Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2021, Vol. 47 ›› Issue (8): 1593-1602.doi: 10.3724/SP.J.1006.2021.02036

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Comparison of tolerances to nitrogen fertilizer between compact and loose hybrid indica rice varieties

YANG Zhi-Yuan1(), SHU Chuan-Hai1, ZHANG Rong-Ping2, YANG Guo-Tao2, WANG Ming-Tian3, QIN Jian4, SUN Yong-Jian1, MA Jun1, LI Na1,*()   

  1. 1Rice Research Institute, Sichuan Agricultural University/Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Chengdu 611130, Sichuan, China
    2School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 611000, Sichuan, China
    3Sichuan Provincial Meteorological Service, Chengdu 610072, Sichuan, China
    4Institute of Rice and Sorghum, Sichuan Academy of Agricultural Sciences, Deyang 618000, Sichuan, China
  • Received:2020-05-23 Accepted:2021-01-11 Online:2021-08-12 Published:2021-02-23
  • Contact: LI Na E-mail:dreamislasting@163.com;lina1409bs@163.com
  • Supported by:
    National Key Research and Development Program of China(2017YFD0301706);National Key Research and Development Program of China(2017YFD0301701);Scientific Research Fund of Sichuan Provincial Education Department(18ZA0390)

Abstract:

To explore the tolerances of compact hybrid rice (CHR) and loose hybrid rice (LHR) varieties to nitrogen fertilizer, three split-plot designed experiments were applied with main plot of four rice varieties (Longliangyou 1206, CHR; Y Liangyou 1, CHR; Yixiangyou 2115, LHR; and Fyou 498, LHR), and the sub-plot contained four N application rates (0 kg hm-2, N0; 90 kg hm-2, N90; 150 kg hm-2, N150; and 210 kg hm-2, N210). The results revealed that CHR was more tolerant to high nitrogen than LHR, and when the applied nitrogen was not higher than 150 kg hm-2, the yields of LHR were higher than those of CHR. When the applied nitrogen reached 210 kg hm-2, the single panicle weight advantage of CHR increased to 14.46%, while the effective panicle disadvantage decreased to 12.46%, then the yield of CHR was 1.43% higher than that of LHR. Partial least squares regression analysis showed that peak seedlings, growth rate from elongation to heading stage, leaf area index (LAI) and extinction coefficient (K-value) which characterized the degree of leaf stretching were positive contributions to CHR and LHR. The effective panicle rate at elongation and heading stages contributed negatively to the yield, but had the opposite effect on the agronomic efficiency of nitrogen fertilizer. Except K-value, the other indicators contributed similarly to yield, as did the agronomic efficiency of nitrogen fertilizer. Under N0 and N90, LAI and K-values of CHR were smaller than LHR, and the radiation interception rate was also lower than LHR. When nitrogen applied increased from 150 kg hm-2 to 210 kg hm-2, the K-value of CHR increased significantly, while LHR almost unchanged, resulting in the higher radiation interception rate at heading stage of CHR than LHR, indicating that the leaf stretching of CHR was sensitive to high nitrogen.

Key words: rice, compact hybrid rice, loose hybrid rice, nitrogen application rate, nitrogen tolerance

Table 1

Meteorological conditions of two experimental locations during whole growth stages in rice"

地点
Location
年份
Year
全生育期降雨量 全生育期日照时数
Total sunshine hours of WGS (h)
全生育期日平均温度
Average diurnal temperature of WGS (℃)
Total rainfall of WGS (mm)
绵阳 Mianyang 2016 426.0 757.3 23.88
成都 Chengdu 2017 538.8 630.3 22.32
成都 Chengdu 2018 571.4 648.2 22.51

Table 2

Average values of selected soil characteristics from composite topsoil samples in the experimental locations from 2016 to 2018"

地点
Location
年份
Year
有机质
Organic matter
(g kg-1)
全氮
Total N
(g kg-1)
速效氮
Available N
(mg kg-1)
速效磷
Available P
(mg kg-1)
速效钾
Available K
(mg kg-1)
绵阳 Mianyang 2016 22.38 1.89 98.45 21.89 101.22
成都 Chengdu 2017 24.55 2.11 118.04 28.91 109.23
成都 Chengdu 2018 21.72 2.01 102.45 24.04 98.67

