Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2020, Vol. 46 ›› Issue (9): 1416-1429.doi: 10.3724/SP.J.1006.2020.94174

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Effects of chemical topping with fortified mepiquat chloride on photosynthetic characteristics of cotton leaves under different nitrogen rates

SHI Xiao-Juan1(), HAN Huan-Yong2,*(), WANG Fang-Yong2, HAO Xian-Zhe1, GAO Hong-Yun1, LUO Hong-Hai1,*()   

  1. 1 College of Agriculture, Shihezi University, Shihezi 832000, Xinjiang, China
    2 Cotton Institute, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi 832000, Xinjiang, China
  • Received:2019-11-11 Accepted:2020-04-15 Online:2020-09-12 Published:2020-05-06
  • Contact: Huan-Yong HAN,Hong-Hai LUO E-mail:1498975919@qq.com;hanhy1@163.com;luohonghai79@163.com
  • Supported by:
    National Key Research and Development Program of China(2017YFD0101600);Innovation Team in Key Areas of Xinjiang Production and Construction Crops(2017CB011);National Science and Technology Major of Xinjiang Production and Construction Crops(2016AA001-2,4)

Abstract:

This study aims to explore the effects of fortified mepiquat chloride (25% DPC, 1,1-dimethyl piperidinium chloride) on cotton leaf photosynthetic regulation under different nitrogen fertilizations. Field experiments were used Xinluzao 53 and conducted split plot arrangement with three nitrogen (N) fertilizer levels [150 (N1), 300 (N2), 450 (N3) kg hm-2] and three DPC+ doses [450 (P1), 750 (P2), 1050 (P3) mL hm-2]. Chlorophyll content, leaf area, gas exchange, chlorophyll fluorescence parameters and dry matter accumulation were investigated. With the increasing nitrogen application level, the chlorophyll content, leaf area, gas exchange parameters, chlorophyll fluorescence parameters and reproductive organs dry matter accumulation were increased first and then decreased. P1N1, P2N2, and P3N3 treatments had greater reproductive organ dry matter accumulation, chlorophyll content, net photosynthetic rate (Pn), actual photochemical efficiency (ФPSII), electron transfer rate (ETR), and lower non-photochemical quenching (NPQ). N2P2 treatment increased chlorophyll content, Pn, Tr, Gs, ФPSII, ETR, reproductive organs dry matter accumulation by 15.52%, 29.39%, 27.97%, 36.77%, 23.28%, 23.55%, 8.41%-22.24% respectively, while reduced NPQ by 34.54%, compared with other counterparts. The correlation analysis showed that the dry matter accumulation was significantly positively correlated with chlorophyll content, leaf area, Pn, Gs, ФPSII, and significantly negatively correlated with NPQ. In conclusion, the application of nitrogen fertilizer at 300 kg hm-2 in combination with DPC+(750 mL hm-2) improved leaf photosynthetic characteristics and promoted the distribution of photosynthates to reproductive organs due to increased dry matter accumulation.

Key words: cotton, nitrogen application rate, DPC+, chemical topping, dry matter accumulation

Fig. 1

Effects of chemical capping on cotton chlorophyll contents under different nitrogen rates FF: full flowering stage; FB: full bolling stage; BO: boll opening stage; N1: low N rate (150 kg hm-2); N2: middle N rate (300 kg hm-2); N3: high N rate (450 kg hm-2); P0: artificial topping; P1: low dose of DPC+ (450 mL hm-2); P2: middle dose of DPC+ (750 mL hm-2); P3: high dose of DPC+ (1050 mL hm-2)."

Table 1

Effects of chemical capping on cotton leaf area (m2 hm-2) index under different nitrogen rates"

