Tested index
品种
Variety
处理
Treatment
恢复时间 Recovery time
0 h 12 h 24 h 48 h 72 h 96 h
可溶性蛋白含量
Soluble protein content
(mg g-1 FM)
SK-1 CK 10.19 a 10.25 a 10.25 a 10.19 a 10.16 a 10.26 a
38℃-72 h 4.77 d 5.12 d 6.45 c 8.56 b 10.36 a 10.36 a
38℃-96 h 4.15 e 4.44 e 5.43 d 6.86 c 8.47 b 10.09 a
SK-3 CK 12.10 a 12.20 a 12.27 a 12.25 a 12.18 a 12.24 a
38℃-72 h 6.26 d 7.42 c 9.17 b 12.05 a 12.23 a 12.27 a
38℃-96 h 5.93 e 6.80 d 7.88 c 10.89 a 12.02 a 12.23 a
游离氨基酸含量
Free amino acid content
(μmol g-1 FM)
SK-1 CK 255.21 a 250.16 a 249.88 a 251.92 a 253.55 a 249.60 a
38℃-72 h 747.74 a 693.73 b 626.64 c 476.67 d 240.14 d 243.28 d
38℃-96 h 974.31 a 923.16 b 854.25 c 689.28 d 500.86 e 252.38 e
SK-3 CK 277.06 a 273.20 a 281.32 a 277.44 a 275.88 a 272.99 a
38℃-72 h 681.54 a 607.52 b 520.30 c 286.08 d 279.63 d 272.75 d
38℃-96 h 905.24 a 829.97 b 742.43 c 346.71 d 273.32 e 274.59 e

Table 2

Changes of square GOT and GPT activities with time after high temperature stress termination"

测定指标
Tested index
品种
Variety
处理
Treatment
恢复时间 Recovery time
0 h 12 h 24 h 48 h 72 h 96 h
GOT
(μmol g-1 h-1)
SK-1 CK 12.71 a 12.79 a 12.69 a 12.95 a 12.40 a 12.49 a
38℃-72 h 3.79 e 4.62 d 6.05 c 8.59 b 12.77 a 12.61 a
38℃-96 h 2.20 f 2.84 e 3.99 d 6.52 c 9.40 b 13.59 a
SK-3 CK 15.37 a 15.25 a 15.34 a 15.24 a 15.34 a 15.19 a
38℃-72 h 6.36 d 8.51 c 11.76 b 15.84 a 15.62 a 15.72 a
38℃-96 h 4.31 e 5.77 d 7.71 c 13.53 a 15.93 a 15.82 a
GPT
(μmol g-1 h-1)
SK-1 CK 14.19 a 14.24 a 14.35 a 14.19 a 14.25 a 14.30 a
38℃-72 h 4.73 e 5.78 d 7.14 c 9.72 b 14.35 a 14.61 a
38℃-96 h 3.30 f 4.09 e 5.08 d 7.42 c 10.54 b 14.21 a
SK-3 CK 17.05 a 16.63 a 17.57 a 17.07 a 17.60 a 17.34 a
38℃-72 h 6.45 d 8.88 c 11.59 b 17.57 a 17.30 a 17.25 a
38℃-96 h 4.81 e 5.86 d 8.17 c 14.64 a 17.20 a 17.49 a

Table 3

Changes of square protease and peptidase activities with time after high temperature stress termination"

测定指标
Tested index
品种
Variety
处理
Treatment
恢复时间 Recovery time
0 h 12 h 24 h 48 h 72 h 96 h
蛋白酶活性
Protease activity
(μg g-1 h-1)
SK-1 CK 34.62 a 34.08 a 34.88 a 33.86 a 35.07 a 34.58 a
38℃-72 h 125.79 a 114.46 b 100.05 c 73.23 d 35.43 d 34.88 d
38℃-96 h 153.95 a 145.35 b 131.47 c 106.43 d 76.00 e 35.35 e
SK-3 CK 39.84 a 40.76 a 40.98 a 40.67 a 39.74 a 40.19 a
38℃-72 h 114.88 a 99.46 b 83.75 c 39.08 d 41.16 d 39.94 d
38℃-96 h 141.91 a 122.30 b 105.78 c 62.09 d 43.01 e 41.49 e
肽酶活性