Table 3

Main characteristic parameters of yield and plant type in experimental varieties"

类型
Type
品种
Variety
有效
穗数Panicle m-2
单穗
重量Panicle weight (g)
产量
Grain yield
(g m-2)
农学利用率AEN
(kg kg-1)
叶张角
Leaf opening angel
叶基角
Leaf basal angel
叶片披垂度
Leaf drooping degree
剑叶Flag leaf 倒二叶2nd leaf from top 倒三叶3rd leaf from top 剑叶
Flag leaf
倒二叶2nd leaf from top 倒三叶3rd leaf from top 剑叶
Flag leaf
倒二叶2nd leaf from top 倒三叶3rd leaf from top
CHR LLY 191.38 b 5.05 b 968 b 19.85 b 13.17 d 17.08 b 19.13 b 11.10 c 14.22 b 17.84 b 2.07 b 2.86 b 1.29 b
YLY 167.32 c 6.44 a 1078 a 24.98 a 14.09 c 17.95 b 19.73 b 11.80 bc 14.96 b 18.87 b 2.29 b 2.99 b 1.36 b
LHR YXY 203.70 a 4.78 b 974 b 20.30 b 18.34 b 24.04 a 27.09 a 13.14 b 18.09 a 23.21 a 5.20 a 5.95 a 3.88 a
FY 186.02 b 6.16 a 1146 a 25.88 a 20.77 a 25.64 a 27.68 a 15.12 a 18.41 a 23.62 a 5.65 a 7.23 a 4.06 a

Table 4

Analysis of variance of grain yield, panicles, panicle weight, NAE, LAI, and K-value at full heading stage"

项目
Item
产量
Grain yield
有效穗数Panicles 单穗重量Panicle weight 氮肥农学利用率
AEN
稻株叶面积指数
LAI at full heading stage
稻株叶片消光系数
K-value at full heading stage
品种(V) 8.86* 318.66*** 305.36*** 4.11 ns 580.71*** 20.65**
施氮量(N) 748.17*** 1363.77*** 108.12*** 12.86*** 219.77*** 19.10***
年份(Y) 30.07** 45.63*** 8.55* 2.73 ns 95.67*** 1.33 ns
V × N 5.05** 23.72*** 14.65*** 1.72 ns 3.29* 8.22***
V × Y 0.62 ns 0.06 ns 2.84 ns 0.05 ns 1.81 ns 0.12 ns
N × Y 0.82 ns 0.70 ns 0.27 ns 0.29 ns 0.40 ns 0.92 ns
V × N × Y 0.07 ns 0.29 ns 0.17 ns 0.03 ns 0.18 ns 0.84 ns

Table 5

Effects of nitrogen rates on grain yield and yield components in two rice variety types"

品种类型
Variety type
施氮处理
N treatment
2016 2017 2018
有效穗
Panicle (×104 hm-2)
单穗重量
Panicle weight
(g)
产量
Grain yield
(kg hm-2)
有效穗
Panicle (×104 hm-2)
单穗重量
Panicle weight
(g)
产量
Grain yield (kg hm-2)
有效穗
Panicle (×104 hm-2)
单穗重量
Panicle weight (g)
产量
Grain yield (kg hm-2)
紧凑型杂交稻
Compact hybrid rice (CHR)
N0 127.6 d 5.23 c 6677 d 126.28 d 5.26 d 6651 d 122.14 d 5.11 c 6242 d
N90 149.03 c 6.03 a 8988 c 142.73 c 6.23 a 8831 c 142.83 c 5.93 a 8471 c
N150 174.27 b 5.85 ab 10,189 b 170.14 b 5.97 b 10,251 b 170.00 b 5.77 a 9801 b
N210 203.83 a 5.65 b 11,520 a 204.02 a 5.68 c 11,340 a 199.03 a 5.40 b 10,757 a
平均值Average 163.68 5.69 9343 160.79 5.79 9268 158.50 5.55 8818
松散型杂交稻
Loose hybrid rice (LHR)
N0 144.44 d 5.11 b 7378 c 139.51 d 5.00 bc 7016 d 137.19 d 5.00 bc 6857 c
N90 165.1 c 5.82 a 9593 b 159.1 c 5.80 a 9159 c 160.29 c 5.67 a 9084 b
N150 212.31 b 5.19 b 11,017 a 208.38 b 5.21 b 10,570 b 203.31 b 5.12 b 10,401 a
N210 227.55 a 4.94 b 11,239 a 231.06 a 4.89 c 11,176 a 223.89 a 4.79 c 10,721 a
平均值Average 187.35 5.26 9807 184.51 5.22 9480 181.17 5.14 9266
F
F-value
V 728.70** 42.03** 22.64* 3342.60** 587.96** 58.58* 150.02** 38.71** 5.23 ns
N 393.50** 30.33** 163.76** 757.14** 53.67** 304.18** 393.38** 46.81** 250.32**
V×N 7.99** 6.22** 2.87 ns 16.83** 5.72* 1.29 ns 5.04* 6.66** 1.90 ns