处理
Treatment
2013 2014
盛花期
Full flowering
盛铃期
Full boll
吐絮期
Boll opening
盛花期
Full flowering
盛铃期
Full boll
吐絮期
Boll opening
N1 22608 c 38656 c 36204 c 22207 c 38556 c 36604 c
N2 27345 b 41950 b 38904 b 26945 b 41900 b 39004 b
N3 28409 a 43090 a 40113 a 28298 a 43006 a 40127 a
P1 26635 a 42571 a 39506 a 26280 a 42238 a 39650 a
P2 26679 a 41392 ab 38495 ab 26398 a 41170 a 38379 b
P3 25022 b 39923 c 37555 b 24733 b 39795 b 37781 b
P0 26146 a 41041 bc 38072 b 25857 a 41413 a 38502 b
N1P0 22399 f 38269 bc 36059 e 21997 fg 38169 fg 36461 de
N1P1 23900 e 39967 b 37356 de 23498 e 39766 def 37959 cd
N1P2 22768 ef 39074 bc 36091 e 22371 ef 38776 efg 36489 de
N1P3 21365 f 37314 c 35307 e 20964 g 37514 g 35508 e
N2P0 27337 bcd 42502 a 39209 abcd 26938 cd 42003 abc 38611 bc
N2P1 26973 cd 43296 a 39713 abc 26575 cd 43196 ab 39912 abc
N2P2 28800 ab 42247 a 39237 abcd 28399 ab 42047abc 38936 bc
N2P3 26269 d 39753 b 37456 cde 25870 d 40354 cde 38556 bc
N3P0 28901 ab 42351 a 38947 bcd 28635 ab 44069 a 40435 ab
处理
Treatment
2013 2014
盛花期
Full flowering
盛铃期
Full boll
吐絮期
Boll opening
盛花期
Full flowering
盛铃期
Full boll
吐絮期
Boll opening
N3P1 29033 a 44451 a 41448 a 28766 a 43750 a 41081 a
N3P2 28469 abc 42854 a 40157 ab 28425 ab 42687 ab 39712 abc
N3P3 27747 bcd 42702 a 39902 ab 27366 bc 41517 bcd 39280 abc
N * * * * * *
P * * * * * *
N×P * ns ns * ns ns

Fig. 2

Effects of chemical capping on cotton gas exchange parameters under different nitrogen rates (2014) Abbreviations are the same as those given in Fig. 1."

Fig. 3

Effects of chemical capping on cotton Fv/Fm under different nitrogen rates Abbreviations are the same as those given in Fig. 1."

Table 2

Effects of chemical capping on cotton ФPSII under different nitrogen rates"

处理
Treatment
2013 2014
盛花期
Full flowering
盛铃期
Full boll
吐絮期
Boll opening
盛花期
Full flowering
盛铃期
Full boll
吐絮期
Boll opening
N1 0.49 a 0.38 a 0.32 b 0.36 c 0.29 c 0.16 c
N2 0.57 a 0.43 a 0.36 a 0.50 a 0.35 a 0.26 a
N3 0.49 a 0.38 a 0.34 ab 0.47 b 0.31 b 0.22 b
P1 0.50 a 0.40 a 0.35 a 0.45 b 0.31 b 0.22 b
P2 0.52 a 0.39 a 0.34 a 0.47 a 0.35 a 0.22 b
P3 0.52 a 0.39 a 0.33 a 0.43 bc 0.31 b 0.16 c
P0 0.53 a 0.40 a 0.35 a 0.41 c 0.29 b 0.25 a
N1P0 0.51 abc 0.38 a 0.33 a 0.33 ef 0.26 f 0.20 ef
N1P1 0.61 abc 0.42 a 0.37 a 0.43 cd 0.34 b 0.30 b
N1P2 0.44 abc 0.34 a 0.32 ab 0.36 e 0.31 cd 0.09 h
N1P3 0.39 c 0.33 a 0.28 b 0.30 f 0.25 f 0.05 i
N2P0 0.63 ab 0.42 a 0.37 a 0.47 bc 0.33 bc 0.30 b
N2P1 0.46 abc 0.40 a 0.34 a 0.51 b 0.31 bcd 0.19 fg
N2P2 0.68 a 0.43 a 0.37 a 0.59 a 0.41 a 0.34 a
N2P3 0.52 abc 0.41 a 0.37 a 0.42 d 0.34 bc 0.21 de
N3P0 0.42 abc 0.38 a 0.35 a 0.43 cd 0.29 de 0.24 c
N3P1 0.43 bc 0.34 a 0.33 a 0.41 d 0.27 ef 0.17 g
N3P2 0.44 abc 0.37 a 0.34 a 0.47 bc 0.32 bcd 0.23 cd
N3P3 0.64 ab 0.40 a 0.37 a 0.57 a 0.34 b 0.23 cd
N ns ns * * * *
P ns ns ns * * *
N×P * ns * * * *

Table 3

Effects of chemical capping on cotton electron transfer rate under different nitrogen rates"