Peptidase activity
(μmol g-1 h-1)
SK-1 CK 1.28 a 1.28 a 1.29 a 1.27 a 1.28 a 1.27 a
38℃-72 h 3.43 a 3.24 a 3.06 ab 2.46 b 1.26 d 1.27 d
38℃-96 h 4.07 a 3.91 b 3.72 c 3.15 d 2.50 e 1.30 f
SK-3 CK 1.64 a 1.61 a 1.62 a 1.62 a 1.61 a 1.60 a
38℃-72 h 3.20 a 2.77 b 2.32 c 1.56 d 1.62 d 1.59 d
38℃-96 h 3.79 a 3.48 b 3.11 c 2.07 d 1.59 e 1.59 e
[1] 郑志明, 黄磊, 袁连卿, 孙玉德 . 转基因抗虫棉的特性及病虫草害综合防治技术. 见: 陈汝涌, 赵永民, 韩吉宝, 李明远主编. 黄河三角洲棉花生产发展论坛论文集. 山东: 中国社会出版社, 2005. pp 231-235.
Zheng Z M, Huang L, Yuan L Q, Sun Y D. The characteristics of transgenic insect-resistant cotton and pests integrated control techniques. In: Chen R Y, Zhao Y M, Han J B, Li M Y, eds. Collected Papers of the Forum on Cotton Production and Development in the Yellow River Delt. Shandong: China Society Press, 2005. pp 231-235(in Chinese).
[2] 郭香墨, 范术丽, 王红梅, 严根土 . 我国棉花育种技术的创新与成就. 棉花学报, 2007,19:323-330.
Guo X M, Fan S L, Wang H M, Yan G T . Achievements of technical innovation about cotton genetics and breeding in China. Cotton Sci, 2007,19:323-330 (in Chinese with English abstract).
[3] 夏敬源, 邹奎, 马志强, 夏文省, 柏长青 . 国产转基因抗虫棉技术集成创新与推广应用. 中国棉花, 2006,33(10):2-5.
Xia J Y, Zou K, Ma Z Q, Xia W X, Bai C Q . Domestic transgenic cotton technology integration innovation and application. China Cotton, 2006,33(10):2-5 (in Chinese).
[4] 魏艳丽, 黄玉杰, 李红梅, 孙红星, 杨合同 . 棉花转基因技术研究. 山东科学, 2008,21(3):38-41.
Wei Y L, Huang Y J, Li H M, Sun H X, Yang H T . A survey of cotton transgene technology. Shandong Sci, 2008,21(3):38-41 (in Chinese with English abstract).
[5] 邢朝柱, 靖深蓉, 崔学芬, 郭立平, 王海林, 袁有禄 . 转Bt基因棉杀虫蛋白含量时空分布及对棉铃虫产生抗虫的影响. 棉花学报, 2011,13:11-15.
Xing C Z, Jing S R, Cui X F, Guo L P, Wang H L, Yuan Y L . The spatio-temporal distribution of Bt (Bacillus thuringiensis) insecticidal protein and the effect of transgenic Bt cotton on bollworm resistance. Cotton Sci, 2001,13:11-15 (in Chinese with English abstract).
[6] 温四民, 董合忠, 辛呈松 . Bt棉抗虫性差异表达的研究进展. 河南农业科学, 2007, ( 1):9-13.
Wen S M, Dong H Z, Xin C S . Research progress on the differential expression of insect resistance of Bt cotton. Henan Agric Sci, 2007, ( 1):9-13 (in Chinese).
[7] 王永慧, 陈建平, 高进, 张祥, 陈源, 陈德华 . 盐胁迫对Bt棉棉蕾杀虫蛋白表达的影响. 应用生态学报, 2018,29:3017-3023.
Wang Y H, Chen J P, Gao J, Zhang X, Chen Y, Chen D H . Effect of soil salinity on insecticidal protein expression in flower buds of Bt cotton. Chin J Appl Ecol, 2018,29:3017-3023 (in Chinese with English abstract).