Fig. 1

Tillering characteristics of two rice types with different nitrogen rates The left side of the two adjacent bars represents the jointing stage, and the right side represents the heading stage. CHR: compact hybrid rice; LHR: loose hybrid rice."

Fig. 2

Growth rate of two rice types with different nitrogen rates from jointing stage to heading stage CHR: compact hybrid rice; LHR: loose hybrid rice. ns P ≥ 0.05; ** P < 0.01; * P < 0.05."

Table 6

Effects of nitrogen rates on LAI, RIR, and K-value of the whole plant in two rice types"

品种类型Variety type 施氮处理
N treatment
2016 2017 2018
叶面积指数LAI 光能截获率RIR 消光系数
K
叶面积指数LAI 光能截获率RIR 消光系数
K
叶面积指数LAI 光能截获率RIR 消光系数
K
紧凑型杂交稻
Compact hybrid rice (CHR)
N0 6.04 c 78.34 d 0.25 c 5.60 d 77.26 c 0.27 b 5.61 c 77.00 c 0.26 a
N90 6.90 b 84.05 c 0.27 c 6.36 c 82.14 c 0.27 b 6.40 b 82.98 b 0.28 a
N150 7.57 a 92.04 b 0.34 b 6.83 b 88.95 b 0.33 b 7.15 a 91.39 a 0.35 a
N210 8.05 a 95.97 a 0.40 a 7.48 a 96.23 a 0.45 a 7.58 a 93.10 a 0.35 a
平均Average 7.14 87.60 0.32 6.57 86.15 0.33 6.68 86.12 0.31
松散型杂交稻
Loose hybrid rice (LHR)
N0 6.87 d 83.87 c 0.27 a 6.04 d 80.95 b 0.28 a 6.34 d 81.98 c 0.27 b
N90 7.72 c 87.55 b 0.27 a 7.21 c 87.30 a 0.29 a 7.28 c 87.18 b 0.29 b
N150 8.71 b 90.76 b 0.27 a 7.78 b 89.04 a 0.30 a 8.12 b 89.35 ab 0.28 a
N210 9.34 a 94.55 a 0.32 a 8.61 a 92.26 a 0.30 a 8.81 a 92.17 a 0.29 a
平均Average 8.16 89.18 0.28 7.41 87.38 0.29 7.64 87.67 0.28
F
F value
V 160.52** 25.69** 4.26 ns 747.58** 1.87 ns 14.27 ns 146.40** 1.88 ns 6.17 ns
N 71.83** 57.50** 12.69** 80.81** 19.71** 4.62* 69.36** 75.30** 8.67**
V×N 1.02 ns 4.52* 2.93 ns 1.96 ns 1.98 ns 2.98 ns 0.82 ns 6.92** 6.16**

Fig. 3

Agronomic efficiency of nitrogen fertilizer of two rice variety types The three adjacent bars superscripted by lowercase different letters represent significantly different at P < 0.05 among N treatments. CHR: compact hybrid rice; LHR: loose hybrid rice."