处理
Treatment
2013 2014
盛花期
Full flowering
盛铃期
Full boll
吐絮期
Boll opening
盛花期
Full flowering
盛铃期
Full boll
吐絮期
Boll opening
N1 112.09 b 106.81 a 97.03 a 101.04 b 65.97 b 43.58 b
N2 143.09 a 112.14 a 105.68 a 126.81 a 75.57 a 56.89 a
N3 127.59 ab 105.97 a 99.25 a 90.38 c 66.87 b 29.16 c
P1 128.25 a 104.69 a 100.76 a 106.24 b 72.16 b 42.74 a
P2 131.40 a 115.22 a 105.99 a 117.34 a 80.09 a 43.85 a
P3 135.10 a 113.61 a 103.08 a 116.19 a 70.02 b 42.95 a
P0 115.60 a 99.71 a 92.79 a 84.54 c 55.61 c 43.30 a
N1P0 104.98a 94.04 a 91.18 a 80.02 e 56.36 hi 37.98 fg
N1P1 126.54 a 112.10 a 104.41 a 115.28 bc 73.01 de 57.70 b
N1P2 112.45 a 111.15 a 102.10 a 105.79 cd 67.89 def 43.40 de
N1P3 104.41 a 106.76 a 90.44 a 103.08 d 66.61 ef 35.26 g
N2P0 120.29 a 103.01 a 96.47 a 100.36 d 58.92 gh 51.24 c
N2P1 143.82 a 112.36 a 106.52 a 123.42 b 79.42 bc 61.03 b
N2P2 159.12 a 120.85 a 113.79 a 143.76 a 89.66 a 69.17 a
N2P3 149.12 a 113.68 a 105.92 a 139.70 a 74.29 cd 46.11 d
N3P0 116.68 a 102.09 a 90.73 a 73.24 e 51.54 i 40.69 ef
N3P1 114.39 a 96.98 a 92.75 a 80.02 e 64.05 fg 9.49 i
N3P2 122.65 a 104.42 a 102.06 a 102.47 d 67.89 b 18.99 h
N3P3 151.76 a 120.39 a 112.87 a 105.79 cd 69.17 def 47.47 cd
N ns ns ns * * *
P ns ns ns * * ns
N×P ns ns ns * * *

Table 4

Effects of chemical capping on cotton non-photochemical quenching under different nitrogen rates"

处理
Treatment
2013 2014
盛花期
Full flowering
盛铃期
Full boll
吐絮期
Boll opening
盛花期
Full flowering
盛铃期
Full boll
吐絮期
Boll opening
N1 112.09 b 106.81 a 97.03 a 101.04 b 65.97 b 43.58 b
N2 143.09 a 112.14 a 105.68 a 126.81 a 75.57 a 56.89 a
N3 127.59 ab 105.97 a 99.25 a 90.38 c 66.87 b 29.16 c
P1 128.25 a 104.69 a 100.76 a 106.24 b 72.16 b 42.74 a
P2 131.40 a 115.22 a 105.99 a 117.34 a 80.09 a 43.85 a
P3 135.10 a 113.61 a 103.08 a 116.19 a 70.02 b 42.95 a
P0 115.60 a 99.71 a 92.79 a 84.54 c 55.61 c 43.30 a
N1P0 104.98a 94.04 a 91.18 a 80.02 e 56.36 hi 37.98 fg
N1P1 126.54 a 112.10 a 104.41 a 115.28 bc 73.01 de 57.70 b
N1P2 112.45 a 111.15 a 102.10 a 105.79 cd 67.89 def 43.40 de
N1P3 104.41 a 106.76 a 90.44 a 103.08 d 66.61 ef 35.26 g
处理
Treatment
2013 2014
盛花期
Full flowering
盛铃期
Full boll
吐絮期
Boll opening
盛花期
Full flowering
盛铃期
Full boll
吐絮期
Boll opening
N2P0 120.29 a 103.01 a 96.47 a 100.36 d 58.92 gh 51.24 c
N2P1 143.82 a 112.36 a 106.52 a 123.42 b 79.42 bc 61.03 b
N2P2 159.12 a 120.85 a 113.79 a 143.76 a 89.66 a 69.17 a
N2P3 149.12 a 113.68 a 105.92 a 139.70 a 74.29 cd 46.11 d
N3P0 116.68 a 102.09 a 90.73 a 73.24 e 51.54 i 40.69 ef
N3P1 114.39 a 96.98 a 92.75 a 80.02 e 64.05 fg 9.49 i
N3P2 122.65 a 104.42 a 102.06 a 102.47 d 67.89 b 18.99 h
N3P3 151.76 a 120.39 a 112.87 a 105.79 cd 69.17 def 47.47 cd
N ns ns ns * * *
P ns ns ns * * ns
N×P ns ns ns * * *

