Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2020, Vol. 46 ›› Issue (9): 1408-1415.doi: 10.3724/SP.J.1006.2020.04074

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Effect of mixed-sowing of near-isogenic lines on the clubroot disease controlling efficiency in rapeseed

GUO Qing-Yun1(), KUAI Jie1,*(), WANG Bo1, LIU Fang2, ZHANG Chun-Yu1, LI Gen-Ze3, ZHANG Yun-Yun3, FU Ting-Dong1, ZHOU Guang-Sheng1   

  1. 1 College of Plant Science and Technology, Huazhong Agricultural University / Key Laboratory of Crop Ecophysiology and Farming System for the Middle Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, Wuhan 430070, Hubei, China
    2 National Agricultural Technology Extension Service Center, Beijing 100125, China
    3 Yunnan Academy of Agricultural Sciences, Kunming 650205, Yunnan, China
  • Received:2020-03-21 Accepted:2020-06-02 Online:2020-09-12 Published:2020-06-12
  • Contact: Jie KUAI E-mail:1278245883@qq.com;kuaijie@mail.hzau.edu.cn
  • Supported by:
    National Key Research and Development Program of China(2018YFD1000900);Technological Innovation Major Project of the Science and Technology Department of Hubei Province(2017ABA064);Fundamental Research Funds for the Central Universities(2662017JC005)

Abstract:

The clubroot disease caused by Plasmodiophora brassicae has become a serious threat to rapeseed production in these recent years. In the previous multi-plot and multi-season field experiments, we found that planting of susceptible and resistant cultivars (near-isogenic lines) at different proportions could significantly suppress the incidence of the clubroot disease. In order to explore the preventive and control effect of mix-sowing of susceptible and resistant cultivars on clubroot disease, and identify the factors affecting mixed sowing. Pot experiments with different distance (0, 2, 4, and 6 cm) between the seeds of the resistant and susceptible cultivars were set by artificial inoculation at the 7 days after germination in this study. The disease incidence, disease index and the root biochemical components of rapeseed were measured after forty-two days. The results were as below: (1) the incidence of the resistant cultivar showed no significant change, while the disease incidence and disease index of the susceptible rapeseed cultivars decreased in the mixed-sowing treatment. Further, the disease incidence was significantly influenced by sowing distance of the two cultivars, which was significantly (P < 0.05) lower than those of the other treatments when mixed-sowed at 0 cm. (2) compared to the single planting, the content of soluble sugar and soluble protein in roots of the mixed-sowing treatment were significantly (P < 0.05) decreased for the two cultivars, and the content of acid-insoluble lignin was significantly increased in susceptible cultivar whereas decreased after increasing in resistant cultivar. (3) the results of correlation analysis showed that the content of soluble sugar and soluble protein were positively correlated with the disease incidence and disease index. The correlation coefficients between disease incidence and soluble sugar and soluble protein content were 0.797 and 0.403, respectively, meanwhile, the correlation coefficients between disease index and soluble sugar and soluble protein content were 0.822 and 0.509, respectively. In conclusion, the findings provided a new idea for prevention of clubroot disease in the field production in rapeseed.

Key words: rapeseed, near-isogenic lines, clubroot disease, sowing distance

Table 1

Disease incidence and disease index for Huashuang 5R and Huashuang 5 in different treatments"