Table 7

Linear regression equations of LAI and K-value on radiation interception rate at heading stage"

品种类型
Variety type
指标
Trait
标准回归系数
Standard regression coefficient
决定系数
R2
紧凑型杂交稻 叶面积指数 LAI 0.553** 0.960**
Compact hybrid rice 消光系数 K 0.503**
松散型杂交稻 叶面积指数 LAI 0.736** 0.960**
Loose hybrid rice 消光系数 K 0.521**

Table 8

Contribution of morphology-related indicators to yield and agronomic efficiency of nitrogen fertilizer"

品种类型
Variety type
指标
Trait
产量 Grain yield 氮肥农学利用率 AEN
标准偏回归系数
Standard partial regression coefficient
决定系数
R2
标准偏回归系数
Standard partial regression coefficient
决定系数
R2
紧凑型杂交稻
Compact hybrid rice
高峰苗 Peak tiller number 0.1796 0.8325** 0.1188 0.3639**
成穗率 Ear-bearing tiller percentage -0.1776 0.1174
拔节至抽穗生长速率
Growth rate from jointing to heading
0.1661 -0.1098
抽穗期有效穗占比
Ear-bearing tiller percentage at heading
-0.1724 0.114
叶面积指数 LAI 0.1498 -0.099
消光系数 K 0.1501 -0.0992
松散型杂交稻
Loose hybrid rice
高峰苗 Peak tiller number 0.1806 0.6351** -0.1454 0.4117**
成穗率 Ear-bearing tiller percentage -0.1622 0.1306
拔节至抽穗生长速率
Growth rate from jointing to heading
0.1605 -0.1292
抽穗期有效穗占比
Ear-bearing tiller percentage at heading
-0.1758 0.1416
叶面积指数 LAI 0.1631 -0.1313
消光系数 K 0.0574 -0.0462
[1] 王杰飞, 朱潇, 沈健林, 曾冠军, 王娟, 吴金水, 李勇. 亚热带稻区大气氨/铵态氮污染特征及干湿沉降. 环境科学, 2017,38:2264-2272.
Wang J F, Zhu X, Shen J L, Zeng G J, Wang J, Wu J S, Li Y. Atmospheric ammonia/ammonium-nitrogen concentrations and wet and dry deposition rates in a double rice region in subtropical China. Environ Sci, 2017,38:2264-2272 (in Chinese with English abstract).
[2] Wang J, Fu P, Wang F, Fahad S, Mohapatra P K, Chen Y T, Zhang C D, Peng S B, Cui K H, Nie L X, Huang J L. Optimizing nitrogen management to balance rice yield and environmental risk in the Yangtze River’s middle reaches. Environ Sci Pollut Res, 2019,26:4901-4912.
doi: 10.1007/s11356-018-3943-5
[3] 朴钟泽, 韩龙植, 高熙宗. 水稻不同基因型氮素利用效率差异. 中国水稻科学, 2003,17:233-238.
Piao Z Z, Han L Z, Koh H J. Variations of nitrogen use efficiency by rice genotype. Chin J Rice Sci, 2003,17:233-238 (in Chinese with English abstract).
[4] 殷春渊, 张庆, 魏海燕, 张洪程, 戴其根, 霍中洋, 许轲, 马群, 杭杰, 张胜飞. 不同产量类型水稻基因型氮素吸收、利用效率的差异. 中国农业科学, 2010,43:39-50.
Yin C Y, Zhang Q, Wei H Y, Zhang H C, Dai Q G, Huo Z Y, Xu K, Ma Q, Hang J, Zhang S F. Differences in nitrogen absorption and use efficiency in rice genotypes with different yield performance. Sci Agric Sin, 2010,43:39-50 (in Chinese with English abstract).
[5] 董桂春, 王熠, 于小凤, 周娟, 彭斌, 李进前, 田昊, 张燕, 袁秋梅, 王余龙. 不同生育期水稻品种氮素吸收利用的差异. 中国农业科学, 2011,44:4570-4582.
Dong G C, Wang Y, Yu X F, Zhou J, Peng B, Li J Q, Tian H, Zhang Y, Yuan Q M, Wang Y L. Differences of nitrogen uptake and utilization of conventional rice varieties with different growth duration. Sci Agric Sin, 2011,44:4570-4582 (in Chinese with English abstract).
[6] 秦俭, 杨志远, 孙永健, 徐徽, 马均. 不同穗型杂交籼稻物质积累、氮素吸收利用和产量的差异比较. 中国水稻科学, 2014,28:514-522.