Table 5

Effects of chemical capping on cotton shoot dry matter, reproductive organs dry matter under different nitrogen rates"

Fig. 4

Effects of chemical capping on rate of reproductive organ dry matter under different nitrogen rates Abbreviations are the same as those given in Fig. 1."

Table 6

Correlation coefficients between the measured parameters and shoot and reproductive parts dry mass in different periods"

生育时期
Growth stage
参数
Parameter
SDM RODM LA Chl Pn Tr Gs Fv/Fm ФPS II ETR NPQ
盛花期
Full flowering
SDM 1
RODM 0.882** 1
LA 0.901** 0.838** 1
Chl 0.788** 0.894** 0.713** 1
Pn 0.941** 0.887** 0.764** 0.877** 1
Tr 0.353 0.536 0.113 0.602* 0.617* 1
Gs 0.837** 0.857** 0.638* 0.851** 0.955** 0.769** 1
Fv/Fm 0.300 0.346 0.101 0.248 0.273 0.122 0.236 1
ФPS II 0.649* 0.827** 0.499 0.870** 0.806** 0.718** 0.808** 0.333 1
ETR 0.427 0.584* 0.262 0.614* 0.620* 0.824** 0.742** -0.004 0.685* 1
NPQ -0.687* -0.884** -0.581* -0.879** -0.821** -0.811** -0.872** -0.316 -0.869** -0.782** 1
盛铃期
Full boll
SDM 1
RODM 0.643* 1
LA 0.903** 0.552 1
Chl 0.506 0.693* 0.316 1
Pn 0.583* 0.834** 0.453 0.734** 1
Tr 0.173 0.711** 0.122 0.647* 0.665* 1
Gs 0.568 0.885** 0.521 0.719** 0.933** 0.607* 1
Fv/Fm 0.138 -0.181 0.210 -0.359 -0.308 -0.326 -0.350 1
ФPS II 0.344 0.786** 0.267 0.857** 0.640* 0.826** 0.683* -0.313 1
ETR 0.060 0.303 0.014 0.666* 0.419 0.681* 0.330 -0.137 0.667* 1
生育时期
Growth stage
参数
Parameter
SDM RODM LA Chl Pn Tr Gs Fv/Fm ФPS II ETR NPQ
盛铃期
Full boll
NPQ -0.471 -0.828** -0.372 -0.912** -0.788** -0.847** -0.797** 0.246 -0.933** -0.683* 1
吐絮期
Boll opening
SDM 1
RODM 0.809** 1
LA 0.864** 0.464 1
Chl 0.707* 0.888** 0.393 1
Pn 0.682* 0.806** 0.354 0.930** 1
Tr 0.373 0.714** 0.011 0.878** 0.782** 1
Gs 0.684* 0.954** 0.325 0.926** 0.863** 0.799** 1
Fv/Fm -0.083 0.163 -0.379 0.324 0.292 0.476 0.219 1
ФPS II 0.605* 0.735** 0.445 0.690* 0.514 0.571 0.692* -0.224 1
ETR 0.224 0.641* -0.113 0.772** 0.682* 0.916** 0.719** 0.376 0.520 1
NPQ -0.546 -0.866** -0.231 -0.888** -0.777** -0.825** -0.872** -0.233 -0.716** -0.888** 1
[1] Chen Z K, Ma H, Xia J, Hou F, Shi X J, Hao X Z, Hafeez A, Han H Y, Luo H H. Optimal pre-plant irrigation and fertilization can improve biomass accumulation by maintaining the root and leaf productive capacity of cotton crop. Sci Rep, 2017,7:17168.
pmid: 29215075
[2] 马春玥, 买买提·沙吾提, 依尔夏提·阿不来提, 姚杰. 新疆棉花种植业地理集聚特征及影响因素研究. 作物学报, 2019,45:1859-1867.
doi: 10.3724/SP.J.1006.2019.94041
Ma C Y, Mamat S, Ablet E, Yao J. Characteristics and influencing factors of geographical agglomeration of cotton plantation in Xinjiang. Acta Agron Sin, 2019,45:1859-1867 (in Chinese with English abstract).
[3] 戴翠荣, 赵晓雁, 余力, 王献礼, 练文明, 贺美球, 王文涛. 氟节胺化学打顶对南疆棉花农艺性状及产量的影响. 新疆农业科学, 2015,52:1394-1398.
Dai C R, Zhao X Y, Yu L, Wang X L, Lian W M, He M Q, Wang W T. Effect of chemical topping with flumetralin on the canopy and yield of cotton in Southern Xinjiang. Xinjiang Agric Sci, 2015,52:1394-1398 (in Chinese with English abstract).