菌种
P. brassicae
处理
Treatment
华双5R Huashuang 5R 华双5号 Huashuang 5
发病率
Disease incidence
(%)
病情分级
Disease severity scale
病情指数
Disease
index
发病率
Disease
incidence
(%)
病情分级
Disease severity scale
病情指数
Disease index
0 1 2 3 0 1 2 3
绩溪2号
小种
Pathotype 2 from Jixi
CK 5.0 ab 57 0 1 2 4.4 b 100.0 a 0 0 10 50 94.5 a
T1 3.3 b 58 2 0 0 1.1 d 65.0 c 21 24 9 6 33.3 e
T2 3.3b 58 1 1 0 1.7 d 95.0 b 3 10 8 39 79.4 d
T3 3.3 b 58 0 1 1 2.8 c 95.0 b 3 4 7 46 86.7 c
T4 6.7 a 56 0 1 3 6.1 a 96.7 b 2 4 3 51 90.6 b
均值Mean 4.0 3.0 88.0 72.5
恩施4号
小种
Pathotype 4 from Enshi
CK 1.7 a 59 1 0 0 0.6 a 100.0 a 0 0 17 43 90.6 a
T1 1.7 a 59 1 0 0 0.6 a 62.5 d 17 18 5 20 34.2 e
T2 1.7 a 59 1 0 0 0.6 a 80.0 c 12 22 9 17 50.6 d
T3 1.7 a 59 1 0 0 0.6 a 81.7 c 11 17 8 24 58.3 c
T4 0.0 b 60 0 0 0 0.0 a 91.7 b 5 16 7 32 70.0 b
均值Mean 1.3 0.5 79.0 53.3

Table 2

Disease incidence and disease index of Bing 409R and Bing 409 in different treatments"

菌种
P. brassicae
处理
Treatment
丙409R Bing 409R 丙409 Bing 409
发病率
Disease incidence
(%)
病情分级
Disease severity scale
病情指数
Disease index
发病率
Disease
incidence (%)
病情分级
Disease severity scale
病情指数
Disease index
0 1 2 3 0 1 2 3
礼州2号
小种
Pathotype 2 from Lizhou
CK 16.7 a 51 0 4 5 12.8 a 83.3 a 10 8 12 30 67.8 a
T1 15.0 a 51 2 5 2 10.0 c 70.0 cd 18 9 11 17 48.3 d
T2 16.7 a 50 4 3 3 10.6 c 73.3 c 16 9 7 28 58.1 c
T3 15.0 a 51 2 4 3 10.6 c 78.3 b 13 7 14 26 62.8 b
T4 16.7 a 50 3 3 4 11.7 b 80.0 b 12 6 10 32 67.8 a
均值Mean 15.9 10.7 75.4 59.3
歙县4号
小种
Pathotype 4 from Shexian
CK 8.3 a 55 3 0 2 5.0 a 100.0 a 0 3 10 47 91.1 a
T1 5.0 b 57 2 1 0 2.2 c 43.3 e 34 9 1 16 32.8 d
T2 6.7 ab 56 1 2 1 4.4 b 48.3 cd 31 12 8 9 30.6 d
T3 8.3 a 55 1 4 0 5.0 a 50.0 bc 30 6 11 13 37.2 c
T4 8.3 a 55 1 4 0 5.0 a 51.7 b 29 4 8 19 42.8 b
均值Mean 7.1 4.2 48.3 35.9

Table 3

Root biochemistry components variation of Huashuang 5R and Huashuang 5 in different treatments"

菌种
P. brassicae
距离
Distance
可溶性糖
Soluble sugar (mg g-1)
可溶性蛋白质
Soluble protein (mg g-1)
酸溶木质素
Acid soluble lignin (%)
酸不溶木质素
Acid insoluble lignin (%)
华双5R
Huashuang 5R
华双5号
Huashuang 5
华双5R
Huashuang 5R
华双5号
Huashuang 5
华双5R
Huashuang 5R
华双5号
Huashuang 5
华双5R
Huashuang 5R
华双5号
Huashuang 5
绩溪2号小种Pathotype2 from Jixi NI 37.01 a 25.60 c 4.87 c 2.67 e 1.86 b 1.26 c 19.57 a 18.99 a
CK 12.45 b 45.98 b 7.16 b 8.90 c 1.17 bc 1.90 bc 16.34 b 17.92 b
T1 12.81 b 26.82 c 3.97 d 4.50 d 1.34 bc 2.00 b 18.41 a 15.80 c
T2 12.13 b 54.64 a 4.15 cd 12.70 b 2.93 a 2.87 a 14.72 c 15.41 c
T3 10.04 c 55.28 a 3.79 d 19.70 a 2.98 a 3.28 a 15.24 c 15.43 c
T4 7.95 d 55.84 a 9.43 a 20.81 a 3.04 a 3.17 a 13.65 d 15.43 c
恩施4号
Pathotype 4 from Enshi
NI 37.01 a 25.60 d 4.87 d 2.67 c 1.86 b 1.26 de 19.57 a 18.99 a
CK 27.21 b 43.85 a 10.81 a 12.05 a 1.63 b 1.63 cd 17.30 b 18.16 b
T1 20.68 c 17.40 e 6.77 c 2.80 d 1.11 c 2.11 bc 17.60 b 18.13 b
T2 15.07 d 33.26 c 8.63 b 5.30 c 2.76 a 2.79 b 16.08 c 15.21 c
T3 10.91 e 35.40 b 8.99 b 5.06 c 2.75 a 3.56 a 15.78 c 15.93 c
T4 7.01 f 36.78 b 9.30 b 7.49 b 2.90 a 3.74 a 14.43 d 15.45 c