Qin J, Yang Z Y, Sun Y J, Xu H, Ma J. Differential comparison of assimilation products accumulation, nitrogen uptake and utilization and grain yield of hybrid Indica rice cultivars with different panicle type. Chin J Rice Sci, 2014,28:514-522 (in Chinese with English abstract).
[7] 郭小红, 王兴才, 孟田, 张惠君, 敖雪, 王海英, 谢甫绨. 中国辽宁省和美国俄亥俄州育成大豆品种形态、产量和品质性状的比较研究. 中国农业科学, 2015,48:4240-4253.
Guo X H, Wang X C, Meng T, Zhang H J, Ao X, Wang H Y, Xie F T. Comparison on morphological, yield, and quality traits of soybean cultivars developed in different years from Liaoning and Ohio. Sci Agric Sin, 2015,48:4240-4253 (in Chinese with English abstract).
[8] Van Wart J, Kersebaum K C, Peng S B, Milner M, Cassman K G. Estimating crop yield potential at regional to national scales. Field Crops Res, 2013,143:34-43.
doi: 10.1016/j.fcr.2012.11.018
[9] 林洪鑫, 潘晓华, 石庆华, 彭春瑞, 吴建富. 栽插密度与施氮量对双季稻上部三叶叶长和叶角的影响. 作物学报, 2010,36:1743-1751.
Lin H X, Pan X H, Shi Q H, Peng C R, Wu J F. Effects of nitrogen application amount and planting density on angle and length of top three leaves in double-cropping rice. Acta Agron Sin, 2010,36:1743-1751 (in Chinese with English abstract).
[10] 李艳大, 汤亮, 张玉屏, 刘蕾蕾, 曹卫星, 朱艳. 水稻冠层光合有效辐射的时空分布特征. 应用生态学报, 2010,21:952-958.
Li Y D, Tang L, Zhang Y P, Liu L L, Cao W X, Zhu Y. Spatiotemporal distribution of photosynthetically active radiation in rice canopy. Chin J Appl Ecol, 2010,21:952-958 (in Chinese with English abstract).
[11] 申广荣, 王人潮, 李云梅, 王秀珍, 沈掌泉. 水稻群丛结构和辐射传输分析. 作物学报, 2001,27:769-775.
Shen G R, Wang R C, Li Y M, Wang X Z, Shen Z Q. Study on rice cluster architecture and radiation transfer. Acta Agron Sin, 2001,27:769-775 (in Chinese with English abstract).
[12] Huang M, Jiang L, Xia B, Zou Y B, Jiang P, Ao H. Yield gap analysis of super hybrid rice between two subtropical environments. Aust J Crop Sci, 2013,7:600-608.
[13] Huang M, Zou Y B, Jiang P, Xia B, Md I, Ao H J. Relationship between grain yield and yield components in super hybrid rice. Sci Agric Sin, 2011,10:1537-1544.
[14] 杨志远, 李娜, 马鹏, 严田蓉, 何艳, 蒋明金, 吕腾飞, 李郁, 郭翔, 胡蓉, 郭长春, 孙永健, 马均. 水肥“三匀”技术对水稻水、氮利用效率的影响. 作物学报, 2020,46:408-422.
Yang Z Y, Li N, Ma P, Yan T R, He Y, Jiang M J, Lyu T F, Li Y, Guo X, Hu R, Guo C C, Sun Y J, Ma J. Effects of methodical nitrogen-water distribution management on water and nitrogen use efficiency of rice. Acta Agron Sin, 2020,46:408-422 (in Chinese with English abstract).
[15] 凌启鸿, 苏祖芳, 张海泉. 水稻成穗率与群体质量的关系及其影响因素的研究. 作物学报, 1995,21:463-469.
Ling Q H, Su Z F, Zhang H Q. Relationship between ear bearing tiller percentage and population quality and its influential factors in rice. Acta Agron Sin, 1995,21:463-469 (in Chinese with English abstract).
[16] 蒋彭炎, 洪晓富, 冯来定, 马跃芳, 史济林, 倪竹如, 刘智宏. 水稻中期群体成穗率与后期群体光合效率的关系. 中国农业科学, 1994,27:8-14.
Jiang P Y, Hong X F, Feng D L, Ma Y F, Shi J L, Ni Z R, Liu Z H. Relation between percentage of ear-bearing of colony in the middle phase and photosynthesis efficiency in the late in rice. Sci Agric Sin, 1994,27:8-14 (in Chinese with English abstract).