[4] Chen Z, Niu Y, Zhao R, Han C, Han H, Luo H. The combination of limited irrigation and high plant density optimizes canopy structure and improves the water use efficiency of cotton. Agric Water Manage, 2019,218:139-148.
doi: 10.1016/j.agwat.2019.03.037
[5] 董春玲, 罗宏海, 张亚黎, 张旺锋. 喷施氟节胺对棉花农艺性状的影响及化学打顶效应研究. 新疆农业科学, 2013,50:1985-1990.
Dong C L, Luo H H, Zhang Y L, Zhang W F. Research on cotton agronomic traits and chemical topping effect after spraying flumetralin. Xinjiang Agric Sci, 2013,50:1985-1990 (in Chinese with English abstract).
[6] Renou A, Téréta I, Togola M. Manual topping decreases bollworm infestations in cotton cultivation in Mali. Crop Prot, 2011,30:1370-1375.
doi: 10.1016/j.cropro.2011.05.020
[7] Dai J L, Dong H Z. Intensive cotton farming technologies in China: Achievements, challenges and countermeasures. Field Crops Res, 2014,155:99-110.
doi: 10.1016/j.fcr.2013.09.017
[8] 安静, 黎芳, 周春江, 田晓莉, 李召虎. 增效缩节安化学封顶对棉花主茎生长的影响及其相关机制. 作物学报, 2018,44:1837-1843.
doi: 10.3724/SP.J.1006.2018.01837
An J, Li F, Zhou C J, Tian X L, Li Z H. Morpho-physiological responses of cotton shoot apex to the chemical top-ping with fortified mepiquat chloride. Acta Agron Sin, 2018,44:1837-1843 (in Chinese with English abstract).
[9] 何磊, 周亚立, 刘向新, 赵岩. 浅谈新疆兵团棉花打顶技术. 中国棉花, 2013,40(4):5-6.
He L, Zhou Y L, Liu X X, Zhao Y. Discussion of cotton-topping technology in Xinjiang Production and Construction Corps. Chin Cotton, 2013,40(4):5-6 (in Chinese with English abstract).
[10] 杨成勋, 张旺锋, 徐守振, 随龙龙, 梁福斌, 董恒义. 喷施化学打顶剂对棉花冠层结构及群体光合生产的影响. 中国农业科学, 2016,49:1672-1684.
Yang C X, Zhang W F, Xu S Z, Sui L L, Liang F B, Dong H Y. Effects of spraying chemical topping agents on canopy structure and canopy photosynthetic production in cotton. Sci Agric Sin, 2016,49:1672-1684 (in Chinese with English abstract).
[11] 韩焕勇, 王方永, 陈兵, 张旺锋, 李保成, 田晓莉, 李召虎. 灌水量对北疆棉花增效缩节胺化学封顶效应的影响. 棉花学报, 2017,29:70-78.
Han H Y, Wang F Y, Chen B, Zhang W F, Li B C, Tian X L, Li Z H. Effects of drip irrigation water amount on the regulation of cotton growth and yield by fortified 1,1-dimethyl-piperidinium chloride in Northern Xinjiang. Cotton Sci, 2017,29:70-78 (in Chinese with English abstract).
[12] 王潭刚, 马丽, 李克富, 王冀川, 李慧琴, 吉光鹏, 郝全有, 崔建强, 胡宝. 不同密度下封顶方式对南疆棉花生长及产量性状的影响. 中国农业科技导报, 2019,21(6):110-116.
Wang T G, Ma L, Li K F, Wang J C, Li H Q, Ji G P, Hao Q Y, Cui J Q, Hu B. Influences of different topping methods on cotton growth and yield traits under different plant densities in Southern Xinjiang. J Agric Sci Technol Chin, 2019,21(6):110-116 (in Chinese with English abstract).
[13] 赵强, 张巨松, 周春江, 恽友兰, 李松林, 田晓莉. 化学打顶对棉花群体容量的拓展效应. 棉花学报, 2011,23:401-407.
Zhao Q, Zhang J S, Zhou C J, Yun Y L, Li S L, Tian X L. Chemical detopping increases the optimum plant density in cotton (Gossypium hirsutum L.). Cotton Sci, 2011,23:401-407 (in Chinese with English abstract).