Table 4

Root biochemistry components of Bing 409R and Bing 409 in different treatments"

菌种
P. brassicae
距离
Distance
可溶性糖
Soluble sugar (mg g-1)
可溶性蛋白质
Soluble protein (mg g-1)
酸溶木质素
Acid soluble lignin (%)
酸不溶木质素
Acid insoluble lignin (%)
丙409R
Bing 409R
丙409
Bing 409
丙409R
Bing 409R
丙409
Bing 409
丙409R
Bing 409R
丙409
Bing 409
丙409R
Bing 409R
丙409
Bing 409
礼州2号小种Pathotype 2 from Lizhou NI 33.46 a 35.64 d 3.22 d 8.30 ab 1.87 bc 1.50 d 15.73 a 16.10 a
CK 31.69 b 55.76 a 9.37 a 5.35 c 2.50 ab 3.14 a 14.76 b 13.44 d
T1 16.10 c 25.90 f 6.59 c 8.64 ab 1.32 c 1.61 d 15.83 a 15.00 b
T2 15.83 cd 32.38 e 8.34 b 8.90 a 2.48 ab 3.04 a 14.00 b 13.55 d
T3 14.51 d 43.26 c 8.68 b 9.73 a 2.80 a 2.35 bc 14.43 b 14.98 b
T4 14.07 d 50.71 b 7.13 bc 9.39 a 2.92 a 2.83 ab 10.66c 14.26 c
歙县4号小种Pathotype 4 from Shexian NI 33.46 a 35.64 e 3.22 d 8.30 b 1.87 b 1.50 c 15.73 b 16.10 a
CK 16.82 b 66.57 b 5.23 bc 15.50 a 3.22 a 2.74 ab 15.44 b 15.17 b
T1 16.27 b 39.60 d 3.42 d 8.87 b 1.86 b 1.52 c 16.45 a 14.67 b
T2 15.68 c 48.43 c 5.75 b 4.83 c 3.15 a 3.31 a 13.88 c 12.28 c
T3 12.55 d 49.88 c 11.33 a 3.54 d 3.15 a 2.71 ab 11.09 d 10.79 d
T4 11.50 e 76.25 a 2.99 d 2.54 d 3.44 a 3.21 a 11.57 d 11.83 c

Table 5

Correlation analysis among the root biochemistry components, disease incidence and disease index after inoculation"