[8] 赵红霞, 王士杰, 朱继杰, 李妙, 王国印 . 不同遗传背景转基因抗虫棉Bt蛋白表达与氮代谢关系研究. 棉花学报, 2018,30:498-504.
Zhao H X, Wang S J, Zhu J J, Li M, Wang G Y . Relationship between Bt protein expression and nitrogen metabolism in insect-resistant transgenic cotton lines with different genetic backgrounds. Cotton Sci, 2018,30:498-504 (in Chinese with English abstract).
[9] 肖海兵, 王鹏军, 李先锋, 董红强, 杨明禄 . 转Bt棉主茎叶Cry1Ab/c蛋白含量的时空分布分析. 生物技术通报, 2017,33(12):108-111.
Xiao H B, Wang P J, Li X F, Dong H Q, Yang M L . Tempo-spatial distribution of Cry1Ab/c protein in the main stem leaves of transgenic Bt cotton. Biotechnol Bull, 2017,33(12):108-111 (in Chinese with English abstract).
[10] Benedict J H, Altman D W, Deaton W R, Kohel R J, Ring D R, Berberich S A, Sachs E S . Field performance of cottons expressing transgenic CrylA insecticidal proteins for resistance to Helicoverpa. J Econ Entomol, 1996,89:230-238.
[11] Chen D H, Ye G Y, Yang C Q, Chen Y, Wu Y K . The effect of high temperature on the insecticidal properties of Bt cotton. Environ Exp Bot, 2005,53:333-342.
[12] 王俊, Eltayib A, 花明明, 衡丽, 吕春花, 陈德华. 高温胁迫对Bt棉铃壳中Bt蛋白含量及氮代谢的影响. 应用生态学报, 2015,26:3202-3206.
Wang J, Eltayib A, Hua M M, Heng L, Lyu C H, Chen D H . Effects of high temperature on Bt protein content and nitrogen metabolic physiology in boll wall of Bt cotton. Chin J Appl Ecol, 2015,10:3202-3206 (in Chinese with English abstract).
[13] 王淑民 . 影响Bt转基因棉花抗虫效果因素. 棉花学报, 1999,11:336.
Wang S M . Factors affecting the insect resistance of Bt transgenic cotton. Cotton Sci, 1999,11:336 (in Chinese).
[14] Warren G W . Field evaluation of transgenic tobacco containing a Bt insecticial protein gene. J Econ Entomol, 1992,85:1651-1659.
[15] Fitt G P, Mares C L, Liewellyn D J . Field evaluation and potential ecologicalimpact of transgenic cottons in Australia. Biocontrol Sci Technol, 1994,4:535-548.
[16] Chen Y, Wen Y, Chen Y, Zhang X, Wang Y, Chen D . The recovery of Bt toxin content after temperature stress termination in transgenic cotton. Spanish J Agric Res, 2013,11:438-446.
[17] 陈松, 吴敬音, 何小兰, 黄骏麒, 周宝良, 张荣铣 . 转基因抗虫棉组织中Bt毒蛋白表达量的ELISA测定. 江苏农业学报, 1997,13(3):27-29.
Chen S, Wu J Y, He X L, Huang J Q, Zhou B L, Zhang R X . Quantification using ELISA of Bacillus thuringiensis insecticidal protein expressed in the tissue of transgenic insect resistant cotton. Jiangsu J Agric Sci, 1997,13(3):27-29 (in Chinese with English abstract).
[18] 邵金良, 黎其万, 董宝生, 刘宏程, 束继红 . 茚三酮比色法测定茶叶中游离氨基酸总量. 中国食品添加剂, 2008, ( 2):162-165.
Shao J L, Li Q W, Dong B S, Liu H C, Shu J H . Determination of total free-amino acid in tea by Nihydrin colorimetry. China Food Additives, 2008, ( 2):162-165 (in Chinese with English abstract).
[19] 扬州大学农学院. 作物栽培生理研究法实验讲义. 扬州: 扬州大学出版社, 2007. pp 3-6.