[14] 徐守振, 左文庆, 陈民志, 随龙龙, 董恒义, 酒兴丽, 张旺锋. 北疆植棉区滴灌量对化学打顶棉花植株农艺性状及产量的影响. 棉花学报, 2017,29:345-355.
Xu S Z, Zuo W Q, Chen M Z, Sui L L, Dong H Y, Jiu X L, Zhang W F. Effect of drip irrigation amount on the agronomic traits and yield of cotton grown with a chemical topping in Northern Xinjiang, China. Cotton Sci, 2017,29:345-355 (in Chinese with English abstract).
[15] Zahoor R, Dong H, Abid M, Zhao W Q, Wang Y H, Zhou Z G. Potassium fertilizer improves drought stress alleviation potential in cotton by enhancing photosynthesis and carbohydrate metabolism. Environ Exp Bot, 2017,137:73-83.
[16] Yang X Y, Geng J B, Li C L, Zhang M, Chen B C, Tian X F, Zheng W K, Liu Z G, Wang C. Combined application of polymer coated potassium chloride and urea improved fertilizer use efficiencies, yield and leaf photosynthesis of cotton on saline soil. Field Crops Res, 2016,197:63-73.
[17] Chen Z K, Niu Y P, Ma H, Hafeez A, Luo H H, Zhang W F. Photosynthesis and biomass allocation of cotton as affected by deep-layer water and fertilizer application depth. Photosynthetica, 2016,55:638-647.
[18] Yang G Z, Tang H Y, Nie Y C, Zhang X L. Responses of cotton growth, yield, and biomass to nitrogen split application ratio. Eur J Agron, 2011,35:164-170.
[19] Lichtenthaler H K, Wellburn A R. Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochem Soc Trans, 1983,11:591-592.
[20] 赵强, 周春江, 张巨松, 李松林, 恽友兰, 田晓莉. 化学打顶对南疆棉花(Gossypium hirsutum)农艺和经济性状的影响. 棉花学报, 2011,23:329-333.
Zhao Q, Zhou C J, Zhang J S, Li S L, Yun Y L, Tian X L. Effect of chemical detopping on the canopy and yield of cotton (Gossypium hirsutum) in South Xinjiang. Cotton Sci, 2011,23:329-333 (in Chinese with English abstract).
[21] Stewart D W, Costa C, Dwyer L, Smith D L. Canopy structure, light interception, and photosynthesis in maize. Agron J, 2003,95:1465-1474.
[22] 罗宏海, 赵瑞海, 杨新军, 张旺锋. 高产棉花叶面积载荷量与光合生产的关系及对冠层结构的影响. 石河子大学学报(自然科学版), 2011,29(1):6-10.
Luo H H, Zhao R H, Yang X J, Zhang W F. The relationship of sink capacity of unit leaf area to photosynthetic production and its regulation effect on canopy structure in high-yield cotton. J Shihezi Univ (Nat Sci), 2011,29(1):6-10 (in Chinese with English abstract).
[23] 张巨松, 陈冰, 周抑强, 张勇, 孙国华, 侯玲. DPC对棉花群体发育调控效应的研究. 新疆农业大学学报, 1999,22(1):21-25.
Zhang J S, Chen B, Zhou Y Q, Zhang Y, Sun G H, Hou L. Regulating effect of DPC on cotton population development. J Xinjiang Agric Univ, 1999,22(1):21-25 (in Chinese with English abstract).
[24] 冯国艺, 姚炎帝, 杜明伟, 田景山, 罗宏海, 张亚黎, 张旺锋. 缩节胺(DPC)对干旱区杂交棉冠层结构及群体光合生产的调节. 棉花学报, 2012,24:44-51.
Feng G Y, Yao Y D, Du M W, Tian J S, Luo H H, Zhang Y L, Zhang W F. Dimethyl piperidinium chloride (DPC) regulation of canopy architecture and photosynthesis in a cotton hybrid in an arid region. Cotton Sci, 2012,24:44-51 (in Chinese with English abstract).
[25] 张守仁. 叶绿素荧光动力学参数的意义及讨论. 植物学通报, 1999,16:444-448.