指标
Parameter
可溶性糖
Soluble sugar
可溶性蛋白质
Soluble protein
酸溶木质素
Acid soluble lignin
酸不溶木质素
Acid insoluble lignin
总木质素
Total lignin
发病率Disease incidence 0.797** 0.403** 0.177 0.089 0.165
病情指数Disease index 0.822** 0.509** 0.176 0.074 0.164
[1] Dixon G R. Clubroot (Plasmodiophora brassicae Woronin)—an agricultural and biological challenge worldwide. Can J Plant Pathol, 2014,36:5-18.
doi: 10.1080/07060661.2013.875487
[2] Howard R, Strelkov S E, Harding M. Clubroot of cruciferous crops—new perspectives on an old disease. Can J Plant Pathol, 2010,32:43-57.
doi: 10.1080/07060661003621761
[3] Dixon G R. The occurrence and economic impact of Plasmodiophora brassicae and clubroot disease. J Plant Growth Regul, 2009,28:194-202.
doi: 10.1007/s00344-009-9090-y
[4] Pageau D, Lajeunesse J, Lafond J. Impact of clubroot (Plasmodiophora brassicae) on the yield and quality of canola. Can J Plant Pathol, 2006,28:137-143.
doi: 10.1080/07060660609507280
[5] Peng G, Pageau D, Strelkov S E, Grossen B D, Hwang S F, Lahlali R. A >2-year crop rotation reduces resting spores of Plasmodiophora brassicae in soil and the impact of clubroot on canola. Eur J Agron, 2015,70:78-84.
doi: 10.1016/j.eja.2015.07.007
[6] Friberg H, Lagerlöf J, Rämert B. Germination of Plasmodiophora brassicae resting spores stimulated by a non-host plant. Eur J Plant Pathol, 2005,113:275.
doi: 10.1007/s10658-005-2797-0
[7] 许倩倩. 水杨酸(SA)和苯并噻二唑(BTH)对甘蓝根肿病抗性相关生理指标的影响. 西南大学硕士学位论文, 重庆, 2015.
Xu Q Q. Effects of Salicylic Acid and Benzothiadiazole on Related Physiological Indicators for Cabbage Clubroot Resistance. MS Thesis of Southwest University, Chongqing, China, 2015 (in Chinese with English abstract).
[8] 于晓坤, 吴毅歆, 毛自朝, 何月秋. 水介导十字花科作物根肿病的传播及其化学防治. 华中农业大学学报, 2013,32(1):48-53.
Yu X K, Wu Y X, Mao Z C, He Y Q. Water-mediated dissemination and chemical control of clubroot disease of cruiferous crops. J Huazhong Agric Univ, 2013,32(1):48-53 (in Chinese with English abstract).
[9] 杨进, 殷丽琴, 王晓, 付绍红, 王学贵, 李云, 王继胜, 邹琼, 陶兰荣, 康泽明, 唐蓉. 4种杀菌剂对油菜根肿病的防治潜力及对幼苗防御酶活性的影响. 中国油料作物学报, 2017,39:546-550.
Yang J, Yin L Q, Wang X, Fu S H, Wang X G, Li Y, Wang J S, Zou Q, Tao L R, Kang Z M, Tang R. Preventive potential of 4 fungicids on clubroot (Plasmodiophora brassicae) and rapeseed defense enzyme activity. Chin J Oil Crop Sci, 2017,39:546-550 (in Chinese with English abstract).
[10] 费维新, 王淑芬, 胡宝成, 李强生, 侯树敏, 荣松柏, 吴晓芸. 不同杀菌剂对油菜根肿病的防效及对油菜产量损失的影响. 植物保护, 2015,41(1):201-204.
Fei W X, Wang S F, Hu B C, Li Q S, Hou S M, Rong S B, Wu X Y. Control effect of different fungicides on clubroot and yield loss caused by Plasmodiophora brassizae in Brassica napus. Plant Prot, 2015,41(1):201-204 (in Chinese with English abstract).
[11] 陈坤荣, 任莉, 刘凡, 徐理, 孙超超, 方小平. 三种杀菌剂防治油菜根肿病技术研究. 中国油料作物学报, 2013,35:424-427.
Chen K R, Ren L, Liu F, Xu L, Sun C C, Fang X P. Controlling effects of three fungicides on rapeseed clubroot. Chin J Oil Crop Sci, 2013,35:424-427 (in Chinese with English abstract).
[12] 王靖, 黄云, 张艳, 姚佳. 油菜根肿病菌拮抗微生物的筛选及其防治效果测定. 中国油料作物学报, 2011,33:169-174.