[17] Horie T, Lubis I, Takai T, Ohsumi A, Kuwasaki K, Katsura K, Nii A. Physiological traits associated with high yield potential in rice. In: Rice Science: Innovations and Impacts for Livelihood. Manila, Philippines: International Rice Research Institute, 2003. pp 117-146.
[18] 杨长明, 杨林章, 韦朝领, 丁超尘. 不同品种水稻群体冠层光谱特征比较研究. 应用生态学报, 2002,13:689-692.
Yang C M, Yang L Z, Wei C L, Ding C C. Canopy spectral characteristics of different rice varieties. Chin J Appl Ecol, 2002,13:689-692 (in Chinese with English abstract).
[19] 李艳大, 黄俊宝, 叶春, 舒时富, 孙滨峰, 陈立才, 王康军, 曹中盛. 不同氮素水平下双季稻株型与冠层内光截获特征研究. 作物学报, 2019,45:1375-1385.
Li Y D, Huang J B, Ye C, Shi S F, Sun B F, Chen L C, Wang K J, Cao Z S. Plant type and canopy light interception characteristics in double cropping rice canopy under different nitrogen rates. Acta Agron Sin, 2019,45:1375-1385 (in Chinese with English abstract).
[20] Hu N, Lu C G, Yao K M, Zou J S. Simulation on distribution of photosyn-thetically active radiation in canopy and optimum leaf rolling index in rice with rolling leaves. Rice Sci, 2009,16:217-225.
doi: 10.1016/S1672-6308(08)60082-7
[21] 汤亮, 朱相成, 曹梦莹, 曹卫星, 朱艳. 水稻冠层光截获、光能利用与产量的关系. 应用生态学报, 2012,23:1269-1276.
Tang L, Zhu X C, Cao M Y, Cao W X, Zhu Y. Relationships of rice canopy PAR interception and light use efficiency to grain yield. Chin J Appl Ecol, 2012,23:1269-1276 (in Chinese with English abstract).
[22] Zhang Y B, Tang Q Y, Zou Y B, Li D Q, Qin J Q, Yang S H, Chen L J, Xia B, Peng S B. Yield potential and radiation use efficiency of “super” hybrid rice grown under subtropical conditions. Field Crops Res, 2009,114:91-98.
doi: 10.1016/j.fcr.2009.07.008
[1] TIAN Tian, CHEN Li-Juan, HE Hua-Qin. Identification of rice blast resistance candidate genes based on integrating Meta-QTL and RNA-seq analysis [J]. Acta Agronomica Sinica, 2022, 48(6): 1372-1388.
[2] ZHENG Chong-Ke, ZHOU Guan-Hua, NIU Shu-Lin, HE Ya-Nan, SUN wei, XIE Xian-Zhi. Phenotypic characterization and gene mapping of an early senescence leaf H5(esl-H5) mutant in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2022, 48(6): 1389-1400.
[3] ZHOU Wen-Qi, QIANG Xiao-Xia, WANG Sen, JIANG Jing-Wen, WEI Wan-Rong. Mechanism of drought and salt tolerance of OsLPL2/PIR gene in rice [J]. Acta Agronomica Sinica, 2022, 48(6): 1401-1415.
[4] ZHENG Xiao-Long, ZHOU Jing-Qing, BAI Yang, SHAO Ya-Fang, ZHANG Lin-Ping, HU Pei-Song, WEI Xiang-Jin. Difference and molecular mechanism of soluble sugar metabolism and quality of different rice panicle in japonica rice [J]. Acta Agronomica Sinica, 2022, 48(6): 1425-1436.
[5] YAN Jia-Qian, GU Yi-Biao, XUE Zhang-Yi, ZHOU Tian-Yang, GE Qian-Qian, ZHANG Hao, LIU Li-Jun, WANG Zhi-Qin, GU Jun-Fei, YANG Jian-Chang, ZHOU Zhen-Ling, XU Da-Yong. Different responses of rice cultivars to salt stress and the underlying mechanisms [J]. Acta Agronomica Sinica, 2022, 48(6): 1463-1475.