Agricultural College, Yangzhou University. Crop Cultivation Physiological Study Lab Handouts. Yangzhou: Yangzhou University Press, 2007. pp 3-6(in Chinese).
[20] 吴良欢, 蒋式洪, 陶勤南 . 植物转氨酶(GOT 和 GPT)活度比色测定方法及其应用. 土壤通报, 1998,29(3):41-43.
Wu L H, Jiang S H, Tao Q N . Plant aminotransferase (GOT and GPT) determination method and its application of activity colorimetric. Chin J Soil Sci, 1998,29(3):41-43 (in Chinese).
[21] 邹琦 . 植物生理学实验指导. 北京: 中国农业出版社, 2000.
Zou Q. Experimental Guide of Plant Physiology. Beijing: China Agriculture Press, 2000 (in Chinese).
[22] 路献勇, 李淑英, 朱加保, 程福如, 刘方志, 於春 . 昼夜不同温度对2种Bt棉苗期叶片杀虫蛋白表达量和棉铃虫死亡率的影响. 中国农学通报, 2015,31(36):103-108.
Lu X Y, Li S Y, Zhu J B, Chen F R, Liu F Z, Yu C . Effects of alternating temperatures day and night on cotton bollworm mortality and insecticidal protein expression of two kinds of Bt cottons. Chin Agric Sci Bull, 2015,31(36):103-108 (in Chinese with English abstract).
[23] 陈源, 韩勇, 王俊, 花明明, 顾超, 李国生, 张祥, 陈德华 . 高温对Bt棉盛蕾期蕾中Bt蛋白表达及氮代谢生理的影响. 应用生态学报, 2014,25:2623-2628.
Chen Y, Han Y, Wang J, Hua M M, Gu C, Li G S, Zhang X, Chen D H . Effects of high temperature on Bt proteins expression and nitrogen metabolic physiology in square of Bt cotton at the peak squaring stage. Chin J Appl Ecol, 2014,25:2623-2628 (in Chinese with English abstract).
[24] 陈德华, 杨长琴, 陈源, 聂安全, 吴云康 . 高温胁迫对Bt棉叶片杀虫蛋白表达量和氮代谢影响的研究. 棉花学报, 2003,15:288-292.
Chen D H, Yang C Q, Chen Y, Nie A Q, Wu Y K . The effects of the high temperature stress on the leaf Bt protein content and nitrogen metabolism of Bt cotton. Cotton Sci, 2003,15:288-292 (in Chinese with English abstract).
[1] CAO Liang, DU Xin, YU Gao-Bo, JIN Xi-Jun, ZHANG Ming-Cong, REN Chun-Yuan, WANG Meng-Xue, ZHANG Yu-Xian. Regulation of carbon and nitrogen metabolism in leaf of soybean cultivar Suinong 26 at seed-filling stage under drought stress by exogenous melatonin [J]. Acta Agronomica Sinica, 2021, 47(9): 1779-1790.
[2] LUO Kai, XIE Chen, WANG Jin, WANG Tian, HE Shun, YONG Tai-Wen, YANG Wen-Yu. Effect of exogenous plant growth regulators on carbon-nitrogen metabolism and flower-pod abscission of relay strip intercropping soybean [J]. Acta Agronomica Sinica, 2021, 47(4): 752-760.
[3] LYU Teng-Fei, SHEN Jie, DAI Zou, MA Peng, YANG Zhi-Yuan, ZHENG Chuan-Gang, MA Jun. Effects of combined application of slow release nitrogen fertilizer and urea on carbon and nitrogen accumulation in mechanical transplanted hybrid rice [J]. Acta Agronomica Sinica, 2021, 47(10): 1966-1977.
[4] XIN Zheng-Qi, DAI Huan-Huan, XIN Yu-Feng, HE Xiao, XIE Hai-Yan, WU Neng-Biao. Effects of exogenous 2,4-Epibrassinolide on nitrogen metabolism and TAs metabolism of Atropa belladonna L. under NaCl stress [J]. Acta Agronomica Sinica, 2021, 47(10): 2001-2011.