Wang J, Huang Y, Zhang Y, Yao J. Control of rapeseed clubroot by screened antagonistic against Plasmodiophora brassicae. Chin J Oil Crop Sci, 2011,33:169-174 (in Chinese with English abstract).
[13] Diederichsen E, Frauen M, Ludwing-Müller J. Clubroot disease management challenges from a German perspective. Can J Plant Pathol, 2014,36:85-98.
doi: 10.1080/07060661.2013.861871
[14] 吕学静, 康晓慧, 陈万权, 刘太国, 刘博, 高利. 小麦近等基因系多品种混播对条锈病控制效果研究. 中国植保导刊, 2014,34(4):5-9.
Lyu X J, Kang X H, Chen W Q, Liu T G, Liu B, Gao L. Controlling efficiency against wheat stripe rust by near-isogenic lines cultivarsa at mix-planting condition. China Plant Prot, 2014,34(4):5-9 (in Chinese with English abstract).
[15] 刘志贤, 肖一龙, 刘二明, 罗峰. 利用水稻品种抗性遗传多样性持续控制稻瘟病研究进展. 作物研究, 2003,17(2):103-105.
Liu Z X, Xiao Y L, Liu E M, Luo F. Advances in susyainable control of rice blast by using composite varieties resistant to different physiologic race blast diseases. Crop Res, 2003,17(2):103-105 (in Chinese with English abstract).
[16] Burdon J J, Chilvers G A. Host density as a factor in plant disease ecology. Annu Rev Phytopathol, 1982,20:143-166.
doi: 10.1146/annurev.py.20.090182.001043
[17] Trenbath B R. Interactions among diverse hosta and diverse parasites. Ann NY Acad Sci, 2010,287:124-150.
doi: 10.1111/nyas.1977.287.issue-1
[18] ZhuY Y, Chen H R, Fan J H, Wang Y Y, Li Y, Chen J B, Fan J X, Yang S S, Hu L P, Leung H, Mew T W, Teng P S, Wang Z H, Mundt C C. Genetic diversity and disease control in rice. Nature, 2000,406:718-722.
pmid: 10963595
[19] 李宁. 寄主多样性条件下小麦白粉病发生及其病原菌群体遗传结构的研究. 中国农业科学院硕士学位论文, 北京, 2011.
Li N. Occurrence of Wheat Powdery Mildew in Diversified Hosts and the Pathogen Population Genetic Structure. MS Thesis of Chinese Academy of Agricultural Sciences, Beijing, China, 2011 (in Chinese with English abstract).
[20] 郭清云, 汪波, 蒯婕, 张椿雨, 李根泽, 康惠仙, 傅廷栋, 周广生. 油菜感抗品种混播对根肿病防控效果的影响. 作物学报, 2020,46:751-759.
Guo Q Y, Wang B, Kuai J, Zhang C Y, Li G Z, Kang H X, Fu T D, Zhou G S. Controlling efficiency against clubroot disease of rapeseed by mixed-cropping of susceptible and resistant cultivars. Acta Agron Sin, 2020,46:751-759 (in Chinese with English abstract).
[21] 李合生. 植物生理生化实验原理和技术. 北京: 高等教育出版社, 2000. pp 192-196.
Li H S. Principles and Techniques of Plant Physiological and Biochemical Experiments. Beijing: Higher Education Press, 2000. pp 192-196(in Chinese).
[22] Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D. Determination of structural carbohydrates and lignin in biomass. Laboratory Analytical Procedure, 2008,1617:1-16.
[23] Hariri D, Fouchard M, Prud'homme H. Incidence of soil-borne wheat mosaic virus in mixtures of susceptible and resistant wheat cultivars. Eur J Plant Pathol, 2001,107:625-631.
doi: 10.1023/A:1017980809756
[24] Rashid A, Ahmed H U, Xiao Q, Hwang S F, Strelkov S E. Effects of root exudates and pH on Plasmodiophora brassicaeresting spore germination and infection of canola(Brassica napus L.) root hairs. Crop Prot, 2013,48:16-23.
doi: 10.1016/j.cropro.2012.11.025
[25] Ahmed H U, Hwang S F, Strelkov S E, Gossen B D, Peng G, Howard R J, Turnbull G D. Assessment of bait crops to reduce inoculum of clubroot (Plasmodiophora brassicae) of canola. Can J Plant Sci, 2011,91:545-551.