Zhang S R. A discussion on chlorophyll fluorescence kinetics parameters and their significance. Chin Bull Bot, 1999,16:444-448 (in Chinese with English abstract).
[26] 武文明, 陈洪俭, 李金才, 魏凤珍, 王世济, 周向红. 氮肥运筹对孕穗期受渍冬小麦旗叶叶绿素荧光与籽粒灌浆特性的影响. 作物学报, 2012,38:1088-1096.
Wu W M, Chen H J, Li J C, Wei F Z, Wang S J, Zhou X H. Effects of nitrogen fertilization on chlorophyll fluorescence parameters of flag leaf and grain filling in winter wheat suffered waterlogging at booting stage. Acta Agron Sin, 2012,38:1088-1096 (in Chinese with English abstract).
[27] Vijayalakshmi P, Vishnukiran T, Kumari B R, Srikanth B I, Rao S, Swamy K N, Surekha K, Sailaja N, Subbarao L V, Rao P R, Subrahmanyam D, Neeraja C N, Voleti S R. Biochemical and physiological characterization for nitrogen use efficiency in aromatic rice genotypes. Field Crops Res, 2015,179:132-143.
[28] Ciompi S, Gentili E, Guidi L, Soldatini G F. The effect of nitrogen deficiency on leaf gas exchange and chlorophyll fluorescence parameters in sunflower. Plant Sci(Shannon), 1996,118:177-184.
[29] 杨国正, 王德鹏, 聂以春, 张献龙. 钾肥用量对棉花生物量和产量的影响. 作物学报, 2013,39:905-911.
Yang G Z, Wang D P, Nie Y C, Zhang X L. Effect of potassium application rate on Cotton (Gossypium hirsutum L.) biomass and yield. Acta Agron Sin, 2013,39:905-911 (in Chinese with English abstract).
[30] 薛晓萍, 王建国, 郭文琦, 陈兵林, 尤军, 周治国. 氮素水平对初花后棉株生物量、氮素累积特征及氮素利用率动态变化的影响. 生态学报, 2006,26:3631-3640.
Xue X P, Wang J G, Guo W Q, Chen B L, You J, Zhou Z G. Effect of nitrogen applied levels on the dynamics of biomass, nitrogen accumulationand nitrogen fertilization recovery rate of cotton after initial flowering. Acta Ecol Sin, 2006,26:3631-3640 (in Chinese with English abstract).
[31] 韩焕勇, 王方永, 陈兵, 李保成, 张旺锋, 田晓莉, 李召虎. 氮肥对棉花应用增效缩节胺封顶效果的影响. 中国农业大学学报, 2017,22(2):12-20.
Han H Y, Wang F Y, Chen B, Li B C, Zhang W F, Tian X L, Li Z H. Effect of nitrogen fertilizer on plant growth and yield formation of cotton applied with fortified DPC. J Chin Agric Univ, 2017,22(2):12-20 (in Chinese with English abstract).
[1] ZHOU Jing-Yuan, KONG Xiang-Qiang, ZHANG Yan-Jun, LI Xue-Yuan, ZHANG Dong-Mei, DONG He-Zhong. Mechanism and technology of stand establishment improvements through regulating the apical hook formation and hypocotyl growth during seed germination and emergence in cotton [J]. Acta Agronomica Sinica, 2022, 48(5): 1051-1058.
[2] SUN Si-Min, HAN Bei, CHEN Lin, SUN Wei-Nan, ZHANG Xian-Long, YANG Xi-Yan. Root system architecture analysis and genome-wide association study of root system architecture related traits in cotton [J]. Acta Agronomica Sinica, 2022, 48(5): 1081-1090.
[3] YAN Xiao-Yu, GUO Wen-Jun, QIN Du-Lin, WANG Shuang-Lei, NIE Jun-Jun, ZHAO Na, QI Jie, SONG Xian-Liang, MAO Li-Li, SUN Xue-Zhen. Effects of cotton stubble return and subsoiling on dry matter accumulation, nutrient uptake, and yield of cotton in coastal saline-alkali soil [J]. Acta Agronomica Sinica, 2022, 48(5): 1235-1247.