[5] YI Qiu-Xiang,LIU Ying,CHANG Cun,ZHONG Rui-Sen. Estimation of cotton Car/Chla ratio by hyperspectral vegetation indices and partial least square regression [J]. Acta Agronomica Sinica, 2020, 46(8): 1266-1274.
[6] Jing-Nan ZOU,Qi YU,Xi-Jun JIN,Ming-Yao WANG,Bin QIN,Chun-Yuan REN,Meng-Xue WANG,Yu-Xian ZHANG. Effects of exogenous melatonin on physiology and yield of soybean during seed filling stage under drought stress [J]. Acta Agronomica Sinica, 2020, 46(5): 745-758.
[7] LU Hai-Qin, CHEN Li, CHEN Lei, ZHANG Ying-Chuan, WEN Jing, YI Bin, TU Jing-Xing, FU Ting-Dong, SHEN Jin-Xiong. Mechanism research of Bna-novel-miR311-HSC70-1 module regulating heat stress response in Brassica napus L. [J]. Acta Agronomica Sinica, 2020, 46(10): 1474-1484.
[8] Ke DANG,Xiang-Wei GONG,Guang-Hua CHEN,Guan ZHAO,Long LIU,Hong-Lu WANG,Pu YANG,Bai-Li FENG. Nitrogen accumulation, metabolism, and yield of proso millet in proso millet- mung bean intercropping systems [J]. Acta Agronomica Sinica, 2019, 45(12): 1880-1890.
[9] Jian-Fei ZHOU,Yun-Jie WU,Gang XUE,An-Qian ZHANG,Pei TIAN,Yu-Fu PENG,Tie-Zhao YANG. Relationship between GS isoenzyme activity and nitrogen transportation in flue-cured tobacco leaves [J]. Acta Agronomica Sinica, 2019, 45(1): 111-117.
[10] Rong-Tian LI,Xin-Yu WANG,Chong-Bing TIAN,Qing ZHOU,Chang-Hua LIU. Spatio-temporal Expression of Bt Protein and Stem Borer Resistance of Transgenic Early Japonica Rice with cry1C* or cry2A* Gene [J]. Acta Agronomica Sinica, 2018, 44(12): 1829-1836.
[11] Ke-Huan LU,Xing LIU,Yi YANG,Zhi-Hua LIAO,Neng-Biao WU. Effect of Exogenous Ca 2+ on Physiological Characteristics and Secondary Metabolites accumulation of Atropa belladonna L. Seedlings under UV-B Stress [J]. Acta Agronomica Sinica, 2018, 44(10): 1527-1538.
[12] LI Yuan, LI Ya-Bing, HU Da-Peng, WANG Jun, HENG Li, ZHANG Xiang, CHEN Yuan, CHEN De-Hua. Effects of Waterlogging on Bt Protein Content and Nitrogen Metabolism in Square of Bt Cotton [J]. Acta Agron Sin, 2017, 43(11): 1658-1666.
[13] GAO Lin,YANG Gui-Jun,LI Chang-Chun,FENG Hai-Kuan,XU Bo,WANG Lei,DONG Jin-Hui,FU Kui. Application of an Improved Method in Retrieving Leaf Area Index Combined Spectral Index with PLSR in Hyperspectral Data Generated by Unmanned Aerial Vehicle Snapshot Camera [J]. Acta Agron Sin, 2017, 43(04): 549-557.
[14] HENG Li,HU Da-Peng,WANG Gui-Xia,LYU Chun-Hua,ZHANG Xiang,CHEN Yuan,CHEN De-Hua. Effect of High Temperature Stress on Bt Insecticidal Protein Content and Nitrogen Metabolism of Square in Bt Cotton [J]. Acta Agron Sin, 2016, 42(09): 1374-1380.
[15] ZHANG Zu-Jian,WANG Qing-Qing,LANG You-Zhong,WANG Chun-Ge,ZHU Qing-Sen,YANG Jian-Chang. Effects of High Temperature Stress at Heading Stage on Pollination and Fertilization of Different Types of Rice Variety [J]. Acta Agron Sin, 2014, 40(02): 273-282.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!