doi: 10.4141/CJPS10200
[26] Hwang S F, Ahmed H U, Zhou Q, Rashid A, Strelkov S E, Gossen B D, Peng G, Turnbull G D. Effect of susceptible and resistant canola plants on Plasmodiophora brassicae resting spore populations in the soil. Plant Pathol, 2013,62:404-412.
doi: 10.1111/j.1365-3059.2012.02636.x
[27] LeBoidus J M, Manolii V P, Turkington T K, Strelkov S E. Adaptation to Brassica host genotypes by a single-spore isolate and population of Plasmodiophora brassicae(clubroot). Plant Dis, 2012,96:833-838.
doi: 10.1094/PDIS-09-11-0807
[28] Turkington T K. Progress towards the sustainable management of Clubroot (Plasmodiophora brassicae) of Canola on the Canadian prairies. Electr Eng Jpn, 2011,125:553-556.
[29] Ren Z, Zhou H, Huang X L, Song Q, Liu M J, Liu E M. Change of 3 kinds of enzyme activity and soluble sugar in 3 Chinese cabbage varieties with different resistance level during the process of Plasmodiophora brassicae infecting their roots. Agric Sci Technol, 2015,217:205-208.
[30] 马丹丹. 甘蓝类蔬菜根肿病抗性鉴定及相关生理生化的研究. 石河子大学硕士学位论文, 新疆石河子, 2015.
Ma D D. Study of Resistance Identification for Clubroot and the Related Analysis of Physiological and Biochemical Mechanism in Different Brassica crops. MS Thesis of Shihezi University, Shihezi, Xinjiang, China, 2015 (in Chinese with English abstract).
[31] Siemens J, Keller I J, Sarx J, Kunz S, Schuller A, Nagel W, Schmülling T, Parniske M, Ludwing-Müller J. Transcriptome analysis of Arabidopsis clubroot indicate a key role for cytokinins in disease development. Mol Plant-Microbe Interact, 2006,19:480-494.
pmid: 16673935
[32] Cao T, Srivastava S, Rahman M H, Kav N V, Hotte N, Devholos M K, Strelkov S E. Proteome-level changes in the roots of Brassica napus as a result of Plasmodiophora brassicae infection. Plant Sci, 2008,174:97-115.
doi: 10.1016/j.plantsci.2007.10.002
[33] Ludwing-Müller J, Prinsen E, Rolfe S A, Scholes J D. Metabolism and plant hormone action during clubroot disease. J Plant Growth Regul, 2009,28:229-244.
doi: 10.1007/s00344-009-9089-4
[1] QIN Lu, HAN Pei-Pei, CHANG Hai-Bin, GU Chi-Ming, HUANG Wei, LI Yin-Shui, LIAO Xiang-Sheng, XIE Li-Hua, LIAO Xing. Screening of rapeseed germplasms with low nitrogen tolerance and the evaluation of its potential application as green manure [J]. Acta Agronomica Sinica, 2022, 48(6): 1488-1501.
[2] LOU Hong-Xiang, JI Jian-Li, KUAI Jie, WANG Bo, XU Liang, LI Zhen, LIU Fang, HUANG Wei, LIU Shu-Yan, YIN Yu-Feng, WANG Jing, ZHOU Guang-Sheng. Effects of planting density on yield and lodging related characters of reciprocal hybrids in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(9): 1724-1740.
[3] ZHANG Jian, XIE Tian-Jin, WEI Xiao-Nan, WANG Zong-Kai, LIU Chong-Tao, ZHOU Guang-Sheng, WANG Bo. Estimation of feed rapeseed biomass based on multi-angle oblique imaging technique of unmanned aerial vehicle [J]. Acta Agronomica Sinica, 2021, 47(9): 1816-1823.