[6] QIN Lu, HAN Pei-Pei, CHANG Hai-Bin, GU Chi-Ming, HUANG Wei, LI Yin-Shui, LIAO Xiang-Sheng, XIE Li-Hua, LIAO Xing. Screening of rapeseed germplasms with low nitrogen tolerance and the evaluation of its potential application as green manure [J]. Acta Agronomica Sinica, 2022, 48(6): 1488-1501.
[7] YANG Jian-Chang, LI Chao-Qing, JIANG Yi. Contents and compositions of amino acids in rice grains and their regulation: a review [J]. Acta Agronomica Sinica, 2022, 48(5): 1037-1050.
[8] DENG Zhao, JIANG Nan, FU Chen-Jian, YAN Tian-Zhe, FU Xing-Xue, HU Xiao-Chun, QIN Peng, LIU Shan-Shan, WANG Kai, YANG Yuan-Zhu. Analysis of blast resistance genes in Longliangyou and Jingliangyou hybrid rice varieties [J]. Acta Agronomica Sinica, 2022, 48(5): 1071-1080.
[9] YANG De-Wei, WANG Xun, ZHENG Xing-Xing, XIANG Xin-Quan, CUI Hai-Tao, LI Sheng-Ping, TANG Ding-Zhong. Functional studies of rice blast resistance related gene OsSAMS1 [J]. Acta Agronomica Sinica, 2022, 48(5): 1119-1128.
[10] ZHU Zheng, WANG Tian-Xing-Zi, CHEN Yue, LIU Yu-Qing, YAN Gao-Wei, XU Shan, MA Jin-Jiao, DOU Shi-Juan, LI Li-Yun, LIU Guo-Zhen. Rice transcription factor WRKY68 plays a positive role in Xa21-mediated resistance to Xanthomonas oryzae pv. oryzae [J]. Acta Agronomica Sinica, 2022, 48(5): 1129-1140.
[11] WANG Xiao-Lei, LI Wei-Xing, OU-YANG Lin-Juan, XU Jie, CHEN Xiao-Rong, BIAN Jian-Min, HU Li-Fang, PENG Xiao-Song, HE Xiao-Peng, FU Jun-Ru, ZHOU Da-Hu, HE Hao-Hua, SUN Xiao-Tang, ZHU Chang-Lan. QTL mapping for plant architecture in rice based on chromosome segment substitution lines [J]. Acta Agronomica Sinica, 2022, 48(5): 1141-1151.
[12] WANG Ze, ZHOU Qin-Yang, LIU Cong, MU Yue, GUO Wei, DING Yan-Feng, NINOMIYA Seishi. Estimation and evaluation of paddy rice canopy characteristics based on images from UAV and ground camera [J]. Acta Agronomica Sinica, 2022, 48(5): 1248-1261.
[13] KE Jian, CHEN Ting-Ting, WU Zhou, ZHU Tie-Zhong, SUN Jie, HE Hai-Bing, YOU Cui-Cui, ZHU De-Quan, WU Li-Quan. Suitable varieties and high-yielding population characteristics of late season rice in the northern margin area of double-cropping rice along the Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(4): 1005-1016.
[14] CHEN Yue, SUN Ming-Zhe, JIA Bo-Wei, LENG Yue, SUN Xiao-Li. Research progress regarding the function and mechanism of rice AP2/ERF transcription factor in stress response [J]. Acta Agronomica Sinica, 2022, 48(4): 781-790.
[15] WANG Lyu, CUI Yue-Zhen, WU Yu-Hong, HAO Xing-Shun, ZHANG Chun-Hui, WANG Jun-Yi, LIU Yi-Xin, LI Xiao-Gang, QIN Yu-Hang. Effects of rice stalks mulching combined with green manure (Astragalus smicus L.) incorporated into soil and reducing nitrogen fertilizer rate on rice yield and soil fertility [J]. Acta Agronomica Sinica, 2022, 48(4): 952-961.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!