[4] ZHENG Shu-Feng, LIU Xiao-Ling, WANG Wei, XU Dao-Qing, KAN Hua-Chun, CHEN Min, LI Shu-Ying. On the green and light-simplified and mechanized cultivation of cotton in a cotton-based double cropping system [J]. Acta Agronomica Sinica, 2022, 48(3): 541-552.
[5] YUAN Jia-Qi, LIU Yan-Yang, XU Ke, LI Guo-Hui, CHEN Tian-Ye, ZHOU Hu-Yi, GUO Bao-Wei, HUO Zhong-Yang, DAI Qi-Gen, ZHANG Hong-Cheng. Nitrogen and density treatment to improve resource utilization and yield in late sowing japonica rice [J]. Acta Agronomica Sinica, 2022, 48(3): 667-681.
[6] ZHANG Yan-Bo, WANG Yuan, FENG Gan-Yu, DUAN Hui-Rong, LIU Hai-Ying. QTLs analysis of oil and three main fatty acid contents in cottonseeds [J]. Acta Agronomica Sinica, 2022, 48(2): 380-395.
[7] ZHANG Te, WANG Mi-Feng, ZHAO Qiang. Effects of DPC and nitrogen fertilizer through drip irrigation on growth and yield in cotton [J]. Acta Agronomica Sinica, 2022, 48(2): 396-409.
[8] ER Chen, LIN Tao, XIA Wen, ZHANG Hao, XU Gao-Yu, TANG Qiu-Xiang. Coupling effects of irrigation and nitrogen levels on yield, water distribution and nitrate nitrogen residue of machine-harvested cotton [J]. Acta Agronomica Sinica, 2022, 48(2): 497-510.
[9] ZHAO Wen-Qing, XU Wen-Zheng, YANG Liu-Yan, LIU Yu, ZHOU Zhi-Guo, WANG You-Hua. Different response of cotton leaves to heat stress is closely related to the night starch degradation [J]. Acta Agronomica Sinica, 2021, 47(9): 1680-1689.
[10] YUE Dan-Dan, HAN Bei, Abid Ullah, ZHANG Xian-Long, YANG Xi-Yan. Fungi diversity analysis of rhizosphere under drought conditions in cotton [J]. Acta Agronomica Sinica, 2021, 47(9): 1806-1815.
[11] YANG Zhi-Yuan, SHU Chuan-Hai, ZHANG Rong-Ping, YANG Guo-Tao, WANG Ming-Tian, QIN Jian, SUN Yong-Jian, MA Jun, LI Na. Comparison of tolerances to nitrogen fertilizer between compact and loose hybrid indica rice varieties [J]. Acta Agronomica Sinica, 2021, 47(8): 1593-1602.
[12] ZENG Zi-Jun, ZENG Yu, YAN Lei, CHENG Jin, JIANG Cun-Cang. Effects of boron deficiency/toxicity on the growth and proline metabolism of cotton seedlings [J]. Acta Agronomica Sinica, 2021, 47(8): 1616-1623.
[13] GAO Lu, XU Wen-Liang. GhP4H2 encoding a prolyl-4-hydroxylase is involved in regulating cotton fiber development [J]. Acta Agronomica Sinica, 2021, 47(7): 1239-1247.
[14] MA Huan-Huan, FANG Qi-Di, DING Yuan-Hao, CHI Hua-Bin, ZHANG Xian-Long, MIN Ling. GhMADS7 positively regulates petal development in cotton [J]. Acta Agronomica Sinica, 2021, 47(5): 814-826.
[15] XU Nai-Yin, ZHAO Su-Qin, ZHANG Fang, FU Xiao-Qiong, YANG Xiao-Ni, QIAO Yin-Tao, SUN Shi-Xian. Retrospective evaluation of cotton varieties nationally registered for the Northwest Inland cotton growing regions based on GYT biplot analysis [J]. Acta Agronomica Sinica, 2021, 47(4): 660-671.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!