[4] HAN Yu-Zhou, ZHANG Yong, YANG Yang, GU Zheng-Zhong, WU Ke, XIE Quan, KONG Zhong-Xin, JIA Hai-Yan, MA Zheng-Qiang. Effect evaluation of QTL Qph.nau-5B controlling plant height in wheat [J]. Acta Agronomica Sinica, 2021, 47(6): 1188-1196.
[5] LI Qian, Nadil Shah, ZHOU Yuan-Wei, HOU Zhao-Ke, GONG Jian-Fang, LIU Jue, SHANG Zheng-Wei, ZHANG Lei, ZHAN Zong-Xiang, CHANG Hai-Bin, FU Ting-Dong, PIAO Zhong-Yun, ZHANG Chun-Yu. Breeding of a novel clubroot disease-resistant Brassica napus variety Huayouza 62R [J]. Acta Agronomica Sinica, 2021, 47(2): 210-223.
[6] Qing-Yun GUO, Bo WANG, Jie KUAI, Chun-Yu ZHANG, Gen-Ze LI, Hui-Xian KANG, Ting-Dong FU, Guang-Sheng ZHOU. Controlling efficiency against clubroot disease of rapeseed by mixed-cropping of susceptible and resistant cultivars [J]. Acta Agronomica Sinica, 2020, 46(5): 725-733.
[7] LYU Wei-Sheng, XIAO Fu-Liang, ZHANG Shao-Wen, ZHENG Wei, HUANG Tian-Bao, XIAO Xiao-Jun, LI Ya-Zhen, WU Yan, HAN De-Peng, XIAO Guo-Bin, ZHANG Xue-Kun. Effects of sowing and fertilizing methods on yield and fertilizer use efficiency in red-soil dryland rapeseed (Brassica napus L.) [J]. Acta Agronomica Sinica, 2020, 46(11): 1790-1800.
[8] HU Mao-Long, CHENG Li, GUO Yue, LONG Wei-Hua, GAO Jian-Qin, PU Hui-Ming, ZHANG Jie-Fu, CHEN Song. Development and application of the marker for imidazolinone-resistant gene in Brassica napus [J]. Acta Agronomica Sinica, 2020, 46(10): 1639-1646.
[9] WANG Cun-Hu,LIU Dong,XU Rui-Neng,YANG Yong-Qing,LIAO Hong. Mapping of QTLs for leafstalk angle in soybean [J]. Acta Agronomica Sinica, 2020, 46(01): 9-19.
[10] ZHANG Han-Xiao,LIN Shen,ZUO Qing-Song,YANG Guang,FENG Qian-Nan,FENG Yun-Yan,LENG Suo-Hu. Effects of plant density and N fertilizer spraying concentration on growth of rapeseed blanket seedlings [J]. Acta Agronomica Sinica, 2019, 45(11): 1691-1698.
[11] Zi-Ju DAI,Xin-Tao WANG,Qing YANG,Yan WANG,Ying-Ying ZHANG,Zhang-Ying XI,Bao-Quan LI. Major Quantitative Trait Loci Mapping for Tassel Branch Number and Construction of qTBN5 Near-isogenic Lines in Maize (Zea mays L.) [J]. Acta Agronomica Sinica, 2018, 44(8): 1127-1135.
[12] Chao MI,Yan-Ning ZHAO,Zi-Gang LIU,Qi-Xian CHEN,Wan-Cang SUN,Yan FANG,Xue-Cai LI,Jun-Yan WU. Cloning of RuBisCo Subunits Genes rbcL and rbcS from Winter Rapeseed (Brassica rapa) and Their Expression under Drought Stress [J]. Acta Agronomica Sinica, 2018, 44(12): 1882-1890.
[13] Ying-Fen JIANG,Zong-Xiang ZHAN,Zhong-Yun PIAO,Chun-Yu ZHANG. Progresses and Prospects of Germplasms Innovation for Clubroot Resistance and Genetic Improvement in Brassica napus [J]. Acta Agronomica Sinica, 2018, 44(11): 1592-1599.
[14] Xiao-Yong LI, Min ZHOU, Tao WANG, Lan ZHANG, Guang-Sheng ZHOU, Jie KUAI. Effects of Planting Density on the Mechanical Harvesting Characteristics of Semi-winter Rapeseed [J]. Acta Agronomica Sinica, 2018, 44(02): 278-287.
[15] FANG Yan,SUN Wan-Cang,WU Jun-Yan,LIU Zi-Gang,DONG Yun,MI Chao,MA Li,CHEN Qi,HE Hui-Li. Response of Membrane Fatty Acid Composition and ATPase Activity in Brassica rapa L. to Temperature in North China [J]. Acta Agron Sin, 2018, 44(01): 95-104.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!